首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Based on the detailed study of outcrops, two generations of ore clasts were recognized in clastic haloes around allochthonous antimony–mercury deposits: (1) early generation composed of in situ fragments of older autochthonous deposits (ore clasts) and (2) late generation of fragments related to the destruction of ore-bearing allochthons and found as exotic inclusions in flysch and olistostromes. Ore clasts reside in the terrigenous (pre-flysch) sequence that makes up the upper part of terrigenous–carbonate nappes and olistoplaques in the lower flysch–olistostrome sequence. Thus, they belong to allochthonous units. The terrigenous sequence differs from the younger flysch sediments by a relatively small thickness, predominantly clayey composition, and absence of rhythmic bedding and large erratic blocks. It is also characterized by the synsedimentary volcanic activity with the eruption of intermediate and acid igneous rocks, silicification, and ore mineralization in the lower part of the sequence, the maximal mineralization being confined to the boundary with underlying limestones. Relative to the terrigenous sequence the flysch–olistostrome sequence, which hosts ore-bearing allochthons, is distinguished by the primary attitude, greater abundance of ore clasts, and higher extent of ore disintegration. Some genetic features of autochthonous and allochtonous jasperoid deposits are considered. Their differences in age, host environment, formation depth, vertical extent of ore deposition, and zoning are also outlined.  相似文献   

2.
A thick olistostrome strata of late Paleocene-early Eocene age is outlined in the northern flank of the Northwestern Caucasus folded structure in the Ubinka river valley, which shows the significant role of earlier Cenozoic tectonic movements in forming the alpine structure of the region. The largest part of the strata is composed of dark weakly calcareous clays, which were earlier recognized as Lower Cretaceous deposits. Olistoliths and large olistoplaques are mostly of light calcareous rocks in which microfauna of Cenomanian and Maastrichtian ages were discovered in dark clays. A poor series of foraminifers was recognized in the dark clays hosting these olistoliths; this series do not enable one to determine with certainty the age of the strata (of approximately the late Paleocene-early Eocene). Small structural forms were recognized in olistoliths and olistoplaques, which are not traced in the matrix, this indicates that a series of folded and fissured structures were formed before these olistoliths and olistoplaques appeared in the olistostrome strata.  相似文献   

3.
Details of origin of Franciscan melanges are unknown, although subduction is accepted as the controlling process. Some melanges near plate boundaries in Taiwan and Italy are evidently olistostromes. How do Franciscan melanges compare with these? The Lichi melange and units of “argille scagliose” type in the Northern Apennines rest upon normal marine sediments. The time of accumulation was brief, as shown by limiting time brackets. These key types of evidence for olistostrome origin are rare or absent in the Franciscan, but the pervasive shearing would probably have obliterated such evidence.Similarities between the above-cited olistostromes and Franciscan melanges include the following: argillaceous matrix; large and small blocks of sedimentary rocks and ophiolites; phacoidal and joint-block shapes; soft-sediment deformation in some sandstone; rotation of blocks; extreme dispersal of distinctive rocks; reappearance of older rocks at younger levels. Collectively, these similarities suggest that Franciscan melanges were originally assembled by olistostrome accumulation.Differences between presumed olistostromes and the Franciscan include the following, in addition to stratigraphic relations mentioned above. The Lichi melange shows faint original gross layering where shearing is minimal. Franciscan melanges show various compositional units, but shearing allows tectonic explanations. Blueschist metamorphism is rare or absent in olistostromes of Taiwan and the Northern Apennines. It occurs in the Franciscan not only in random blocks, but also as extensive units of schist and phyllite near the structural top of the complex, toward the “hanging wall” (Great Valley sequence). In the structurally lowest levels, only zeolite facies metamorphism is prevalent. Similar generalities apply to ages of rocks at highest and lowest structural levels. The age distribution would be just the opposite if the entire Franciscan were simply an east-dipping pile of olistostromes.It is concluded that neither subduction alone nor olistostromes alone could have produced all the features of Franciscan melanges, but both played an important role. Critical original features of olistostromes have been modified or destroyed by recurrent underthrusting.  相似文献   

4.
An olistostrome accumulation up to 530 m thick occurs in the Casanova area of the northern Apennines. It lies within or above the calciturbiditic Palombini limestone-shale sequence, and is part of the allochthonous Vara Complex—sediments originally deposited on oceanic crust. The olistostromes are poorly sorted, monomict, matrix-supported, submarine debris flow deposits with rigid plugs. They have a compactional foliation and a compaction-modified, planar clast fabric created during flow. Although diachronous in the main part of the area, the olistostromes have a vertical gradational contact with the overlying slumped Palombini, in which recumbent asymmetric fold hinges and trains and slump boudins are present. Many criteria indicate soft-sediment deformation. Fold asymmetry indicates a uniformly SW-dipping palaeoslope. The textural gradation from slumps to olistostrome beds, plus slump folds and boudins as olistostrome clasts show that the olistostromes are dismembered slumps. In vertical sections, variations in limestone petrography, volume percentage and size of clasts confirm that the olistostromes were derived from the Palombini as a series of bed-by-bed slumps keeping pace with sedimentation of the Palombini. From olistostrome clast sizes and bed thicknesses, a depositional slope of ~ 4° is estimated. The olistostromes are not precursor sediments shed from advancing nappes, as in the Bracco ridge model of some authors; rather, they were formed at the foot of a distal, block-faulted passive continental margin, long before nappe emplacement.  相似文献   

5.
Results of the microscopic study of sandy rocks from the Bugrovaya and lower Khvalynian sequences at the lower course of the Volga River are discussed. The terrigenous material of these deposits represents a mixture of clasts of two types: argillic (clayey) and nonargillic. The argillic component (clasts of chocolate clays) predominates in the clastic material and imparts the brownish red color to sands and sandstones of the Bugrovaya sequence. The nonargillic component includes fragments of crystals and rocks, the assemblage of which is similar to the clastic material of the underlying Khvalynian sand. The combination of clay clasts, which are not prone to long-range transport, with redeposited crystallo-and lithoclasts indicates the presence of different provenances. Their thin banding (lamination) related to differentiation of the clastic material by composition and grain size and the presence of glauconite grains testify to the aqueous origin of the Bugrovaya sequence.  相似文献   

6.
The Ordovician stratified rocks previously referred to Riphean or Vendian are widespread in the northern part of the Baikal-Vitim fold area. They include volcanosedimentary rocks which accumulated in continental riftlike troughs after Vendian-Cambrian platform regime and were accompanied by subvolcanic bodies. The coarse-clastic facies, frequently olistostromes with olistoplaques, are abundant in the marginal parts of the troughs. The sandy-silty-clay rocks dominate in the centre. The volcanic rocks represent the contrast rhyolite-basaltic series and compose paleovolcanoes of the central type, locally, complicated by calderas. Tuffaceous material is nearly almost present in synchronous sedimentary rocks. In the Ordovician, the northern part of the Baikal-Vitim fold area was an uplift of island arc type complicated by the riftlike troughs. It occupied the central part of the Baikal-Vitim arc. The location of the troughs was subjected to its structural plan. They were formed successively after the Riphean-Vendian Baikal-Muya volcano-plutonic belt. The uplift existed within a shallow basin occupying nearly the entire Siberian Platform and Baikal-Vitim fold area. The data obtained confirm that marine sedimentary basin with islands sometimes existed within the Baikal-Vitim fold area and was a part of the basin occupying the adjacent part of the Siberian Platform. The effect of pulsating plume in the northern part of the Baikal-Vitim fold area periodically, including Ordovician, led to the origination of the uplift and to renewal of tectonic and volcano-plutonic activity.  相似文献   

7.
Kemp  & Zárate 《Sedimentology》2000,47(1):3-14
Well‐developed Bt horizons of five palaeosols (P1–P5) have been recorded previously within a 20‐m‐thick succession of Pliocene siltstones and clayey siltstones in the southern part of the Buenos Aires Province of Argentina. This paper reports a detailed field and micromorphological (thin section) investigation of a 6‐m portion of the sequence encompassing P2 and P3. Large‐scale faunal burrow infillings occur throughout: other bioturbation features in the form of channel and spongy microstructures are mainly confined to the siltstones. The intervening clayey siltstones (Bt horizons) have been affected more by shrink–swell disruption, as evidenced by slickensides and a range of striated b‐fabrics in thin sections. Clay coatings, indicative of illuvial accumulation of clay translocated in suspension from overlying A or E horizons, occur in both the siltstones and clayey siltstones. The types, microstratigraphic associations and depth functions of features are interpreted in terms of changing interactions, balances and dominances between sedimentary, pedogenic and erosional processes over time, thus providing the basis for the pedosedimentary reconstruction of landscape evolution in the region during part of the Pliocene represented by the whole P1–P5 sequence (4–5 Ma BP). It is envisaged that this period was dominated by aeolian deposition, although fluvial and mass movement processes probably led to reworking and redistribution of some of the materials. Overall rates of subaerial deposition, however, were not substantial: pedogenic processes were active throughout, the balance between sedimentation and pedogenesis varying over time in a cyclical fashion. Phases of reduced deposition and establishment of relatively stable land surfaces were marked by the development of argillic soil profiles with clearly defined eluvial and illuvial horizons. Intervening periods of more rapid accumulation of coarser material were characterized by accretionary soil development and welding of new pedological features on existing soils as the surface accreted, first transforming existing eluvial horizons into BCt/AE horizons (siltstones) and then encouraging the syndepositional upward extension of these complex horizons. The primary basis of the alternating units of siltstones (BCt/AE horizons) and clayey siltstones (Bt horizons) lies in the cyclical change in size of particles deposited, although pedogenic translocation processes enhanced these textural differences. The underlying driving mechanism behind the pedosedimentary cycle can only be speculated upon, although it is tempting to relate the sedimentation pattern to climatic fluctuations linked to glacial advances and retreats in the Patagonian Andes during the Pliocene.  相似文献   

8.
New data on geochemical features of the Lower Paleozoic terrigenous rocks in the Mamyn terrane (eastern Central Asian Fold Belt) and U–Pb geochronological studies of the detrital zircon from these rocks are presented. The obtained results suggest the following conclusions. 1. At present, the Kosmataya sequence includes different age Lower Cambrian terrigenous–carbonate and Lower Ordovician terrigenous rocks or represents Lower Ordovician olistostromes including limestone blocks with the Lower Cambrian fauna. Lower Ordovician terrigenous rocks were formed in an island arc or active continental margin, mainly, owing to the erosion of Cambrian–Early Ordovician plutons and volcanics that are widespread in structures of the Mamyn terrane and weakly reworked by the chemical weathering. 2. The Silurian Mamyn Formation was developed at a passive continental margin. The main sources of clastic material for this formation were the same Cambrian–Early Ordovician igneous rocks as for the Cambrian sequence, with the participation of Early Silurian and Vendian igneous complexes. The obtained data significantly refine concepts about the geological structure of the Mamyn terrane, which is a member of the Argun Superterrane, one of the largest tectonic structures in the eastern Central Asian Fold Belt.  相似文献   

9.
ABSTRACT

The Franciscan Complex comprises the largely sedimentary basement of the California Coast Ranges. This classic trench deposit has undergone a series of superimposed tectonic events since the end of Jurassic time, involving accretion, high-pressure (HP) recrystallization, buoyancy and wedge-driven exhumation, and transcurrent slip. Processes reflect plate convergence, transpressive-orthogonal subduction, and transpressive–transtensive offset. Besides stratigraphically intact strata, the Franciscan displays widespread mélanges of four main types: diapiric serpentinite intrusions, sedimentary olistostromes, broken formations, and tectonic block-in-matrix units. In the northern Coast Ranges, mélanges are especially prevalent in the Central Belt, but also occur in the Eastern and Coastal belts. Diapirs show upward, buoyant flow relative to wall rocks, but some also appear to have involved wedge-driven thrusting. Many serpentinite diapirs and tectonic mélanges contain exotic metamafic inclusions rimmed by actinolite–chlorite reaction rinds. Olistostromes include gravity slump blocks and conglomeratic lenses; petrologically similar to larger slide blocks, pebble layers document a surficial, sedimentary origin, as does the presence of volcanic arc clasts. Broken formations grade by degrees from intact stratal continuity to disrupted units; they only contain cognate boudins of rocks present in the ductile matrix. Some tectonic mélanges are simply intensely disaggregated broken formations, and include rock types of the stratigraphic host. Other tectonic mélanges carry exotic HP blocks of diverse lithologies, generally reflecting higher pressures than attended recrystallization of the low-density matrix. The four mélange types formed through diverse convergent plate-tectonic processes. Many were subjected to a multi-stage overprint; most are strongly deformed, obscuring original textures and structures. Broken formations are the most common disrupted units, accompanied by lesser amounts of tectonic mélanges, olistostromes, and ductile-matrix diapirs. In aggregate, these units reflect the operation of contrasting processes that attest to plate-tectonic evolution of the Franciscan Complex. Strong deformation accompanied oceanic plate underflow, but also took place during coeval HP metamorphism and surfaceward return of accretionary packets, then transitioned to long-sustained, chiefly dextral slip.  相似文献   

10.
长江三峡东部地区震旦纪事件沉积?   总被引:1,自引:0,他引:1       下载免费PDF全文
长江三峡东部地区震旦纪先后发生了热事件、冷事件、重力事件等突发性灾变沉积。早震旦世发育由河流作用与陆地冰川作用形成的陆源碎屑沉积;晚震旦世则发育由两次台地-盆地-台地的海进-海退旋回形成的巨厚海相碳酸盐沉积。热事件沉积产物见于下震旦统莲沱组,夹于河流相沉积的砂岩及粉砂岩中。根据凝灰碎屑的岩石学特征,可将其分为降落型凝灰碎屑和水携型凝灰碎屑两类。冷事件沉积产物为下震旦统南沱冰碛层,属低纬度低高程的大陆冰川沉积。重力事件可分为滑塌事件和浊流事件,其沉积产物均分布于上震旦统,夹在大套的深水碳酸盐岩中。其中滑塌事件的沉积产物主要为滑塌角砾白云岩(石灰岩),浊流事件的沉积产物主要为浊积颗粒石灰岩(白云岩)。  相似文献   

11.
北祁连永登县石灰沟作为奥陶纪中堡群命名地,历来是研究北祁连奥陶纪构造演化的理想场所。依据实测地层剖面,石灰沟奥陶纪中堡群可以划分为上、下两段:下段以中基性火山岩、火山碎屑岩为主;上段以出现大量碳酸盐岩、硅质岩、粉砂岩,夹中基性火山碎屑岩为特征。野外调查过程中发现,中堡群上段发育多层硅质岩,其层内发育强烈的构造变形。经岩石组合、地层序列、沉积相、火山喷发相、变形特征及空间组合关系研究,认为该套特殊的沉积层系为典型的滑塌堆积。根据滑塌堆积的内部结构特征及火山-沉积相序等分析,初步判断其形成于靠近岛弧的深水盆地环境,具多岛洋构造背景。这将为恢复和建立北祁连造山带奥陶纪沉积环境和古地理演化提供可靠依据,也为进一步研究北祁连奥陶纪沟-弧-盆体系空间格局提供了重要沉积学佐证。  相似文献   

12.
Río Fardes剖面位于西班牙南部Granada东北,构造上属于深水环境的Subbetic中带。该剖面主要由白垩纪Fardes组第Ⅱ段和第Ⅲ段(半)远洋沉积构成,并出现浊流沉积和混杂沉积。本次研究在Fardes组浊流层序内首次发现两段红色沉积。钙质超微化石表明红层的时间从Turonian早期(UC7 带)到Coniacian中期—晚期界线(UC10/?UC11带)。红层由mm级红色泥岩夹灰色、杂色、偶尔黑色泥岩和钙质泥岩组成。沉积学研究表明新发现的Turonian Coniacian远洋红色泥岩沉积形成于CCD面之下深水盆地环境,浊流和碎屑流沉积强烈地影响着(半)远洋环境的背景泥岩相,并成为红色沉积结束的原因。  相似文献   

13.
The basal Neogene formations in the Ierapetra region, eastern Crete, are strongly influenced by a Late Serravallian tectonic phase which resulted in the breakup of pre-existing palaeogeographic patterns. Important vertical movements caused the southward emplacement of Neogene sediments, together with parts of the underlying pre-Neogene nappe pile. The resulting chaotic association of exotic blocks and sediments, known as the Prina Complex, has the properties of a sedimentary mélange. It can be traced for more than 15 km from north to south.In the north a relatively coherent accumulation of large slide masses overlies deformed Neogene coarse clastics and pre-Neogene rocks. Distally it comprises a poorly stratified sequence of breccias and intermixed finer grained sediments, which locally contains olistostromes and debris-flows and interfingers to the south with submarine fan deposits. The intricate relation of faulting and gravity sliding in a rapidly subsiding basin can be explained by generation in a strike-slip setting. It is suggested that the Ierapetra basin and its offshore extension, the South Cretan trough, were initiated by sinistral movements along a NE-SW oriented fault zone. Implications of this model for the geodynamic evolution of the south Aegean area are discussed.  相似文献   

14.
The component composition and specific features of the structure of smectite-bearing clays in the Middle Eocene Kievskaya Formation of the Russian Plate were studied by the scanning electron microscopic, X-ray phase analysis, and complete chemical analysis methods. The clays are characterized by metastable (unstable) state of material expressed as abundance of the semidissolved clasts of felsic volcanic ashes and radiolarian skeletons, as well as colloidal segregations of siliceous, aluminosiliceous (Al-Si) and ferroaluminosiliceous (Fe-Al-Si) gel-type materials and newly formed smectite. Three stages of the diagenetic alteration of Middle Eocene dacite ashes are identified. Mechanism of the further transformation of rocks into smectite clays with siliceous nodules is proposed. The viewpoint suggesting the volcanosedimentary origin of clays of the Kievskaya Formation is confirmed. Sources of the pyroclastic material (suppliers of material for clays) in the Kievskaya Formation could be related to active explosions in the Caucasian volcanic arc in the Middle Eocene.  相似文献   

15.
宁夏中南部发育的中奥陶统米钵山组中普遍发育着滑塌堆积。综合米钵山组内滑塌堆积的沉积及后期的变形特征,我们认为滑塌堆积在逆冲变形中起着重要的作用,在逆冲构造中滑脱层的发育往往和岩性有关,滑塌堆积也是一种重要而潜在的滑脱层,不仅由于大尺度上其显著的横向不均匀性,中小尺度上其内部也表现出不均一性,因此它的存在使得应力得以在该层集中,变形因此也主要发生在该层中,从而产生滑脱层,而滑塌堆积的围岩变形则很微弱。结合宁夏中宁中南部地区强烈的逆冲推覆作用,我们认为中奥陶统中的滑塌堆积是该区逆冲推覆构造的重要滑脱层,这些滑脱层控制着该地区下古生界的变形。由于这种构造作用的叠加,先前的那些外来岩块逐渐“细粒化”,逆冲作用使得滑脱堆积中的砾石变形成为构造透镜体,这解决了该地区长期存在的有关这些砾石或透镜体是外来体还是本地的争论。我们的研究表明,在宁夏地区中奥陶统中大部分以外来体为主,但也有一定的本地岩层因构造作用成为透镜体,因此在不同地区应该仔细分析。由于牛首山地区逆冲构造比较发育,滑塌堆积转化成广义上的混杂堆积,而同样有滑塌堆积产出的贺兰山地区由于远离祁连山造山带,滑塌堆积得以保存,其中的砾石基本上没有变形。宁夏地区中奥陶统中的滑塌堆积从区域上为我们提供了一个区别滑塌堆积与混杂堆积的例子。  相似文献   

16.
The Late Proterozoic ophiolite of Sol Hamed,NE Sudan   总被引:1,自引:0,他引:1  
The Sol Hamed complex, a sequence from ultramafics, through gabbros, thin sheeted dykes, to pillow lavas, is an ophiolite. It was obducted, tilted nearly to vertical, eroded and covered unconformably by the Nafirdeib Series. This is a volcaniclastic series, dated at 712 ± 58 Ma, the lower part of which includes conglomerates with ophiolitic clasts, olistostromes, one with large oolitic limestone slabs, felsitic and dacitic tuffs, turbidites and black shales, with andesites above. Some of the structures in the ophiolite are attributed to sub-oceanic deformation. Deformation after the deposition of the Nafirdeib Series produced folds and cleavage trending about NE-SW and, more locally, a cleavage trending NW in a shear zone where the ophiolite was thrust northeastwards over the Nafirdeib Series. The ophiolite and the Nafirdeib Series were intruded by the batholithic granite dated elsewhere at ca. 669 Ma. The ophiolite is thought to occur on a suture with the Nafirdeib Series representing part of an island arc sequence.  相似文献   

17.
Block-in-matrix formations in the Variscan foreland of Spain (Cantabrian Zone) occur in two different geological settings. The major block-in-matrix formations are mélanges, which appear as carpets beneath or ahead of submarine thrust systems. These mélanges may reach up to kilometric thickness and are mostly composed of broken formations (boudinaged sequences) of late Carboniferous age and scattered ‘exotic’ blocks derived from older Palaeozoic formations. Moreover, the mélanges in the Cantabrian Zone also include subordinate debris flow deposits with a chaotic block-in-matrix fabric (olistostromes). The source of the mélange blocks was the front of advancing nappes, chiefly the upper part of the nappe stacks. Therefore, the Cantabrian mélanges are interpreted as originated through submarine sliding and slumping associated with steep slopes at the orogenic front. The different types of rock bodies of these mélanges may be related to the degree of lithification of the sediments or rocks during slumping. So, broken formations are boudinaged sequences where the boudins or blocks resulted from extensional faults developed in lithified or semilithified limestones and sandstones, whereas the unlithified muddy matrix underwent continuous deformation. The scattered ‘exotic’ blocks ranging in age from early Cambrian to early Carboniferous were incorporated into the mélanges as individual blocks from competent well-lithified formations, originally located in the lower part of the nappe stacks. Although the Cantabrian Zone mélanges include olistostromic intervals, most of the olistostromes of this zone occur in a different geological setting. They are usually intercalated in the normal marine deposits of the Variscan foreland basin and, in contrast to the mélanges, they are mostly related to the margins of carbonate platforms, ahead of moving nappes. Finally, other instances of olistostromes are related to slopes generated by limb rotation of growth folds, which developed on submarine wedge-top successions.  相似文献   

18.
在西藏中南部雄马—措麦以南地区前人所定的属于中—晚侏罗世达雄群中采获了古生物化石,地层时代重新厘定为早—中二叠世。早二叠世早期拉嘎组中赋含重力滑塌块体和冰川漂砾,早二叠世晚期昂杰组碎屑岩中夹大量火山岩,中二叠世下拉组含大量火山岩碎屑等,与冈底斯—腾冲地层区广泛出露的早—中二叠世地层比较,岩性组合特征、沉积类型、沉积相、生物富集程度和属种组分及所处地质背景等诸方面均存在显著差异。该套地层的确定,对研究西藏早、中二叠世地层沉积相,重塑古地理环境,以及研究青藏高原和邻区特提斯构造发展阶段的地层演化、盆地构造背景等都有重要意义。  相似文献   

19.
At Islesboro, Maine, cleavage is well developed in low greenschist-facies siltstones and interbedded pelites of early Paleozoic age. The siltstones contain a spatial sequence of mica film structures that corresponds to increasing intensity of mesoscopic cleavage. In the most weakly foliated rocks, cleavage is defined by the preferred orientation of individual mica particles. In siltstones displaying slightly higher strain, these particles are accompanied by short, discontinuous mica film segments, thought to have formed by the recrystallization of early pore-space layer silicates. In moderately cleaved rocks, these segments link up to form lengthened mica films by a process thought to include intergranular fracture, transgranular fracture and layer silicate crystallization. In strongly cleaved rocks, the lengthened mica films become longer and thicken appreciably by solution transfer of quartz and residual accumulation of layer silicates and opaque minerals. Layer silicate crystallization is evident at all stages of mica film development, but is especially marked by the growth of decussate mica inside late-stage, thick mica-rich layers. This sequence of mica film development is probably characteristic of fine-grained psammitic rocks, and may not necessarily occur in carbonate-rich or mica-rich rocks.  相似文献   

20.
Superimposed catagenetic transformations are sharply expressed at the Mikhailov deposit, Kursk Magnetic Anomaly. They are confined to the base of Devonian and Juarassic rocks, which transgressively overlap martite eluvium formed after jaspilites on the surface of a buried uplift. These processes resulted in the appearance of massive lenticular and domal bodies (sandstones and siltstones cemented by calcite or iron sulfides) among friable terrigenous rocks, ferruginization of limestones and their transformation into sideroplesite ores, and formation of carbonate and pyrite concretions. Secondary processes are likely to be related to both descending waters and confined solutions (often thermal) ascending from the aquiferous horizons in the lower part of the sedimentary cover and basement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号