首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Paleosols crop out in the Sukhona River valley as several members, up to 10 m thick, embedded into the Salarevo Formation sediments. Principal characteristics of paleosols include a dense network of root channels, indications of eluvial gley alteration, redistribution and formation of secondary carbonates represented by several generations, and formation of block-prismatic soil structure with specific clayey films at structural jointing faces. The paleosols are divided into a number of genetically interrelated horizons (from top to bottom): presumably organogenic accumulation (AElg), eluvial gley horizon (Elg), illuvial horizons (B1 and B2), illuvial gley horizon (Bg), and transitional horizons (ElBg and BElg). Paleosols were formed under conditions of a semiarid climate with sharp seasonal or secular and multisecular oscillations of atmospheric precipitation. Such soils point to specific ecological environments, which were existing in the northern semiarid belt of the Earth before greatest (in the Phanerozoic) biospheric crisis at the Permian-Triassic boundary.  相似文献   

2.
Alfisols within the Texas Gulf Coast Plain commonly exhibit textural contrasts between sandy, artifact-bearing A–E horizons (i.e., sandy mantle), and artifact-sterile clay-rich Bt (argillic) horizons. This has invoked debate about parent material uniformity and pedogenic versus geomorphic sandy mantle origins, which has implications for the scientific value of buried archaeological sites. To improve our understanding of archaeological burial in upland settings, we evaluated parent material uniformity within five pedons to distinguish pedogenically derived textural changes from geomorphologically created lithologic discontinuities. Depth trends in clay-free particle size classes and stable/immobile Ti and Zr constituents failed to reveal lithologic discontinuities between the sandy mantle and Bt horizons, and the observed textural differences are interpreted to have resulted from pedogenic processes. This interpretation is supported by clay skins, fine clay increases in Bt horizons, and micromorphological observations. Consequently, artifacts buried in upland summits have likely moved down the soil profile due to biomantle processes. Deep sandy mantle sites, non-parallel contacts between the sandy mantle and Bt horizons, and paleogullies incised into Eocene bedrock are better explained by colluvial/soil creep processes adjacent to summits, where archaeological materials may exhibit preservation potential. No single explanation can account for sandy mantle origins, and we advocate a case-by-case approach.  相似文献   

3.
As the age of the soils in a chronosequence on the California coast increases, the difference between the magnetic susceptibility of eluvial and illuvial horizons increases, and the residual susceptibility after extraction with citrate-bicarbonate-dithionite (CBD) decreases. Enhanced susceptibility results from the conversion of nonferrimagnetic minerals to secondary ferrimagnetic forms (most likely maghemite) and the preferential accumulation of inherited and pedogenic magnetic minerals. Little enhancement occurs for pedons younger than 40,000 yr. By 124,000 yr, most of the magnetic susceptibility can be attributed to forms soluble in CBD. Magnetic susceptibility appears to vary systematically over time for three chronosequences from areas with mean annual precipitation ranging from 650 to 1500 mm yr−1. Magnetic susceptibility enhancement may be a useful parameter for estimating soil age in certain climates.  相似文献   

4.
The pedogenic histories of four adjacent profiles of a polygenetic palaeosol developed on a Middle Pleistocene terrace of the proto-Thames from Wivenhoe in southeast England are reconstructed on the basis of superposition of key micromorphological features. Despite a considerable variation in macromorphology, partly resulting from large-scale periglacial features, three of the profiles have similar micromorphological records in that they retain evidence for two phases of clay illuviation separated by a period of periglacial disruption. This reconstruction, however, seems to be incomplete because the fourth profile contains micromorphological evidence for a further illuviation–disruption cycle. The extent of this variation suggests that soil micromorphology should be used only with care to reconstruct pedogenic or pedosedimentary histories of complex polygenetic palaeosols, or to compare such palaeosols on different surfaces of chronosequences spanning periods of major climatic change. The variable and possibly limited resolution of micromorphology, together with the current uncertainty over the exact environmental signifiance of illuvial clay features, means that inferred pedogenic phases should be correlated with specific climatic stages only with considerable caution. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
赵景波 《沉积学报》2000,18(1):29-35
根据黄土高原第四纪古土壤和风化带的广泛调查,发现了CaCO3 等化学成分的不连续淀积、厚层及多层淀积等特殊地质现象,结合CaCO3 含量分析与入渗实验资料,建立了风化淋滤带CaCO3 淀积深度新理论。该理论表明,CaCO3 迁移到淀积深度所需时间很短,可以忽略时间因素对它的影响,能够作为研究风化淋滤带的许多地质问题的较可靠依据。当CaCO3 淀积深度小于古土壤发育带厚度时,可确定土壤已向风化壳转变 当Ca CO3 淀积深度大于古土壤层厚度时,可确定土壤为淋溶型、中酸性土壤 当同一风化剖面中或同一层古土壤下部出现两层、三层或厚度异常大的CaCO3 淀积层时,指示当时出现了两个或两个以上成壤期和相应的气候变化。  相似文献   

6.
A sequence of clays and clayey siltstones with olistostrome horizons and olistoplaques of the Upper Cretaceous rocks occur in the coastal section northwest of the mouth of the Agoi River. The rocks of this sequence are mostly gray sandy calcareous clays with rare interlayers of siltstones. The horizons and lenses of olistostromes contain small clasts, large blocks, and olistoplaques of rocks of various ages. The microfauna from matrix and clasts of olistostromes of different horizons of the sequence was sampled and identified. The large blocks and olistoplaques are tectonized with formation of slickensides and cracks, which do not travel beyond the country rocks. The thickness of the sequence is 280 m.  相似文献   

7.
Stable iron isotope ratios in three soils (two Podzols and one Cambisol) were measured by MC-ICPMS to investigate iron isotope fractionation during pedogenic iron transformation and translocation processes under oxic conditions. Podzolization is a soil forming process in which iron oxides are dissolved and iron is translocated and enriched in the subsoil under the influence of organic ligands. The Cambisol was studied for comparison, representing a soil formed by chemical weathering without significant translocation of iron. A three-step sequential extraction procedure was used to separate operationally-defined iron mineral pools (i.e., poorly-crystalline iron oxides, crystalline iron oxides, silicate-bound iron) from the soil samples. Iron isotope ratios of total soil digests were compared with those of the separated iron mineral pools. Mass balance calculations demonstrated excellent agreement between results of sequential extractions and total soil digestions. Systematic variations in the iron isotope signature were found in the Podzol profiles. An enrichment of light iron isotopes of about 0.6‰ in δ57Fe was found in total soil digests of the illuvial Bh horizons which can be explained by preferential translocation of light iron isotopes. The separated iron mineral pools revealed a wide range of δ57Fe values spanning more than 3‰ in the Podzol profiles. Strong enrichments of heavy iron isotopes in silicate-bound iron constituting the residue of weathering processes, indicated the preferential transformation of light iron isotopes during weathering. Iron isotope fractionation during podzolization is probably linked to the ligand-controlled iron translocation processes. Comparison of iron isotope data from eluvial and illuvial horizons of the Podzol profiles revealed that some iron must have been leached out of the profile. However, uncertainties in the initial iron content and iron isotopic composition of the parent materials prevented thorough mass balance calculations of iron fluxes within the profiles. In contrast to the Podzol profiles, the Cambisol profile displayed uniform δ57Fe values across soil depth and showed only a small enrichment of light iron isotopes of about 0.4‰ in the poorly-crystalline iron oxide pool extracted by 0.5 M HCl. This work demonstrates that significant iron isotope fractionations can occur during pedogenesis in oxic environments under the influence of organic ligands. Our findings provide new insights into fractionation mechanisms of iron isotopes and will help in the development of stable iron isotopes as tracers for biogeochemical iron cycling in nature.  相似文献   

8.
Flood‐generated sandy siltstones are under‐recognised deposits that preserve key vertebrate (actinopterygians, rhizodonts, and rarer lungfish, chondrichthyans and tetrapods), invertebrate and plant fossils. Recorded for the first time from the lower Mississippian Ballagan Formation of Scotland, more than 140 beds occur throughout a 490 m thick core succession characterised by fluvial sandstones, palaeosols, siltstones, dolostone ‘cementstones’ and gypsum from a coastal–alluvial plain setting. Sandy siltstones are described as a unique taphofacies of the Ballagan Formation (Scotland, UK); they are matrix‐supported siltstones with millimetre‐sized siltstone and very fine sandstone lithic clasts. Common bioclasts include plants and megaspores, fish, ostracods, eurypterids and bivalves. Fossils have a high degree of articulation compared with those found in other fossil‐bearing deposits, such as conglomerate lags at the base of fluvial channel sandstones. Bed thickness and distribution varies throughout the formation, with no stratigraphic trend. The matrix sediment and clasts are sourced from the reworking of floodplain sediments including desiccated surfaces and palaeosols. Secondary pedogenic modification affects 30% of the sandy siltstone beds and most (71%) overlie palaeosols or desiccation cracks. Sandy siltstones are interpreted as cohesive debris flow deposits that originated by the overbank flooding of rivers and due to localised floodplain sediment transport at times of high rainfall; their association with palaeosols and desiccation cracks indicates seasonally wet to dry cycles throughout the Tournaisian. Tetrapod and fish fossils derived from floodplain lakes and land surfaces are concentrated by local erosion and reworking, and are preserved by deposition into temporary lakes on the floodplain; their distribution indicates a local origin, with sediment transported across the floodplain in seasonal rainfall episodes. These deposits are significant new sites that can be explored for the preservation of rare non‐marine fossil material and provide unique insights into the evolution of early terrestrial ecosystems.  相似文献   

9.
The field properties, magnetic susceptibility, particle size, calcium carbonate content, soil micromorphology and optical luminescence ages of the upper 6.1 m and lowermost 4.7 m of the 45 m loess–palaeosol sequence at El Lambedero in the Tafí del Valle region of Tucumán Province (Sierras Pampeanas, northwest Argentina) have been used to set up a partial stratigraphy and chronology, as well as a basic pedosedimentary model of loess accumulation, palaeosol development, reworking and erosion for the site. The minimum ages derived from the basal part of the section suggest that loess began to accumulate some time before 165 ka. A thick and well‐developed pedocomplex in the upper profile is correlated with at least the latter part of marine isotope stage (MIS) 5, whereas the overlying palaeosol may be attributable to pedogenic activity during MIS 3. The absence of material younger than 33 ka close to the surface of this rounded spur landform is probably the result of either non‐deposition or erosional stripping in response to climatic change, or episodic uplift in this seismically active region. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
Landslide hazard is one of the crucial environmental constraints for the development of Ethiopia, representing a limiting factor for urbanization and infrastructures. The high relief and the rugged topography induced by a strong Plio-Quaternary uplift, the occurrence of clayey horizons within the sedimentary sequences, the dense network of tectonic fractures and faults, the thick eluvial mantles on volcanic outcrops, and the thick colluvial–alluvial deposits at the foot of steep slopes are the predisposing factors for a large variety of mass movements. Heavy summer rainfall is the main triggering factor of most landslides, some of which undergo a step-like evolution with long-lasting quiescence intervals. First generation movements are commonly restricted to shallow phenomena, such as soil slips or mud flows in eluvial–colluvial material. Fast moving slope failures, such as rock slides, topplings and falls, are also triggered by earthquakes. To mitigate the landslide risk, any first priority measure should include adequate drainage of slopes in order to reduce water infiltration. On the other hand, appropriate site selection for buildings, transferring risky settlements, accurate geological control of works, and education campaigns are all strongly recommended.  相似文献   

11.
Lower slopes of the Sandia Mountains are characterized by granitic corestone topography and weathering-limited slopes with thin grusy colluvium and weakly developed soils. In contrast, thick soils with illuvial clay and pedogenic carbonate have developed below aplite outcrops. Aplite is resistant to chemical decomposition, but physically weathers to blocky clasts that enhance surface roughness and erosional resistance of colluvium, promoting accumulation of eolian fines. Thick B horizons on aplite slopes indicate limited erosion and prolonged periods of stability and soil development. Accretion of eolian material limits runoff and prevents attainment of a steady-state balance between soil production and downslope transport.  相似文献   

12.
Siderites forming beds and lenses in the Neogene lacustrine—swampy sediments of the Rinh Chua Formation (northern Vietnam) are considered in detail. Results of the mineralogical and chemical study of siderites and host terrigenous–clayey siltstones are reported. New analytical data characterize the composition and structure of microbiomorphic (bacterial) bodies in the siderites and terrigenous sediments. Microstructures (porosity) and compositional peculiarities (up to 18% P2O5) of individual horizons of the sediments testify to their lacustrine-swampy genesis. It is established that the siderites in association with the layer silicates were formed during the microbiochemogenic decomposition of terrigenous components, including quartz.  相似文献   

13.
黄土高原红粘土成因及上新世北方干旱化问题   总被引:39,自引:10,他引:39       下载免费PDF全文
本文通过对黄土高原第三纪红粘土的野外观察,以及沉积学和地球化学分析,得到能证明红粘土为风成沉积的新证据。另外,佳县红粘土沉积的土壤学特征表明,上新世时期的东亚夏季风强度总体强于第四纪。  相似文献   

14.
The Bhimtal–Naukuchiatal Lake was created due to blocking of the valley by a huge debris flow along a narrow outlet at about 40 ka BP. The lake basin was filled intermittently due to fluvio-lacustrine and colluvial processes that deposited a thick sequence of interbedded mud and gravel. In the basin fill sequence five major lithofacies, most of them divisible into subfacies, have been identified and assigned to specific depositional environments. The coarsening upward (CU) mud-silt cycles represent sedimentation in a lake setting. The clasts-and mud-supported gravels consists of fining upward (FU) and CU sequences, respectively, indicating deposition by channel processes and debris flows. Having basin wide extent, the pedogenic mottled, clayey silt unit represents an important tectonic event when the lake was temporarily drained and sediments were sub-aerially exposed. Fluctuating arid–semiarid to humid climatic conditions and repeated tectonic activity may have governed the mode of sedimentation and ultimately the basin fill history.  相似文献   

15.
We consider the formation of the Dal’nii (Dal’nyaya) eluvial gold placer (Bol’shoi Anyui ore–placer district, western Chukchi Peninsula), related to the Dal’nii (Dal’nee) gold-bearing porphyry Mo–Cu occurrence. The Dal’nii placer is located within the transition between the Kur’ya Ridge and Anyui basin, which has been relatively stable at the recent (Pliocene–Quaternary) tectonic stage. Minor recent uplift has determined the slight denudation of interfluves, the leading role of eluvial processes in the formation of a loose cover on them, and the preservation of the relict matter of pre-Pliocene chemical-weathering crusts (including the oxidized zones of orebodies) in present-day eluvium. The Dal’nii placer consists of relict weathering-crust placers altered by recent eluvial processes in different degrees. Therefore, it is relatively rich in metal, whereas the primary lode contains mainly fine-sized gold, which is almost not released from ore under periglacial lithogenesis in present-day interfluves. We suggest calling this genetic type of placers “residual-eluvial.” The primary lodes being highly eroded (during the formation of residual concentrations, which serve as an intermediate reservoir for these placers), residual-eluvial placers or their parts might not be directly related to specific orebodies at the present-day level of erosional truncation.  相似文献   

16.
Altered crystalline rocks occur at the peneplain exposed in southern Israel and in other localities across North Africa and Arabia where they underlie an extensive blanket of Cambro–Ordovician sandstones. This study focuses on the petrography, mineralogy and geochemistry of top basement rocks of the northern Arabian‐Nubian Shield. The altered rocks are shown to be weathering profiles that can be subdivided into three horizons interpreted as apparently unweathered granite, or saprock, which grades upwards to a saprolite, topped by a thin clayey plasmic zone. The plasmic zone is enriched in iron and aluminium and is depleted in silicon, calcium, magnesium and potassium relative to the underlying saprolite. The chemical index of alteration increases upward, but does not exceed 90 and, therefore, lags behind values observed in strongly leached present‐day tropical soils. Petrographic examinations reveal iron mobility under local fluctuating redox conditions, similar to modern and Proterozoic soils. A variety of birefringence fabrics induced by shrinkage and expansion of clays during wetting and drying cycles and clay illuviation strongly indicate pedogenic processes rather than a post‐depositional alteration. Illite and ordered illite‐smectite phases coexist with smectitic illite‐smectite in the lower part of the saprolite and with kaolinite in the plasmic zone, in line with increasing chemical index of alteration. Observations are in accordance with the current profile being a remnant of a thick weathering profile whose top was truncated by fluvial incision just prior to deposition of the overlying Early Cambrian sequence. A previously documented Devonian thermal event reaching temperatures of at least 200°C overprinted the studied rocks. During burial diagenesis, illitization affected original smectite rather than kaolinite. However, in spite of the elevated temperatures, illitization was incomplete implying restricted potassium addition. The sub‐Cambrian weathering reflects warm and humid conditions in a tropical or sub‐tropical climate, in line with several plate reconstructions placing Israel at low latitudes during Cambrian time.  相似文献   

17.
This paper describes the pedogenic features of paleosols in the upper Lower Cretaceous Shiohama Formation, the lowest unit of the Shimonoseki Subgroup, in Yoshimi, Yamaguchi Prefecture, southwest Japan. The paleosol profiles in the Shiohama Formation are compound and complex, characterized by the presence of abundant calcrete horizons. An analysis of these profiles reveals that the floodplain upon which the Shiohama Formation was deposited was part of an unstable aggradation system characterized by the intermittent influx of sediments and occasional erosion. Furthermore, the mean annual range of precipitation was less than about 30 mm, suggesting only minor seasonal change between wet and dry conditions during deposition of the Shiohama Formation. The microstructures of the observed calcretes include dense microfabric, floating detrital grains, micronodules, circum-granular cracks, and complex cracks. These features formed by chemical precipitation under dry conditions, with little bioactivity. The calcrete horizons are classified into seven types (I–VII) based on their modes of occurrence. Two processes of carbonate accumulation can be identified based on the size and abundance of nodules: VI–V–III–(II)–I and VI–(V)–IV–II–I. These processes represent the development of calcrete horizons from the early to late stages of calcretization. Type I represents the most highly developed stage of calcretization. Calcretes within the Lower Member sequence of the Shiohama Formation show repetitions of type I and types II and III. Thus, it is interpreted that the frequency of sediment supply to the floodplain changed repeatedly over time.  相似文献   

18.
A study area in an arid region of southern New Mexico is in basin-and-range topography and includes both a river valley and a closed basin. Holocene soils occur in valley fills and low terraces between Pleistocene fans, in and near drainageways on the fan-piedmont, on ridges, and in dunes. Holocene soils suggest the character of initial development in soils that are much older and more complex, and record the beginnings of various soil horizons. Noncalcareous brown or reddish brown B horizons have formed in low-carbonate parent materials of stable sites. Incipient development of the argillic horizon and the Haplargids occurs at stable sites in very gravelly materials that are about 1–2000 yr old. The cambic horizon and Camborthids occur in adjacent low-gravel materials of the same age. The argillic horizon occurs continuously in soils of earliest Holocene, particularly in very gravelly materials. Where soils have been truncated, as in areas affected by landscape dissection, argillic and cambic horizons are usually absent and the soils are Torripsamments, Torriorthents, or Torrifluvents depending on content of sand, gravel, and organic carbon. In high-carbonate parent materials, noncalcareous, reddish brown B horizons have not formed at any time in the Holocene. Most of these soils are Torriorthents or Torrifluvents although an incipient calcic horizon has formed in some of the oldest Holocene soils; the latter are Calciorthids. Horizons of carbonate accumulation are the best and most common pedogenic indicators of soil age. Stage I carbonate horizons are a major feature of pedogenesis in the Holocene. Because of additions of carbonate from the atmosphere, carbonate horizons are morphologically similar whether they have formed in high or low-carbonate alluvium. The carbonate accumulations are illuvial.Some Holocene deposits apparently resulted from changes in climate. Others, such as the youthful deposits of coppice dunes, apparently were caused by man's introduction of cattle and subsequent overgrazing and seed dispersal.  相似文献   

19.
The Proterozoic Soldiers Cap Group, a product of two major magmatic rift phases separated by clastic sediment deposition, hosts mineralised (e.g. Pegmont Broken Hill‐type deposit) and barren iron oxide‐rich units at three main stratigraphic levels. Evaluation of detailed geological and geochemical features was carried out for one lens of an apatite‐garnet‐rich, laterally extensive (1.9 km) example, the Weatherly Creek iron‐formation, and it was placed in the context of reconnaissance studies of other similar units in the area. Chemical similarities with iron‐formations associated with Broken Hill‐type Pb–Zn deposit iron‐formations are demonstrated here. Concordant contact relationships, mineralogy, geochemical patterns and pre‐deformational alteration all indicate that the Soldiers Cap Group iron‐formations are mainly hydrothermal chemical sediments. Chondrite normalised REE patterns display positive Eu and negative Ce anomalisms, are consistent with components of both high‐temperature, reduced, hydrothermal fluid (≥250°C) and cool oxidised seawater. Major element data suggest a largely mafic provenance for montmorillonitic clays and other detritus during chemical sedimentation, consistent with westward erosion of Cover Sequence 2 volcanic rocks, rather than local mafic sources. Ni enrichment is most consistent with hydrogenous uptake by Mn‐oxides or carbonates. Temperatures inferred from REE data indicate that although they are not strongly enriched, base metals such as Pb and Zn are likely to have been transported and deposited prior to or following iron‐formation deposition. Most chemical sedimentation pre‐dated emplacement of the major mafic igneous sill complexes present in the upper part of the basin. Heating of deep basinal brines in a regional‐scale aquifer by deep‐seated mafic magma chambers is inferred to have driven development of hydrothermal fluids. Three major episodes of extension exhausted this aquifer, but were succeeded by a final climactic extensional phase, which produced widespread voluminous mafic volcanism. The lateral extent of the iron‐formations requires a depositional setting such as a sea‐floor metalliferous sediment blanket or series of brine pools, with iron‐formation deposition likely confined to much smaller fault‐fed areas surrounded by Fe–Mn–P–anomalous sediments. These relationships indicate that in such settings, major sulfide deposits and their associated chemical sediment marker horizons need not overlie major igneous sequences. Rather, the timing of expulsion of hydrothermal fluid reflects the interplay between deep‐seated heating, extension and magmatism.  相似文献   

20.
The Kathmandu and Banepa Basins, Central Nepal, are located in a large syncline of the Lesser Himalayas. The Older Kathmandu Lake evolved during the Pliocene and early Pleistocene; the Younger Kathmandu Lake, which is the focus of this study, is infilled with late Quaternary sediments. Three formations, arranged in stratigraphical order, the Kalimati, Gokarna and Thoka Formations formed during the infilling stage of this lacustrine basin. Structural and textural sedimentological analyses, a chemical survey across the basin and mineralogical investigations of fine‐grained sediments form the basis of this palaeogeographical study. The basin under investigation was covered by a perennial freshwater lake before 30 000 yr BP. The lake was infilled with alluvial and fluvial sediments delivered mainly from the mountains north of the basin. A fairly low gradient was favourable for the formation of diatomaceous earths, carbonaceous mudstones and siltstones, which were laid down in the centre of the lake and in small ponds. Towards the basin edge, lacustrine sediments gave way to deltaic deposits spread across the delta plain. Crevasse splays and anastomosing rivers mainly delivered suspended load for the widespread siltstones and mudstones. The proximal parts of the alluvial–fluvial sedimentary wedge contain debris flows that interfinger with fine‐grained floodplain deposits. Three highstands of the water‐level (>30 000 yr BP, 28 000–19 000 yr BP, 11 000–4000 yr BP (?)) have been recognised in the sedimentary record of the younger Kathmandu Lake in the Late Quaternary. Second‐order water‐level fluctuations are assumed to be triggered by local processes (damming by tectonically induced landslides). First‐order water‐level fluctuations are the result of climatic changes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号