首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
东海陆架盆地处于欧亚板块东南缘,其构造演化、动力学机制转换同太平洋板块与欧亚板块碰撞及印度-澳大利亚板块远程推挤效应有关。中生代以来,该盆地形成和演化过程受到古太平洋板块多期俯冲及多构造体系的叠加改造,地质构造和地球物理场复杂,盆地演化及动力学过程等一直是争论的焦点。本文利用最新调查资料,通过构造物理模拟实验、构造解析和平衡地质复原剖面等方法,结合区域构造背景,系统分析了东海陆架盆地中生代演化过程,探讨了其构造动力学转换过程。研究认为东海陆架盆地自中生代以来经历了晚三叠世前的被动大陆边缘和晚三叠世-中侏罗世活动大陆边缘挤压坳陷型盆地阶段,挤压应力来源于伊泽奈崎板块向欧亚大陆板块的低角度俯冲;早白垩世晚期-晚白垩世活动陆缘伸展断陷型盆地阶段,应力来源于太平洋板块向欧亚大陆板块俯冲后撤导致的岩石圈减薄作用;古近纪为弧后伸展断陷型盆地阶段。同时认为东海陆架盆地古特提斯构造域向古太平洋构造域转换的时间应该发生在中三叠世末期,古太平洋板块低角度俯冲和俯冲后撤代表华南中生代深部地质过程。  相似文献   

2.
A new tectonic model for the Aegean block is outlined in an effort to explain the widespread extension observed in this region. A key element in this model is the concept of “side arc collision” This term is used to describe the interaction of subducted oceanic lithosphere with continental lithosphere in a subduction arc in which oblique subduction occurs. In the Hellenic arc side arc collision is proposed for the northeast corner near Rhodes. The collision involves subducted African lithosphere, moving to the northeast almost parallel to the arc, with the continental mass of southwest Turkey. It affects the motion of the Anatolian-Aegean plate complex, but is not similar to continental collision since it occurs mostly at depth and involves only little, if any, of the shallow and rigid part of the continental lithosphere. The model assumes that Anatolia and the Aegean are part of one plate complex which undergoes counterclockwise rotation; if it were not for the side arc collision near Rhodes, the two blocks would exhibit similar deformation and might, in effect, be indistinguishable. At present, however, free and undisturbed rotation is possible only for the Anatolian block (excluding western Anatolia) where the motion is accommodated by subduction along the Cyprean arc. Further west the side arc collision inhibits this rotation along the subduction front. Still further west, undisturbed subduction along the central and western parts of the Hellenic arc is again possible and is well documented. On the other side of the Anatolian-Aegean plate complex, relatively free motion occurs along the North Anatolian fault zone including in the Aegean Sea. The combination of this motion in the north with the local obstruction of the rotation near Rhodes, must create a torque and a new pattern of rotation for the western part of the plate complex, thus creating a separate Aegean block. Since, however, the two blocks are not separated by a plate boundary, the Aegean block cannot move freely according to the new torque. Effective motion of the Aegean block relative to Europe and Anatolia, particularly in the north, is achieved through extension of the crust (lithosphere?). Thus the greatest amount of deformation (extension) is observed along the suture zone between the two blocks and, in particular, in the northeastern part of the Aegean block where motion relative to Anatolia must be greatest.  相似文献   

3.
Sediment subduction versus accretion around the pacific   总被引:2,自引:0,他引:2  
Subducting oceanic plates are typically broken by normal faults as they bend downward into subduction zones, usually forming regular patterns of grabens. The faults strike parallel or subparallel to the trench axes and are most commonly 5–10 km in spacing and width. Rupture occurs initially near the outer topographic high and vertical displacement or graben depth increases as the plate descends, the 400 m or more at many trench axes. It is suggested that the grabens provide void spaces within the surface of the subducting plate, below the plane of subduction, into which the trench sediments are tectonically displaced and thus subducted. Around the Pacific, the only regions of apparent fore-arc sediment accretion are where the graben structures are missing or masked by thick sediment deposits. Even in these cases sediment subduction, by inclusion in subducting plate grabens or by other mechanisms, must be invoked to explain the relatively small fore-arc sediment volumes compared to calculated accretion volumes based on historical convergence. Where trench sediment volumes are small compared to the graben volumes the grabens may abrade the leading edge and underside of the overriding plate and subduct the eroded material. It is concluded that sediment subduction is dominant around the Circum-Pacific and that the bending-induced graben structures of the subducting plates are a major factor for sediment subduction and tectonic erosion.  相似文献   

4.
5.
解习农  赵帅  任建业  杨允柳  姚永坚 《地球科学》2022,47(10):3524-3542
南海是西太平洋海域最大的边缘海,然而南海扩张终结后动力学过程研究仍较为薄弱.通过构造变革界面识别、褶皱冲断带沉积记录等方面的系统研究,揭示南海南部和东部陆缘在南海后扩张期的演化历程.研究表明南海南部和东部边缘经历了多个微板块从俯冲到碰撞的演变历程,形成了陆-陆碰撞、弧-陆碰撞、洋-弧俯冲等多个特征迥异的板块边界.南海南部陆缘属于古南海俯冲拖曳构造区,婆罗洲西北沙捞越-曾母地块率先碰撞,随后经历了婆罗洲东北沙巴-南沙地块碰撞、西南巴拉望-卡加延岛弧碰撞.南部多个微板块碰撞导致古南海呈剪刀式从西向东逐渐关闭和消亡,总体形成了以微地块碰撞、深海槽发育和造山带前缘巨厚沉积充填为特色的碰撞陆缘.东部陆缘属于菲律宾海俯冲-碰撞构造区,南海东部洋壳自中新世开始向菲律宾海板块俯冲,弧-陆碰撞仅局限于东部陆缘南北两端.澳洲-印度板块、菲律宾海板块与欧亚板块相互作用控制了南海边缘海闭合过程,南海正在进行的关闭过程主要集中在东缘和南缘,东缘呈现了以南海洋壳消亡为特征的闭合过程,而南缘则呈现以微陆块碰撞为特征的古南海闭合过程.显然,南部后扩张期陆缘演变可为边缘海闭合过程研究提供极佳的范例,同时对我国海洋权益保护和南海大陆边缘动力学研究具有重要意义.   相似文献   

6.
太行山隆起南段新构造变形过程研究   总被引:9,自引:0,他引:9  
基于TM遥感影像解译和断裂滑动矢量资料的野外观测,结合年轻地质体热同位素和放射性同位素年代学测试结果分析,重点描述了太行山隆起南段构造地貌特征,划分了新构造变形阶段,确定了新构造应力场及其转换历史。研究表明,新近纪以来,太行山南段经历了两期重要的引张变形时期。中新世中晚期,伴随华北地区广泛的基性火山喷溢活动,太行山南段受近NE-SW向引张应力作用,构造变形集中在南段东缘和南缘断裂带上。上新世至早更新世时期,强烈的NW-SE向地壳引张导致太行山隆起南段夷平地貌的解体和地堑盆地的形成。自中晚更新世以来,太行山南缘断裂带成为新构造变形的主要边界带。断面滑动矢量分析和山前年轻冲积扇体和小冲沟沿断裂错移特征分析,表明太行山南缘断裂带是一条斜张左旋走滑边界断裂带,引张方向为NW-SE至NNW-SSE.从区域大地构造角度,中新世中国东部NE-SW向拉伸作用与东部太平洋板块向西俯仲导致的弧后扩张动力过程有关;而上新世以来新构造变形是与青藏高原快速隆升及其向东构造挤出作用有关。   相似文献   

7.
Crustal extension in the overriding plate at the Aegean subduction zone, related to the rollback of the subducting African slab in the Miocene, resulted in a detachment fault separating high‐pressure/low‐temperature (HP‐LT) metamorphic lower from non‐metamorphic upper tectonic units on Crete. In western Crete, detachment faulting at deeper crustal levels was accompanied by structural disintegration of the hangingwall leading to the formation of half‐graben‐type sedimentary basins filled by alluvial fan and fan‐delta deposits. The coarse‐grained clastic sediments in these half‐grabens are exclusively derived from the non‐metamorphic units atop the detachment fault. Being in direct tectonic contact with HP‐LT metamorphic rocks of the lower tectonic units today, the basins must have formed in the period between c. 20 and 15 Ma, prior to the exposure of the HP‐LT metamorphic rocks at the surface, and juxtaposed with the latter during ongoing deformation.  相似文献   

8.
Cenozoic geodynamic evolution of the Aegean   总被引:4,自引:3,他引:1  
The Aegean region is a concentrate of the main geodynamic processes that shaped the Mediterranean region: oceanic and continental subduction, mountain building, high-pressure and low-temperature metamorphism, backarc extension, post-orogenic collapse, metamorphic core complexes, gneiss domes are the ingredients of a complex evolution that started at the end of the Cretaceous with the closure of the Tethyan ocean along the Vardar suture zone. Using available plate kinematic, geophysical, petrological and structural data, we present a synthetic tectonic map of the whole region encompassing the Balkans, Western Turkey, the Aegean Sea, the Hellenic Arc, the Mediterranean Ridge and continental Greece and we build a lithospheric-scale N-S cross-section from Crete to the Rhodope massif. We then describe the tectonic evolution of this cross-section with a series of reconstructions from ~70 Ma to the Present. We follow on the hypothesis that a single subduction has been active throughout most of the Mesozoic and the entire Cenozoic, and we show that the geological record is compatible with this hypothesis. The reconstructions show that continental subduction (Apulian and Pelagonian continental blocks) did not induce slab break-off in this case. Using this evolution, we discuss the mechanisms leading to the exhumation of metamorphic rocks and the subsequent formation of extensional metamorphic domes in the backarc region during slab retreat. The tectonic histories of the two regions showing large-scale extension, the Rhodope and the Cyclades are then compared. The respective contributions to slab retreat, post-orogenic extension and lower crust partial melting of changes in kinematic boundary conditions and in nature of subducting material, from continental to oceanic, are discussed.  相似文献   

9.
Affected by thermal perturbation due to mantle uprising,the rheological structure of the lithosphere could be modified,which could lead to different rifting patterns from shelf to slope in a passive continental margin.From the observed deformation style on the northern South China Sea and analogue modeling experiments,we find that the rift zone located on the shelf is characterized by half grabens or simple grabens controlled mainly by long faults with large vertical offset,supposed to be formed with normal lithasphere extension.On the slope,where the lithosphere is very hot due to mantle upwelling and heating,composite grabens composed of symmetric grabens developed.The boundary and inner faults are all short with small vertical offset.Between the zones with very hot and normal lithosphere,composite half grnbens composed of half grabens or asymmetric grabens formed,whose boundary faults are long with large vertical offset,while the inner faults are relatively short.Along with the thickness decrease of the brittle upper crust due to high temperature,the deformation becomes more sensitive to the shape of a pre-existing weakness zone and shows orientation variation along strike.When there was a bend in the pre-existing weakness zone,and the basal plate was pulled by a clockwise rotating stress,the strongest deformation always occurs along the middle segment and at the transition area from the middle to the eastern segments,which contributes to a hotter lithosphere in the middle segment,where the Baiyun (白云) sag formed.  相似文献   

10.
南沙北部伸展构造的基本特征及其动力学意义   总被引:16,自引:2,他引:14  
南沙地块辫啊以中南-美洲断裂为分界,其东、西两侧伸展构造的几何学与运动学表明,晚白垩世至早渐新世,其伸展作用以纯剪切为主;中渐新世至早中新世,伸展带东段转换为简单剪切,西段剪切渐停。伸展作用的主要动力来源于陆缘俯冲板片的拆沉、软流圈地幔热物质乘隙上拱和部分熔融作用及周边板块的相互作用。  相似文献   

11.
The Cappadocian Volcanic Province (CVP) comprises predominantly of a thick succession of volcanogenic rocks and interbedded siliciclastic sediments of Middle Miocene to Recent age in Central Anatolia, Turkey. The conditions of basin development in the eastern part of the CVP have been elucidated by using sedimentological and geomorphological approaches. The prevailing tectonic regime, its extent and causes are also discussed. Sedimentological analysis supported by geomorphological observations revealed a major NE-trending probably normal, border fault and its several synthetics. This tectonic element constitutes the SE margin of the basin and divided the CVP from the Tauride range during Middle Miocene to Pliocene. The basin fill in the study area comprises gravelly alluvial fans near the border fault, while fluvial clastics and lacustrine carbonates dominate towards the centre. Some pyroclastic rocks and lava flows are also made part of the fill. The southeastern basin margin is characterized morphologically by a number of uplifted basement blocks, probably associated with synthetic faults, and some deeply incised canyons in the footwall. These canyons were subsequently filled with a Mid-Pliocene ignimbrite sheet, and represent the sediment supply conduits to the basin. The cessation of filling in the basin was determined by strike-slip faults that uplifted and detached the basin about 2.6 Ma. This date also marks the onset of the neotectonic period in the region. The overall extensional tectonic regime inferred for the eastern CVP appears coeval with events recognised in the southern basins, i.e. Adana and Mut Basins and the eastern Mediterranean. Some physical connections between these basins also have been demonstrated. It is suggested that the CVP and the southern basins were all created during a phase of extension resulting from continued northward subduction of the African plate beneath the Eurasia during the Late Cenozoic.  相似文献   

12.
Temporary local seismic networks were installed in western Crete, in central Crete, and on the island Gavdos south of western Crete, respectively, in order to image shallow seismically active zones of the Hellenic subduction zone.More than 4000 events in the magnitude range between −0.5 and 4.8 were detected and localized. The resulting three-dimensional hypocenter distribution allows the localization of seismically active zones in the area of western and central Crete from the Mediterranean Ridge to the Cretan Sea. Furthermore, a three-dimensional structural model of the studied region was compiled based on results of wide-angle seismics, surface wave analysis and receiver function studies. The comparison of the hypocenter distribution and the structure has allowed intraplate and interplate seismicity to be distinguished.High interplate seismicity along the interface between the subducting African lithosphere and the Aegean lithosphere was found south of western Crete where the interface is located at about 20 to 40 km depth. An offset between the southern border of the Aegean lithosphere and the southern border of active interplate seismicity is observed. In the area of Crete, the offset varies laterally along the Hellenic arc between about 50 and 70 km.A southwards dipping zone of high seismicity within the Aegean lithosphere is found south of central Crete in the region of the Ptolemy trench. It reaches from the interface between the plates at about 30 km depth towards the surface. In comparison, the Aegean lithosphere south of western Crete is seismically much less active including the region of the Ionian trench. Intraplate seismicity within the Aegean plate beneath Crete and north of Crete is confined to the upper about 20 km. Between 20 and 40 km depth beneath Crete, the Aegean lithosphere appears to be seismically inactive. In western Crete, the southern and western borders of this aseismic zone correlate strongly with the coastline of Crete.  相似文献   

13.
大梁子富锗铅锌矿床位于扬子板块西南缘,是四川-云南-贵州(川滇黔)铅锌矿集区大型矿床之一,其矿石储量4.5 Mt,Pb+Zn平均品位10%~12%,矿体主要以筒状、脉状赋存于严格受断裂构造控制的富有机质破碎带“黑色破碎带”中,赋矿围岩为震旦系灯影组的白云岩。矿区断裂十分发育,主要发育NWW向断裂、NW向断裂和NE向断裂。通过详细分析各组断裂的几何学和运动学特征,厘清了成矿前、成矿期和成矿后断裂活动特征及构造动力学特征。成矿前,该矿区受近N-S向挤压应力作用,形成NWW向逆断层;成矿期,受古特提斯洋的俯冲消减和碰撞造山作用,研究区构造应力场转变为NW-SE向挤压应力,形成矿区的NWW向张扭性断层、NW向扭张性断层和NE向逆断层;成矿后,区域构造应力场转变为近EW向,形成NWW向、NW向和NE向的破矿断裂。NWW向断裂是矿区的主控断裂,是流体运移的通道;NW向断裂是NWW向断层的主要配套断裂,是流体混合和矿体就位的空间,NWW向断裂和NW向断裂组成的负花状构造是大梁子富锗铅锌矿床最具特色的控矿构造样式。来自深部的富金属离子的流体与来自寒武系富有机质地层的还原型流体在NWW向断裂和NW向断裂控制的张裂空间的混合,是该床的主要成矿机制。矿区南部和西部类似的构造样式区是下一步找矿的方向。  相似文献   

14.
利用最新多道地震剖面资料,结合重力、磁力、地形等地球物理资料,揭示了中沙地块南部断裂空间展布特征、断裂发育时期、断裂内部构造形变特征及深部地壳结构,并基于认识探讨了断裂的发育机制。研究结果认为,中沙地块南部陆缘构造属性为非火山型被动大陆边缘:地壳性质从西北向东南由减薄陆壳向洋陆过渡壳再向正常洋壳发育变化;Moho面埋深从中沙地块下方的26 km快速抬升到海盆的10~12 km;从中沙地块陡坡至其前缘海域的重力异常明显负异常区为洋陆过渡带,在重力由高值负异常上升到海盆的低值正、负异常的边界为洋陆边界。中沙地块南部发育有4组阶梯状向海倾的深大正断裂,主要发育时期为晚渐新世到中中新世。断裂早期发育与南海东部次海盆近NS向扩张有关,后期遭受挤压变形、与菲律宾海板块向南海的NWW向仰冲有关。该研究有助于更好认识南海海盆的扩张历史和南海被动大陆边缘的类型。  相似文献   

15.
Upper Pleistocene and Holocene tectonic movements in the Aegean region are analyzed by geological means (deformation of shorelines, faults in Quaternary deposits, historical seismicity). Examples from Crete, Karpathos, Milos, Chios and Samos are presented. While subduction, indicated by geophysical data, occurs beneath the Hellenic Arc, extensional tectonics (i.e., normal faulting) takes place within and behind the arc, resulting in a slight expansion of the Aegean region towards the Eastern Mediterranean.  相似文献   

16.
Kyushu Island, Japan, is located at the junction of the Southwest Japan arc and the Ryukyu arc. There are two major late Cenozoic epithermal gold-silver provinces in Kyushu, which are termed the Northern and Southern provinces. The provinces are characterized by: 1) Pliocene volcanism dominated by calc-alkaline andesite, followed by Quaternary volcanism including extrusion of both calc-alkaline and tholeiitic magmas; 2) formation of extensional grabens; 3) Pliocene to Pleistocene mineralization, which was dominated by abundant low sulfidation (LS) epithermal deposits with a few high sulfidation (HS) examples. The two epithermal gold-silver provinces have evolved differently since about 5 Ma; the Northern province has exhibited diminished hydrothermal activity from the Pliocene to Pleistocene, whereas the Southern province has witnessed increased hydrothermal activity mainly in easterly and northerly directions. Changes of tectonic setting from the Pliocene to Pleistocene account for the variable trends in epithermal gold deposit formation. Westward oblique subduction of the Philippine Sea plate beneath the Southwest Japan arc caused development of the Hohi graben and arc-related volcanism at about 6 Ma. This was associated with widespread LS mineralization in and surrounding the Hohi graben, as is represented by the Bajo and Taio deposits. The subduction of the relatively buoyant Kyushu-Palau ridge during the early Pliocene strengthened the coupling between the slab and overriding Ryukyu arc, leading to polygenetic andesite volcanism with associated HS (Kasuga, Iwato, and Akeshi) and LS (Kushikino) mineral deposits forming in the Southern province. A change of the subduction direction of the Philippine Sea plate, from west to north-northwest in the early Pliocene, increased the orthogonal convergence rate between the Southwest Japan arc and the Philippine Sea plate, resulting in a decrease of volcanic and hydrothermal activity in the Hohi graben of the Northern province. The more northerly subduction of the Philippine Sea plate shifted the locus of the Kyushu-Palau ridge subduction northward, resulting in underplating of the older (85–60 Ma), negatively buoyant Amami basin oceanic slab in the Southern province, rather than continued subduction of the young (27–15 Ma), buoyant Shikoku basin slab. This replacement caused steepening of the slab angle and slab-rollback in the Southern province, which was associated with regional extension, an eastward shift of the Ryukyu volcanic front, and development of the Kagoshima and Shimabara grabens, as well as the Okinawa trough. Rhyolite and basalt volcanism, in addition to andesite volcanism, have occurred since 2 Ma in the area of the Ryukyu back arc; coincident LS mineralization at Hishikari and Ohkuchi was affiliated with the rhyolite volcanism. Another change of the subduction direction of the Philippine Sea plate to the northwest occurred at 2–1 Ma. The forearc sliver of the Southwest Japan arc shifted westward, in association with right-lateral strike-slip faulting along the Median tectonic line, due to the increase of the westward convergence rate. This shift resulted in shortening and cessation of graben development in the Hohi area, restricting the subsequent volcanism and related hydrothermal activity to the central part of the graben.  相似文献   

17.
Subduction of high bathymetric relief, such as aseismic ridges and magmatic plateaus, is considered to be responsible for dramatic changes in the dynamics and kinematics of the subduction zone. For example, the buoyancy of high bathymetric relief is thought to flatten the dip of the subducting slab, modifying the structural and magmatic evolution of the overriding plate and terminating arc volcanism. In addition, the effect of ridge subduction in retreating plate boundaries can inhibit subduction rollback, a process that could locally pin the subduction hinge and lead to the development of cusps and slab tearing. Here we discuss the tectonic response to subduction of high bathymetric relief using examples from the circum-Pacific subduction systems. We demonstrate that flattening of the subduction dip angle is only significant in the eastern Pacific, where the average slab dip angle is relatively shallow. In the western Pacific, in contrast, the average subduction dip angle is steeper and there is no significant flattening of the dip angle in areas of ridge subduction. Subduction of high bathymetric relief in the circum-Pacific is commonly associated with reduced arc volcanism, and in many cases, the area of ridge subduction coincides with a volcanic gap. In the overriding plate, ridge subduction is associated with pronounced changes in the style of deformation, involving uplift, reactivation of basement thrusts, development of orogen-perpendicular tear faults and block rotations leading to oroclinal bending. The discussed characteristic patterns associated with ridge subduction provide important guidelines for reconstructing past plate tectonic processes, and could help constraining the geodynamics of ancient subduction systems.  相似文献   

18.
通过选取南黄海盆地中部隆起内部地震反射清晰、构造特征明显的典型地震剖面,开展精细的构造解释,系统梳理了南黄海盆地中部隆起的构造样式特征,识别出挤压(滑脱、高角度逆冲、对冲/背冲)、走滑(正花状、y字型)、伸展(铲式正断层)等多种构造组合样式.首次提出在中部隆起内部发育2条NW-SE向走滑断层.在此基础上,结合区域应力场特征和深部地球动力学背景,明确了中部隆起构造样式的发育期次、成因机制和构造演化历程.研究结果表明:(1)滑脱构造主要位于中部隆起北部,滑脱面位于志留系底部的泥页岩.滑脱构造应力机制来源于三叠纪末印支运动时期华北板块与下扬子板块之间的碰撞造山作用;(2)高角度逆冲主要位于中部隆起南部,其应力机制来源于早侏罗世燕山运动早期,古太平洋板块初始高速、低角度NW向俯冲;(3)走滑断层主要表现为具有压扭特征的正花状构造,位于中部隆起东南部、中西部,对应于早白垩世时期,古太平洋板块低角度俯冲由NW向转变为NNW向引起的左旋剪切作用,中国东部郯庐断裂在该时期亦表现为左旋剪切特征;(4)伸展正断表现为铲式正断层特征,发育在中部隆起南北边界,即在中部隆起与南黄海盆地南部坳陷、北部坳陷的接触部位,对应于晚白垩世燕山运动晚期,古太平洋板块由低角度俯冲转为高角度俯冲,此时中国东部构造应力体制经历着由挤压向拉张的转换.   相似文献   

19.
The pre-Neogene Tauride fold-and-thrust belt, comprising Cretaceous ophiolites and metamorphic rocks and non-metamorphic carbonate thrust slices in southern Turkey, is flanked and overlain by Neogene sedimentary basins. These include poorly studied intra-montane basins including the Yalvaç Basin. In this paper, we study the stratigraphy, sedimentology and structure of the Yalvaç Basin, which has a Middle Miocene and younger stratigraphy. Our results show that the basin formed as a result of multi-directional extension, with NE–SW to E–W extension dominating over subordinate NW–SE to N–S extension. We show that faults bounding the modern basin also governed basin formation, with proximal facies close to the basin margins grading upwards and basinwards into lacustrine deposits representing the local depocentre. The Yalvac Basin was a local basin, but a similar, contemporaneous history recently reconstructed from the Alt?napa Basin, ~100 km to the south, shows that multi-directional extension dominated by E–W extension was a regional phenomenon. Extension is still active today, and we conclude that this tectonic regime in the study area has prevailed since Middle Miocene times. Previously documented E–W shortening in the Isparta Angle along the Aksu Thrust, ~100 km to the southwest of our study area, is synchronous with the extensional history documented here, and E–W extension to its east shows that Anatolian westwards push is likely not the cause. Synchronous E–W shortening in the heart and E–W extension in the east of the Isparta Angle may be explained by an eastwards-dipping subduction zone previously documented with seismic tomography and earthquake hypocentres. We suggest that this slab surfaces along the Aksu thrust and creates E–W overriding plate extension in the east of the Isparta Angle. Neogene and modern Anatolian geodynamics may thus have been driven by an Aegean, Antalya and Cyprus slab segment that each had their own specific evolution.  相似文献   

20.
Structure and seismicity of the Aegean subduction zone   总被引:1,自引:0,他引:1  
Tomographic results show the presence of a high-velocity anomaly dipping north beneath the Aegean Sea (Hellenic arc), down to a depth of at least 600 km. This anomaly is interpreted as the image of the subducting lithosphere of the African plate. No deep seismicity, however, is associated with this downgoing slab, although this would be expected on the basis of the age of the downbending lithosphere (approximately 100 Myr) and the inferred duration of the present ongoing episode of subduction. Using a thermo-mechanical model for the subduction zone we find that the non-stationary input of the subduction zone-both in convergence rate and in thermal structure of the downgoing lithosphere - adequately accounts for both the presence of a velocity anomaly associated with a slab and the absence of deep seismicity. The non-stationarity follows from the large-scale tectonic setting of the Eastern Mediterranean basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号