首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地球物理   1篇
地质学   4篇
海洋学   2篇
天文学   1篇
  2020年   1篇
  2017年   1篇
  2011年   2篇
  2010年   2篇
  2008年   1篇
  2006年   1篇
排序方式: 共有8条查询结果,搜索用时 109 毫秒
1
1.
The dissociation constants (pK1, pK2 and pK3) for cysteine have been measured in seawater as a function of temperature (5 to 45 °C) and salinity (S = 5 to 35). The seawater values were lower than the values in NaCl at the same ionic strength. In an attempt to understand these differences, we have made measurements of the constants in Na–Mg–Cl solutions at 25 °C. The measured values have been compared to those calculated from the Pitzer ionic interaction model. The lower values of pK3 in the Na–Mg–Cl solutions have been attributed to the formation of Mg2+ complexes with Cys2− anions
Mg2+ + Cys2− = MgCys
The stability constants have been fitted to
after corrections are made for the interaction of Mg2+ with H+.The pK1 seawater measurements indicate that H3Cys+ interacts with SO42−. The Pitzer parameters β0(H3CysSO4), β1(H3CysSO4) and C(H3CysSO4) have been determined for this interaction. The formation of CaCys as well as MgCys are needed to account for the values of pK2 and pK3 in seawater.The consideration of the formation of MgCys and CaCys in seawater yields model calculated values of pK1, pK2 and pK3 that agree with the measured values to within the experimental error of the measurements. This study shows that it is important to consider all of the ionic interactions in natural waters when examining the dissociation of organic acids.  相似文献   
2.
Fractured archaeological glass blocks altered 1800 years in seawater are investigated because of their morphological analogy with vitrified nuclear waste. They provide an opportunity for understanding glass alteration in variable confined media (cracks), by studying an actual ancient system in a known stable natural environment. Characterization of the crack network from two-dimensional trace maps (length, alteration thickness, orientation) allows us to determine the three-dimensional geometric parameters (crack density, fracture ratio) and the percentage of alteration, using stereological relations. This methodology could be applied to nuclear glass. From a representative archaeological glass block, we showed that the surface developed by the cracks is 86 ± 27 times greater than the geometric surface but the volumetric alteration is 12.2 ± 4.1%, which is only 12 times greater than the volumetric alteration of the block periphery (about 1 vol%). This unexpected low value is explained by the large variation of the alteration thicknesses in the different types of cracks in relation with their location in the block. The alteration thickness is usually smaller in the internal zone than in the border zone. The alteration layers resulted from three main mechanisms (interdiffusion, glass dissolution, and secondary phase precipitation) leading to two different alteration products (a sodium-depleted layer and mainly a Mg-smectite). Geometric parameters such as the glass surface area/solution volume ratio and transport parameters (renewal of the alteration solution) strongly affected the glass dissolution kinetics. The confined conditions and the diffusive transport of reactive species favor low alteration kinetics. The precipitation of secondary phases also results in sealing of the cracks. Consequently, although it is not known if subcritical crack growth occurred, internal cracks account for only a minor contribution to the overall alteration. These results improve our understanding of alteration in cracks for assessing the predominant physical and chemical parameters that must be considered in long-term nuclear glass modeling.  相似文献   
3.
Wood in rivers plays a major role both ecologically and morphologically. In recent decades, due to human activities in the river channels and along the riparian zone, wood obstruction and jamming has exacerbated flooding hazards and infrastructure damage. Therefore, it is necessary to quantify the wood flux and discharge in rivers to improve wood hazard management. Among the various methods for monitoring the wood flux in a river, the streamside videography technique is effective given its high temporal and spatial resolution. Previous work monitored the wood discharge (m3/s) using this technique in the Ain River (France) during three floods (MacVicar and Piégay, 2012), and the same method is implemented on the Isère River (France) to obtain the statistics of wood discharge for two floods. Comparison between the two sites supports the generalization of both the monitoring technique and the link between wood discharge and flood characteristics. We first show that the maximum wood discharge is observed at bankfull discharge, and we confirm the three stage model proposed by MacVicar and Piégay (2012). Additionally, transverse distributions of the number of wood pieces and corresponding wood length appear to be similar for different flood magnitudes on each site. As a technical contribution, the use of the same technique on two sites allows for recommendations on key decisions related to the location and implementation of the equipment. Both statistical and technical contributions can be used by decision makers to implement this monitoring technique, acquire the wood transport parameters, and evaluate the potential wood hazards at local scale or along a river. © 2020 John Wiley & Sons, Ltd.  相似文献   
4.
In order to use lithium isotopes as tracers of silicate weathering, it is of primary importance to determine the processes responsible for Li isotope fractionation and to constrain the isotope fractionation factors caused by each process as a function of environmental parameters (e.g. temperature, pH). The aim of this study is to assess Li isotope fractionation during the dissolution of basalt and particularly during leaching of Li into solution by diffusion or ion exchange. To this end, we performed dissolution experiments on a Li-enriched synthetic basaltic glass at low ratios of mineral surface area/volume of solution (S/V), over short timescales, at various temperatures (50 and 90 °C) and pH (3, 7, and 10). Analyses of the Li isotope composition of the resulting solutions show that the leachates are enriched in 6Li (δ7Li = +4.9 to +10.5‰) compared to the fresh basaltic glass (δ7Li = +10.3 ± 0.4‰). The δ7Li value of the leachate is lower during the early stages of the leaching process, increasing to values close to the fresh basaltic glass as leaching progresses. These low δ7Li values can be explained in terms of diffusion-driven isotope fractionation. In order to quantify the fractionation caused by diffusion, we have developed a model that couples Li diffusion with dissolution of the glassy silicate network. This model calculates the ratio of the diffusion coefficients of both isotopes (a = D7/D6), as well as its dependence on temperature, pH, and S/V. a is mainly dependent on temperature, which can be explained by a small difference in activation energy (0.10 ± 0.02 kJ/mol) between 6Li+ and 7Li+. This temperature dependence reveals that Li isotope fractionation during diffusion is low at low temperatures (T < 20 °C), but can be significant at high temperatures. However, concerning hydrothermal fluids (T > 120 °C), the dissolution rate of basaltic glass is also high and masks the effects of diffusion. These results indicate that the high δ7Li values of river waters, in particular in basaltic catchments, and the fractionated values of hydrothermal fluids are mainly controlled by precipitation of secondary phases.  相似文献   
5.
Internationally, shark conservation is now being recognized as a major environmental challenge, but management efforts to halt the overexploitation of sharks have lagged behind. This review examines the state of knowledge for shark species in Canadian waters and analyzes the role of existing management and legislation in ensuring shark conservation. Despite Canada's early leadership, the present management framework reveals major shortcomings with regard to legal protection, bycatch and finning regulations. These problems are not unique to Canada but illustrate broader issues pertaining to the global management of endangered fish species. To strengthen the conservation and management of sharks, this paper recommends a set of key policies and management priorities, which exemplify proper precautionary management of endangered shark species in Canada and could serve as a blueprint for improving conservation efforts internationally. A structured approach for grading progress in shark conservation efforts against best practices is also presented and could be used as a goalpost elsewhere.  相似文献   
6.
The knowledge of the long-term behavior of nuclear waste in anticipation of ultimate disposal in a deep geological formation is of prime importance in a waste management strategy. If phenomenological models have been developed to predict the long-term behavior of these materials, validating these models remains a challenge, when considering the time scale of radioactive decay of radionuclides of environmental concern, typically 104–105 yrs. Here we show how natural or archaeological analogues provide critical constraints not only on the phenomenology of glass alteration and the mechanisms involved, but also on the ability of experimental short-term data to predict long-term alteration in complex environments.  相似文献   
7.
We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modelling of ice survival, and discussion on their origins. We then look at which methods will likely be most effective for further progress, including the key challenge of direct detection of (escaping) water in these bodies.  相似文献   
8.
To improve confidence in glass alteration models, as used in nuclear and natural applications, their long-term predictive capacity has to be validated. For this purpose, we develop a new model that couples geochemical reactions with transport and use a fractured archaeological glass block that has been altered for 1800 years under well-constrained conditions in order to test the capacity of the model.The chemical model considers three steps in the alteration process: (1) formation of a hydrated glass by interdiffusion, whose kinetics are controlled by a pH and temperature dependent diffusion coefficient; (2) the dissolution of the hydrated glass, whose kinetics are based on an affinity law; (3) the precipitation of secondary phases if thermodynamic saturation is reached. All kinetic parameters were determined from experiments. The model was initially tested on alteration experiments in different solutions (pure water, Tris, seawater). It was then coupled with diffusive transport in solution to simulate alteration in cracks within the glass. Results of the simulations run over 1800 years are in good agreement with archaeological glass block observations concerning the nature of alteration products (hydrated glass, smectites, and carbonates) and crack alteration thicknesses. External cracks in direct contact with renewed seawater were altered at the forward dissolution rate and are filled with smectites (400−500 μm). Internal cracks are less altered (by 1 or 2 orders of magnitude) because of the strong coupling between alteration chemistry and transport. The initial crack aperture, the distance to the surface, and sealing by secondary phases account for these low alteration thicknesses. The agreement between simulations and observations thus validates the predictive capacity of this coupled geochemical model and increases more generally the robustness and confidence in glass alteration models to predict long-term behavior of nuclear waste in geological disposal or natural glass in the environment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号