首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
东北地区晚古生代区域构造演化   总被引:44,自引:2,他引:42       下载免费PDF全文
东北地区主要由东部佳木斯地块、中部兴安—松嫩地块和西部额尔古纳地块构成,各地块之间主要构造带拼合时代的研究表明,晚古生代之前各地块之间已经完成拼合,形成了统一的佳—蒙地块。晚古生代开始东北地区进入统一的盖层演化阶段,在佳—蒙地块南缘发育了晚古生代具有大陆边缘沉积特征的盖层建造。晚古生代早期佳—蒙地块南缘为活动陆缘,在~320Ma向北的俯冲过程中古亚洲洋板块发生断离,形成火山弧,同时导致其北侧"贺根山"弧后洋的拉开,持续的向北俯冲导致弧-陆碰撞,并于~280Ma贺根山洋已经完全闭合。佳—蒙地块南缘开始由活动陆缘向被动陆缘环境转化,最后在晚二叠世末期古亚洲洋完全闭合转入内陆环境。  相似文献   

2.
台湾岛以南海域新近纪的弧—陆碰撞造山作用   总被引:11,自引:4,他引:11       下载免费PDF全文
台湾岛以南海域(台南滨海)弧—陆碰撞带位于欧亚板块、菲律宾海板块和南海的结合部位,是新近纪弧—陆碰撞研究的理想场所。本文通过对南海973航次在该区域的多道地震剖面的解释,认为台南滨海弧—陆碰撞带增生的火山—沉积楔由恒春海脊和高屏斜坡两部分组成,前者是菲律宾海板块的增生楔,后者是欧亚板块的增生楔,在增生楔体和火山弧之间是作为弧前盆地的北吕宋海槽。自中新世中期以来,南海洋壳开始沿着马尼拉海沟向菲律宾海板块俯冲,形成活动大陆边缘的增生部分——恒春海脊;与此同时菲律宾海板块开始向北西方向移动,前缘的吕宋岛弧距今6.5Ma以来朝着亚洲陆缘斜向汇聚,形成了被动大陆边缘的增生部分——高屏斜坡。由于菲律宾海板块和欧亚板块之间的斜向汇聚,弧—陆碰撞具有穿时性,造山作用首先发生在台湾岛的北部,然后向南部及台南滨海发展。  相似文献   

3.
尚鲁宁  张勇  姚永坚  吴浩  胡刚  田陟贤 《中国地质》2020,47(5):1323-1336
晚新生代中国东部大陆边缘的构造活动主要集中于东海东缘。中新世以来菲律宾海板块俯冲、冲绳海槽弧后张裂、台湾弧-陆碰撞等一系列重大构造过程,塑造了现今琉球沟-弧-盆体系、台湾碰撞造山带和南海东北部的构造-地貌格局。本文基于对重磁和多道地震资料的解译,并结合前人研究成果,恢复了冲绳海槽构造演化史,阐明了冲绳海槽弧后张裂和台湾弧-陆碰撞之间的关系。在此基础上,重建了中新世以来欧亚板块、菲律宾海板块、南海板块之间的相互作用过程模型。本研究有助于进一步理解板块汇聚背景下东亚大陆边缘深部动力-热力过程对浅部构造格局变迁的制约和影响。  相似文献   

4.
中亚造山带东段位于西伯利亚和华北克拉通之间,经历了多构造体系叠加和多旋回洋陆转换的复杂演化过程,目前大量研究均以构造带为核心来限定区域构造格局,但一直争议较大。本文以构造单元的构造属性及其形成过程为主线,结合区域构造带演化,重新厘定了中国东北地区基本构造格局,建立了中国东北山弯构造演化模型。研究表明,古生代时期中国东北地区的主要构造单元由两个具前寒武纪基底的古老地块——额尔古纳地块和佳木斯地块及其张广才岭陆缘弧与两个古生代增生地体——兴安增生地体和松辽增生地体组成,其间由古亚洲洋分支新林- 喜桂图洋、贺根山- 嫩江洋、龙凤山洋和索伦洋分割。早古生代,西部额尔古纳地块东南部为西太平洋型活动陆缘,发育有嘎仙- 吉峰- 环宇洋内弧和头道桥等洋岛,~500 Ma随着新林- 喜桂图洋的关闭,这些洋内弧和洋岛拼贴增生至额尔古纳地块东南缘。随后贺根山- 嫩江洋的俯冲和后撤形成了一系列沟- 弧- 盆体系,持续的俯冲导致弧陆碰撞和陆缘增生,形成兴安增生地体的主体。同时,东部佳木斯地块西侧发育有龙凤山洋的安第斯型俯冲活动陆缘,形成了张广才岭陆缘弧。伴随着各大洋的俯冲和陆缘增生,额尔古纳地块和佳木斯地块以及它们的陆缘增生带构成了一个早古生代近东西向展布的地块链。南部以锡林浩特- 龙江微地块为核心发生陆缘俯冲,形成松辽增生地体雏形。索伦洋发生双向俯冲,并通过弧陆碰撞产生陆缘增生。晚古生代,伴随着古亚洲洋的北向俯冲和后撤,早期形成的地块链逐渐发生向南弯曲。二叠纪末期—中三叠世古亚洲洋俯冲消减闭合以及西北部蒙古- 鄂霍茨克洋和东部泛大洋的俯冲挤压,导致地块链进一步弯曲,同时,早期的古老地块、增生地体、弧岩浆岩、沉积建造等发生汇聚,最终形成一个以额尔古纳地块和兴安增生地体为西翼,佳木斯地块和张广才岭陆缘弧为东翼,松辽增生地体为核心的大规模山弯构造——中国东北山弯构造。  相似文献   

5.
南海北部陆缘盆地形成的构造动力学背景   总被引:2,自引:0,他引:2  
摘要:南海北部陆缘盆地处于印度板块与太平洋及菲律宾海板块之间,但三大板块对南海北部陆缘盆地的影响是不同的。通过对三大板块及古南海演化的研究,可知南海北部陆缘地区应力环境于晚白垩世发生改变。早白垩世处于挤压环境,晚白垩世以来转变为伸展环境并且不同时期的成因不同。晚白垩世-始新世,华南陆缘早期造山带的应力松弛、古南海向南俯冲及太平洋俯冲板块的滚动后退导致其处于张应力环境。始新世时南海北部陆缘裂陷盆地开始产生,伸展环境没有变,但因其是由太平洋板块向西俯冲速率的持续降低及古南海向南俯冲引起的,南海北部陆缘盆地继续裂陷。渐新世-早中新世,地幔物质向南运动及古南海向南俯冲导致南海北部陆缘地区处于持续的张应力环境;渐新世早期南海海底扩张;中中新世开始,三大板块开始共同影响着南海北部陆缘盆地的发展演化。  相似文献   

6.
尽管南海已进行深入的调查与研究,提出多种成因模型,包括挤出模型、弧后扩张模型、古南海俯冲拖曳模型等,但因其所处构造位置特殊,周边构造环境经历了复杂的改造,所有成因模式均未能得到广泛的认可。本文从三大板块相互作用入手,结合南海实测数据,提出南海形成的弧后扩张—左旋剪切模型。认为南海是古南海往北俯冲的弧后盆地,菲律宾海板块往北漂移形成的大规模左旋走滑是南海扩张的触发因素。印度—欧亚碰撞产生中南半岛挤出主要影响西南海盆扩张方向,使得扩张轴从近东西向转为北东向。南海及邻区晚中生代以来的演化可以分为以下阶段:1)早白垩世开始澳大利亚板块往北漂移,新特提斯洋往北俯冲消亡,导致弧后扩张,形成古南海;2)晚白垩世末—始新世,古南海往北俯冲,导致弧后拉张形成陆缘裂谷;3)早渐新世,受菲律宾海板块西缘大型左旋走滑影响,在原有裂谷的基础上从东往西海底扩张,形成南海;4)渐新世末,受俯冲后撤的影响,扩张中心往南跃迁,同时受西缘断裂左旋活动的影响,扩张轴从近东西西逐步转为北东向;5)早中新世晚期,南沙地块—北巴拉望地块与卡加延脊碰撞,南海扩张停止。  相似文献   

7.
古南海的俯冲消亡是深入揭示南海扩张机制和重塑东南亚中新生代构造演化的关键,然而目前对于古南海的俯冲过程仍存在诸多争议。马来西亚婆罗洲出露完整的晚白垩世-渐新世沉积地层,是研究古南海构造演化的重要窗口。本文通过碎屑矿物组成、元素地球化学及Nd同位素分析,对婆罗洲晚白垩世-渐新世地层沉积物来源进行示踪,反演区域古地理格局及构造演化。结果显示,晚白垩世-古新世Rajang群沉积物主要来源于古太平洋俯冲形成的岩浆岩带,马来半岛与印支陆块南缘对古新世-晚渐新世地层沉积贡献明显增加,暗示古太平洋板块俯冲的影响持续到早古新世(~60 Ma)。晚始新世,随着澳大利亚板块持续向北漂移,婆罗洲逆时针旋转引起残余海盆剪刀式闭合。~37Ma,曾母陆块与婆罗洲碰撞, Rajang群抬升剥蚀。渐新世,古南海在婆罗洲东北部沙巴开始俯冲,对应于南海的打开。古南海自西向东斜向俯冲消亡,婆罗洲的逆时针旋转与沿卢帕尔线的走滑使Rajang群与Kuching超级群叠置。  相似文献   

8.
为探究南海西南次海盆两侧陆缘地块在中生代晚期构造接触关系及其对南海形成演化的影响,利用过南海西南次海盆两侧陆缘采集的地球物理资料以及公开发表的数据资料,对两侧陆缘的地壳结构及前新生界构造变形特征进行了研究.研究结果显示,西南次海盆两侧陆缘的地壳结构及物质组成存在差异,属于性质不同的两个微地块;两侧陆缘前新生代地层在晚中生代经历了来自不同方向的挤压作用,且遭受抬升剥蚀.结合南海及邻区中生代花岗岩分布特征及区域构造背景,进一步推测两侧陆缘地块在晚中生代以俯冲碰撞的方式完成拼贴缝合,该俯冲碰撞带是南海北部俯冲带在南海西南方向的延伸,并且新生代南海的扩张可能与该俯冲碰撞带这个先存的软弱带有关,是南海海盆初始破裂的部位.   相似文献   

9.
边缘海构造旋回:南海演化的新模式   总被引:11,自引:0,他引:11  
南海边缘海构造旋回包括古南海形成与萎缩及新南海形成与萎缩两个构造旋回,形成中央洋壳、大陆坡和大陆架。古南海扩张前南海具有统一拼合基底"古南海陆块",古南海白垩纪末—始新世为扩张期,渐新世—第四纪为萎缩期,现今洋壳已基本消减殆尽。新南海古—始新世为陆内裂谷期,渐新世晚期—中中新世为洋壳扩张期,中中新世至今为萎缩期,表现为南北向扩张停滞,菲律宾岛弧向西仰冲,但处于萎缩期早期。上述两个旋回叠加控制了南海区域构造格局的形成。边缘海构造旋回控制了南海各大陆边缘及地块性质。北部大陆边缘为被动大陆边缘;南沙地块具有漂移性质;南部大陆边缘为多期叠加型活动大陆边缘,西部具有转换特征,东部为挤压岛架型大陆边缘。  相似文献   

10.
南海北部与台湾海峡地区自晚白垩世至新生代,经历了由挤压性大陆边缘向伸展性大陆边缘的转化,这一伸展性质除台湾海峡地区由于后期弧陆碰撞封闭而转化成带有挤压性的前陆盆地外,其余部分一直保持着伸展性质,但它不是被动式陆缘而是活动性陆缘的一部分,其主要依据是整个南海这一时期处于印度板块,菲律宾板块与欧亚板块的相互挤压和活动大陆边缘之中,其岩浆活动除有陆缘裂谷型火山岩外,尚有活动陆缘的火山岩,南海是一个活动陆  相似文献   

11.
台湾造山带是中新世晚期以来相邻菲律宾海板块往北西方向移动,导致北吕宋岛弧系统及弧前增生楔与欧亚大陆边缘斜碰撞形成的。目前该造山带仍在活动,虽然规模很小,但形成了多数大型碰撞造山带中的所有构造单元,是研究年轻造山系统的理想野外实验室,为理解西太平洋弧-陆碰撞过程和边缘海演化提供了一个独特的窗口。本文总结了二十一世纪以来对台湾造山带的诸多研究进展,讨论了其构造单元划分及演化过程。我们将台湾造山带重新划分为6个构造单元,由西至东分依次为:(1)西部前陆盆地;(2)中央山脉褶皱逆冲带;(3)太鲁阁带;(4)玉里-利吉蛇绿混杂岩带;(5)纵谷磨拉石盆地;(6)海岸山脉岛弧系统。其中,西部前陆盆地为6.5Ma以来伴随台湾造山带的隆升剥蚀形成沉积盆地。中央山脉褶皱逆冲带为新生代(57~5.3Ma)欧亚大陆东缘伸展盆地沉积物由于弧-陆碰撞受褶皱、逆冲及变质作用改造形成的。太鲁阁带是造山带中的古老陆块,主要记录中生代古太平洋俯冲在欧亚大陆活动边缘形成的岩浆、沉积和变质岩作用。玉里-利吉蛇绿混杂岩带和海岸山脉岛弧系统分别为中新世中期(~18Ma)以来南中国海板块向菲律宾海板块之下俯冲形成的岛弧和弧前增生楔,其中玉里混杂岩中有典型低温高压变质作用记录,变质年龄为11~9Ma;岛弧火山作用的主要时限为9.2~4.2Ma。纵谷磨拉石盆地记录1.1Ma以来的山间盆地沉积。台湾造山带的构造演化可划分为4个阶段:(a)古太平洋板块俯冲与欧亚大陆边缘增生阶段(200~60Ma);(b)欧亚大陆东缘伸展和南中国海扩张阶段(60~18Ma);(c)南中国海俯冲阶段(18~4Ma);(d)弧-陆碰撞阶段(<6Ma)。台湾弧-陆碰撞造山带是一个特殊案例,其弧-陆碰撞并不伴随着弧-陆之间的洋盆消亡,而是由于北吕宋岛弧及弧前增生楔伴随菲律宾海板块运动向西北方走滑,仰冲到欧亚大陆边缘,形成现今的台湾造山带。  相似文献   

12.
西太平洋边缘海盆地的扩张过程和动力学背景   总被引:34,自引:0,他引:34  
任建业  李思田 《地学前缘》2000,7(3):203-213
西太平洋集中发育了全球 75%的边缘海盆地 ,这些盆地形成于始新世、渐新世—中新世和晚中新世—第四纪 3个边缘海扩张幕。文中介绍了边缘海盆地的基本特征和发育模式 ,详细讨论了西北太平洋边缘海盆地周缘板块构造时空格架及其对边缘海盆地形成、演化和关闭过程的控制作用。太平洋板块的俯冲及俯冲带的后退 ,印度—亚洲大陆碰撞的远程效应以及澳洲与印度尼西亚的碰撞是边缘海盆地的 3个重要的区域性控制因素。印度—亚洲大陆的碰撞所形成的向东和东南的地幔流可能推动了东亚大陆东侧和南侧俯冲带的后退 ,并引发弧后扩张作用。同时 ,由这一碰撞引起的东亚大陆边缘NE或NNE向断裂的右旋走滑 ,进一步影响和控制了边缘海盆地的几何学特征及演化。澳大利亚和印度尼西亚的碰撞阻碍了俯冲带的后退 ,导致了南海、Sulu海和Celebes海盆地的扩张终止。同时这一碰撞推动菲律宾海板块向北运移 ,并使Bonin弧与中央日本碰撞 ,导致日本海关闭  相似文献   

13.
运用丰富的二维地震资料,通过构造结构与地层结构的分析,对礼乐盆地的盆地结构演化与转型过程及其对南海地区复杂动力学背景的响应特征进行研究。结果表明:受控于NNE、NEE、NW和近EW向的断裂体系,礼乐盆地现今构造格局表现为"两坳一隆"的结构特征;两个关键的区域角度不整合T70和T50将礼乐盆地新生界自下而上划分为三层结构:陆缘裂陷层、漂移裂陷层和前陆-拗陷层;响应于太平洋板块俯冲、印度-欧亚板块碰撞、新南海扩张、古南海消亡和菲律宾海板块楔入等一系列周缘板块重组事件,礼乐盆地的盆地结构演化及转型经历了三个阶段:陆缘多幕裂陷阶段,盆地结构受控于NNE和NEE向断裂体系,南北坳陷连通;漂移裂陷阶段,NNE和NW向共轭断裂体系控制盆地格局,中部隆起形成,分隔南、北坳陷;前陆-拗陷阶段,前陆盆地结构形成,随后盆地因热沉降进入拗陷沉积阶段。  相似文献   

14.
南海大陆边缘盆地由于边界条件的差异,不仅形成了不同类型的陆缘盆地,如离散型、走滑伸展型和伸展挠曲复合型,而且这些盆地构造演化存在明显的非同步性。这些陆缘破裂过程与南海扩张作用过程呈现明显不一致性。研究表明,南海扩张时期南海南、北大陆边缘均形成了一系列裂陷盆地,然而,南海南部、北部大陆边缘盆地裂陷作用结束时间不同,北部大陆边缘盆地裂陷作用结束于23 Ma或21 Ma,而南部大陆边缘盆地裂陷作用结束于15.5 Ma,显然北部大陆边缘盆地裂陷结束时间明显早于南部大陆边缘盆地。南海扩张停止后,南海南、北部陆缘仍表现出明显差异,北部陆缘仍以伸展作用为主,晚中新世以来出现快速沉降幕,而南海南部陆缘则以挤压作用为主,且其挤压时间及强度呈现南早北晚的特点,即南部曾母盆地明显早于南薇西盆地和北康盆地。南海南、北大陆边缘盆地形成演化的差异性,特别是构造转型差异变化,为新生代南海扩张的迁移性提供了有力的佐证,可以推断南海不同期次海盆扩张可能存在向南的突然跃迁。因此,本次研究梳理出的南海不同陆缘盆地张裂伸展的非同步性可为南海洋盆扩张演化过程解释提供新的证据。  相似文献   

15.
A synthesis of the geologic evolution of Taiwan   总被引:2,自引:0,他引:2  
The island arc of Taiwan is composed of Cenozoic geosynclinal sediments more than 10,000 m thick, lying on a pre-Tertiary metamorphic basement. Pleistocene to Miocene andesitic islands surround the main island and are related mostly to arc magmatism. The Penghu Island Group in the Taiwan Strait is covered with Pleistocene flood basalt. Neogene shallow marine clastic sediments are exposed mainly in the western foothills with Pleistocene andesitic extrusives at the northern tip and the northeastern offshore islands. A thick sequence of Paleogene to Miocene argillitic to slaty metaclastic rocks underlies the western Central Range and forms the immediate sedimentary cover on the pre-Tertiary metamorphic complex to the east, which represents an older Mesozoic arc-trench system. The Coastal Range in eastern Taiwan is a Neogene andesitic magmatic arc, including also a large variety of volcaniclastic and turbiditic sediments. Cenozoic Taiwan is the site of arc-continent collision where the Luzon arc on the Philippine Sea plate overrides the Chinese continental margin on the Eurasian plate. East and northeast of Taiwan, the polarity of subduction changes whereby the oceanic Philippine Sea plate is subducting beneath the Ryukyu arc system on the Eurasian plate. Continent-arc collision in Taiwan island is anomalous and may occur in a broad belt of deformation rather than along a well-defined plate boundary or subduction zone.  相似文献   

16.
In this paper we compare four types of stratigraphic architectures around the continental margins in the South China Sea (SCS) based on a plentiful of seismic profiles. The results indicate that stratigraphic patterns are not only related closely to structure regimes of peripheral of the SCS, but also are restrained by crust structure from continental crust to oceanic crust. In the extensional setting, depositional centres during the syn‐spreading stage are located in the strong extensional area. A wedge‐decrease continental crust represented by the Pearl River Mouth type is characterized by high deposition and subsidence rate during the syn‐rifting and syn‐spreading stages in the distal zone. And in the Zhongjiannan type with a continental ribbon, high deposition and subsidence rate during the syn‐rifting and syn‐spreading stages are present in the proximal zone. However, in the southern and eastern margins with compressional setting, the Liyue and Zengmu microcontinent blocks are separated from the South China with the seafloor spreading of SCS, in which a confined or relative thin syn‐spreading deposits are presence. High deposition and subsidence rate is closely related to the collision or subduction condition during the post‐spreading stage in the Liyue bank type and the Zengmu type, a huge progradational clinoforms are present along the subduction and collision margin. Therefore, this study shows distinct stratigraphic architecture in different continental rifted margins, distinct depositional and subsidence characteristics formed during the process of lithospheric rupture can provide an effective method for the study on the continental marginal sea in the western Pacific.  相似文献   

17.
Initiation and evolution of the South China Sea: an overview   总被引:1,自引:0,他引:1  
Different models have been proposed for the formation and tectonic evolution of the South China Sea (SCS), including extrusion of the Indochina Peninsula, backarc extension, two-stage opening, proto-SCS dragging, extension induced by a mantle plume, and integrated models that combine diverse factors. Among these, the extrusion model has gained the most attention. Based on simplified physical experiments, this model proposes that collision between the Indian and Eurasian Plates resulted in extrusion of the Indochina Peninsula, which in turn led to opening of the SCS. The extrusion of the Indochina Peninsula, however, should have led to preferential opening in the west side of the SCS, which is contrary to observations. Extensional models propose that the SCS was a backarc basin, rifted off the South China Block. Most of the backarc extension models, however, are not compatible with observations in terms of either age or subduction direction. The two-stage extension model is based on extensional basins surrounding the SCS. Recent dating results indeed show two-stage opening in the SCS, but the Southwest Subbasin of the SCS is much younger, which contradicts the two-stage extension model. Here we propose a refined backarc extension model. There was a wide Neotethys Ocean between the Australian and Eurasian Plates before the Indian-Eurasian collision. The ocean floor started to subduct northward at ~125 Ma, causing backarc extension along the southern margin of the Eurasian Plate and the formation of the proto-SCS. The Neotethys subduction regime changed due to ridge subduction in the Late Cretaceous, resulting in fold-belts, uplifting, erosion, and widespread unconformities. It may also have led to the subduction of the proto-SCS. Flat subduction of the ridge may have reached further north and resulted in another backarc extension that formed the SCS. The rollback of the flat subducting slab might have occurred ~90 Ma ago; the second backarc extension may have initiated between 50 and 45 Ma. The opening of the Southwest Subbasin is roughly simultaneous with a ridge jump in the East Subbasin, which implies major tectonic changes in the surrounding regions, likely related to major changes in the extrusion of the Indochina Peninsula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号