首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One possible way of mitigating carbon dioxide (CO2) emissions from fossil fuel combustion is using carbon dioxide capture and storage (CCS) technology. However, public perception concerning CO2 storage in the geosphere is generally negative, being particularly motivated by perceived leakage risks. Therefore, a main issue when attempting to gain public acceptance is ensuring provision of appropriate monitoring practices, aimed at providing health, safety and environmental risk assessment, so that potential risks from CO2 storage are minimized. Naturally occurring CO2 deposits provide unique natural analogues for evaluating and validating methods used for the detection and monitoring of CO2 spreading and degassing into the atmosphere. Geological and hydrological structures of the Cheb Basin (NW Bohemia, Czech Republic) represent such a natural analogue for investigating CO2 leakage and offer a perfect location at which to verify monitoring tools used for direct investigation of processes along preferential migration paths. This shallow basin dating from the Tertiary age is characterized by up to 300?m thick Neogene sediment deposits and several tectonically active faults. The objectives of this paper are to introduce the CO2 analogues concept to present the Eger Rift as a suitable location for a natural CO2 analogue site and to demonstrate to what extent such an analogue site should be used (with a case study). The case study presents the results obtained from a joint application of geoelectrical measurements in combination with soil CO2 concentration and flux determination methods, for the detection and characterization of natural CO2 releases at gas seeps (as part of a hierarchic monitoring concept). To highlight discharge-controlling structural near surface features was the initial motivation for the application of geoelectrical measurements. Soil-gas concentration and flux measurement techniques are relatively simple to employ and are valuable methods that can be used to monitor seeping CO2 along preferential pathways. Joint interpretation of both approaches yields a first insight into fluid paths and reveals that the thickness and permeability of site-specific near surface sedimentary deposits have a great influence upon the spatial distribution of the CO2 degassing pattern at surface level.  相似文献   

2.
This paper proposes a pressure-monitoring method to warn any possible CO2 leakage by monitoring pressure change at the upper layer of storage reservoirs within injection wells. The monitoring method is tested with two problems under various scenarios. With a current pressure detection limit, the proposed pressure-monitoring technique can be widely applicable wherever a permeable upper formation exists above the CO2 storage reservoir and is effective even in offshore storage sites wherever conventional monitoring methods for onshore sites cannot be applied. Meanwhile, the method is limited to apply during injection and is subject to any possible pressure dampening.  相似文献   

3.
Our study at this natural analog site contributes to the evaluation of methods within a hierarchical monitoring concept suited for the control of CO2 degassing. It supports the development of an effective monitoring concept for geological CO2 storage sites—carbon capture and storage as one of the pillars of the European climate change efforts. This study presents results of comprehensive investigations along a 500-m long profile within the Hartou?ov (Czech Republic) natural CO2 degassing site and gives structural information about the subsurface and interaction processes in relation to parameters measured. Measurements of CO2 concentrations and investigation of the subsurface using electrical resistivity tomography and self-potential methods provide information about subsurface properties. For their successful application it is necessary to take seasonal variations (e.g., soil moisture, temperature, meteorological conditions) into consideration due to their influence on these parameters. Locations of high CO2 concentration in shallow depths are related to positive self-potential anomalies, low soil moistures and high resistivity distributions, as well as high δ13C values and increased radon concentrations. CO2 ascends from deep geological sources via preferential pathways and accumulates in coarser sediments. Repetition of measurements (which includes the effects of seasonal variations) revealed similar trends and allows us to identify a clear, prominent zone of anomalous values. Coarser unconsolidated sedimentary layers are beneficial for the accumulation of CO2 gas. The distribution of such shallow geological structures needs to be considered as a significant environmental risk potential whenever sudden degassing of large gas volumes occurs.  相似文献   

4.
The Geomechanics of CO2 Storage in Deep Sedimentary Formations   总被引:1,自引:0,他引:1  
This paper provides a review of the geomechanics and modeling of geomechanics associated with geologic carbon storage (GCS), focusing on storage in deep sedimentary formations, in particular saline aquifers. The paper first introduces the concept of storage in deep sedimentary formations, the geomechanical processes and issues related with such an operation, and the relevant geomechanical modeling tools. This is followed by a more detailed review of geomechanical aspects, including reservoir stress-strain and microseismicity, well integrity, caprock sealing performance, and the potential for fault reactivation and notable (felt) seismic events. Geomechanical observations at current GCS field deployments, mainly at the In Salah CO2 storage project in Algeria, are also integrated into the review. The In Salah project, with its injection into a relatively thin, low-permeability sandstone is an excellent analogue to the saline aquifers that might be used for large scale GCS in parts of Northwest Europe, the U.S. Midwest, and China. Some of the lessons learned at In Salah related to geomechanics are discussed, including how monitoring of geomechanical responses is used for detecting subsurface geomechanical changes and tracking fluid movements, and how such monitoring and geomechanical analyses have led to preventative changes in the injection parameters. Recently, the importance of geomechanics has become more widely recognized among GCS stakeholders, especially with respect to the potential for triggering notable (felt) seismic events and how such events could impact the long-term integrity of a CO2 repository (as well as how it could impact the public perception of GCS). As described in the paper, to date, no notable seismic event has been reported from any of the current CO2 storage projects, although some unfelt microseismic activities have been detected by geophones. However, potential future commercial GCS operations from large power plants will require injection at a much larger scale. For such large-scale injections, a staged, learn-as-you-go approach is recommended, involving a gradual increase of injection rates combined with continuous monitoring of geomechanical changes, as well as siting beneath a multiple layered overburden for multiple flow barrier protection, should an unexpected deep fault reactivation occur.  相似文献   

5.
Capture and geological sequestration of CO2 from large industrial sources is considered a measure for reducing anthropogenic emissions of CO2 and thus mitigating climate change. One of the main storage options proposed are deep saline formations, as they provide the largest potential storage capacities among the geologic options. A thorough assessment of this type of storage site therefore is required. The CO2-MoPa project aims at contributing to the dimensioning of CO2 storage projects and to evaluating monitoring methods for CO2 injection by an integrated approach. For this, virtual, but realistic test sites are designed geometrically and fully parameterized. Numerical process models are developed and then used to simulate the effects of a CO2 injection into the virtual test sites. Because the parameterization of the virtual sites is known completely, investigation as well as monitoring methods can be closely examined and evaluated by comparing the virtual monitoring result with the simulation. To this end, the monitoring or investigation method is also simulated, and the (virtual) measurements are recorded and evaluated like real data. Application to a synthetic site typical for the north German basin showed that pressure response has to be evaluated taking into account the layered structure of the storage system. Microgravimetric measurements are found to be promising for detecting the CO2 phase distribution. A combination of seismic and geoelectric measurements can be used to constrain the CO2 phase distribution for the anticline system used in the synthetic site.  相似文献   

6.
In order to detect hydraulic and geochemical impact on the groundwater directly above the CO2 storage reservoir at the Ketzin pilot site continuous monitoring using an observation well is carried out. The target depth (446 m below ground level, bgl.) of the well is the Exter formation (Upper Triassic, Rhaetian) which is the closest permeable stratigraphic overlying formation to the CO2 storage reservoir (630–636 m bgl. at well location). The monitoring concept comprises evaluation of hydraulic conditions, temperature, water chemistry, gas geochemistry and δ13C values. This is achieved by a tubing inserted inside the well with installed pressure sensors and a U-tube sampling system so that pumping tests or additional wireline logging can be carried out simultaneously with monitoring. The aquifer was examined using a pump test. The observation well is hydraulically connected to the regional aquifer system and the permeability of about 1.8 D is comparatively high. Between Sept. 2011 and Oct. 2012, a pressure increase of 7.4 kPa is observed during monitoring under environmental conditions. Drilling was carried out with drilling mud on carbonate basis. The concentration of residual drilling mud decreases during the pump test, but all samples show a residual concentration of drilling mud. The formation fluid composition is recalculated with PHREEQC and is comparable to the literature values for the Exter formation. The gas partial pressure is below saturation at standard conditions and the composition is dominated by N2 similar to the underlying storage reservoir prior to CO2 injection. The impact of residual drilling mud on dissolved inorganic carbon and the respective δ13C values decreases during the monitoring period. The pristine isotopic composition cannot be determined due to calcite precipitation. No conclusive results indicate a leakage from the underlying CO2 storage reservoir.  相似文献   

7.
Potential pathways in the subsurface may allow upwardly migrating gaseous CO2 from deep geological storage formations to be released into near surface aquifers. Consequently, the availability of adequate methods for monitoring potential CO2 releases in both deep geological formations and the shallow subsurface is a prerequisite for the deployment of Carbon Capture and Storage technology. Geoelectrical surveys are carried out for monitoring a small-scale and temporally limited CO2 injection experiment in a pristine shallow aquifer system. Additionally, the feasibility of multiphase modeling was tested in order to describe both complex non-linear multiphase flow processes and the electrical behavior of partially saturated heterogeneous porous media. The suitability of geoelectrical methods for monitoring injected CO2 and geochemically altered groundwater was proven. At the test site, geoelectrical measurements reveal significant variations in electrical conductivity in the order of 15?C30?%. However, site-specific conditions (e.g., geological settings, groundwater composition) significantly influence variations in subsurface electrical conductivity and consequently, the feasibility of geoelectrical monitoring. The monitoring results provided initial information concerning gaseous CO2 migration and accumulation processes. Geoelectrical monitoring, in combination with multiphase modeling, was identified as a useful tool for understanding gas phase migration and mass transfer processes that occur due to CO2 intrusions in shallow aquifer systems.  相似文献   

8.
Careful site characterization is critical for successful geologic storage of carbon dioxide (CO2) because of the many physical and chemical processes impacting CO2 movement and containment under field conditions. Traditional site characterization techniques such as geological mapping, geophysical imaging, well logging, core analyses, and hydraulic well testing provide the basis for judging whether or not a site is suitable for CO2 storage. However, only through the injection and monitoring of CO2 itself can the coupling between buoyancy flow, geologic heterogeneity, and history-dependent multi-phase flow effects be observed and quantified. CO2 injection and monitoring can therefore provide a valuable addition to the site-characterization process. Additionally, careful monitoring and verification of CO2 plume development during the early stages of commercial operation should be performed to assess storage potential and demonstrate permanence. The Frio brine pilot, a research project located in Dayton, Texas (USA) is used as a case study to illustrate the concept of an iterative sequence in which traditional site characterization is used to prepare for CO2 injection and then CO2 injection itself is used to further site-characterization efforts, constrain geologic storage potential, and validate understanding of geochemical and hydrological processes. At the Frio brine pilot, in addition to traditional site-characterization techniques, CO2 movement in the subsurface is monitored by sampling fluid at an observation well, running CO2-saturation-sensitive well logs periodically in both injection and observation wells, imaging with crosswell seismic in the plane between the injection and observation wells, and obtaining vertical seismic profiles to monitor the CO2 plume as it migrates beyond the immediate vicinity of the wells. Numerical modeling plays a central role in integrating geological, geophysical, and hydrological field observations.  相似文献   

9.
The Gravity Recovery and Climate Experiment (GRACE) satellite mission is aimed at assessment of groundwater storage under different terrestrial conditions. The main objective of the presented study is to highlight the significance of aquifer complexity to improve the performance of GRACE in monitoring groundwater. Vidarbha region of Maharashtra, central India, was selected as the study area for analysis, since the region comprises a simple aquifer system in the western region and a complex aquifer system in the eastern region. Groundwater-level-trend analyses of the different aquifer systems and spatial and temporal variation of the terrestrial water storage anomaly were studied to understand the groundwater scenario. GRACE and its field application involve selecting four pixels from the GRACE output with different aquifer systems, where each GRACE pixel encompasses 50–90 monitoring wells. Groundwater storage anomalies (GWSA) are derived for each pixel for the period 2002 to 2015 using the Release 05 (RL05) monthly GRACE gravity models and the Global Land Data Assimilation System (GLDAS) land-surface models (GWSAGRACE) as well as the actual field data (GWSAActual). Correlation analysis between GWSAGRACE and GWSAActual was performed using linear regression. The Pearson and Spearman methods show that the performance of GRACE is good in the region with simple aquifers; however, performance is poorer in the region with multiple aquifer systems. The study highlights the importance of incorporating the sensitivity of GRACE in estimation of groundwater storage in complex aquifer systems in future studies.  相似文献   

10.
多源监测数据的自动汇聚和分析是实现地质灾害监测预警的重要基础。针对目前监测数据在集成过程中遇到的问题和困难,同时为了实现地质灾害监测工作的自动化,本文结合项目实际需求,开发了一套地质灾害监测数据集成系统。该系统集成了监测数据入库标准、异常数据处理技术等,并将先进的存储理念引入地质灾害监测工作中,借助于系统服务(System Service)的思想,实现了监测数据的自动化处理并实时汇聚入库,在监测数据平台上无缝集成各种监测数据,达到了地质灾害监测自动化的目的。  相似文献   

11.
Numerical simulation of fluid flow coupled with chemical reactions has been an active field in the hydrogeology community and many formulations have been programmed into different software. In recent years, this subject has attracted increasing interest in the reservoir simulation community, partly for the application of chemical methods for hydrocarbon extraction but also for research on the geological sequestration of CO2. In this paper, an extension to the concept of dual mesh for reactive transport modeling is presented. This approach involves two meshes, a low-resolution mesh to resolve the pressure equation and a high-resolution mesh to transport the species and to calculate the geochemical equilibrium. The main objective is to preserve the fine scale heterogeneities to reach a more accurate field behavior simulation than conventional approach which consist in performing simulations on a coarser mesh. The method is applied to a simulation of CO2 storage in the SPE10 model that keep a high resolution of the heterogeneities.  相似文献   

12.
The data acquired by Gravity Recovery and Climate Experiment (GRACE) satellite provides a new way for monitoring groundwater storage changes in China. It is vital to understand its applications in China. This paper systematically reviewed the research progress of groundwater storage monitoring in China based on GRACE data. First, we used the bibliometric analysis and quantitative analysis to clarify trends and characteristics of related studies. Then, we elaborated on the basic principles, methods and uncertainties of groundwater monitoring based on GRACE data. Furthermore, we reviewed the research progress from the aspects of spatial range, accuracies and findings. It was found that the groundwater storage monitoring in China based on GRACE data has gradually received more attention, and the numbers of relevant publications and total citations in both Chinese and English showed an increasing trend. The methods mainly include the principle of water balance and calibration of hydrological models using GRACE satellite data. Most of the relevant studies focused on the North China Plain. The monitoring results are in good agreement with the measured groundwater data, and their correlation coefficients are higher than 0.6. We suggested that the challenges such as low spatial resolution of GRACE data and the uncertainties in monitoring should be considered. In the future, global positioning system, interferometric synthetic aperture radar and groundwater level observation data can be integrated to improve the reliability of groundwater storage monitoring in China.  相似文献   

13.
One of the most vigorously discussed issues related to Carbon Capture and Storage (CCS) in the public and scientific community is the development of adequate monitoring strategies. Geological monitoring is mostly related to large scale migration of the injected CO2 in the storage formations. However, public interest (or fear as that) is more related to massive CO2 discharge at the surface and possible affects on human health and the environment. Public acceptance of CO2 sequestration will only be achieved if secure and comprehensible monitoring methods for the natural habitat exist. For this reason the compulsory directive 2009/31/EG of the European Union as well as other international regulations demand a monitoring strategy for CO2 at the surface. The variation of CO2 emissions of different soil types and vegetation is extremely large. Hence, reliable statements on actual CO2 emissions can only be made using continuous long-term gas-concentration measurements. Here the lessons learned from the (to the authors’ knowledge) first world-wide continuous gas concentration monitoring program applied on a selected site in the Altmark area (Germany), are described.This paper focuses on the authors’ technical experiences and recommendations for further extensive monitoring programs related to CCS. Although many of the individual statements and suggestions have been addressed in the literature, a comprehensive overview is presented of the main technical and scientific issues. The most important topics are the reliability of the single stations as well as range of the measured parameters. Each selected site needs a thorough pre-investigation with respect to the depth of the biologically active zone and potential free water level. For the site installation and interface the application of small drill holes is recommended for quantifying the soil gas by means of a closed circuit design. This configuration allows for the effective drying of the soil gas and avoids pressure disturbance in the soil gas. Standard soil parameters (humidity, temperature) as well as local weather data are crucial for site specific interpretation of the data. The complexity, time and effort to handle a dozen (or even more) single stations in a large case study should not be underestimated. Management and control of data, automatic data handling and presentation must be considered right from the beginning of the monitoring. Quality control is a pre-condition for reproducible measurements, correct interpretation and subsequently for public acceptance. From the experience with the recent monitoring program it is strongly recommended that baseline measurements should start at least 3 a before any gas injection to the reservoir.  相似文献   

14.
Instances of gas leakage from naturally occurring CO2 reservoirs and natural gas storage sites serve as analogues for the potential release of CO2 from geologic storage sites. This paper summarizes and compares the features, events, and processes that can be identified from these analogues, which include both naturally occurring releases and those associated with industrial processes. The following conclusions are drawn: (1) carbon dioxide can accumulate beneath, and be released from, primary and secondary shallower reservoirs with capping units located at a wide range of depths; (2) many natural releases of CO2 are correlated with a specific event that triggered the release; (3) unsealed fault and fracture zones may act as conduits for CO2 flow from depth to the surface; (4) improperly constructed or abandoned wells can rapidly release large quantities of CO2; (5) the types of CO2 release at the surface vary widely between and within different leakage sites; (6) the hazard to human health was small in most cases, possibly because of implementation of post-leakage public education and monitoring programs; (7) while changes in groundwater chemistry were related to CO2 leakage, waters often remained potable. Lessons learned for risk assessment associated with geologic carbon sequestration are discussed. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

15.
A. Meir Dr. 《GeoJournal》1981,5(3):277-284
This paper attempts to answer the question of how stable are spatial channels of innovation diffusion over time. The notion of stability of diffusion channels derives from the concept of spatial autocorrelation and from the assumption that neighboring spatial units exhibit relative similarity in economic development preconditions necessary for innovation adoption. Stability, however, declines over time as the diffusion process approaches saturation. Innovations with similar properties may tend to produce similar diffusion channels, facilitating forecasting of future diffusion of innovations based on knowledge of diffusion of similar ones. A case study is provided through an analysis of the diffusion of automobiles in Ohio using three methods: visual analysis of maps of cross-sections for identification of channels, transitional matrices for analysing the nature of change in adoption situations, and surface analysis to analyse correlation between adoption surfaces in the short and long ranges. The conclusion of these analyses is that over most of the study period the channels are relatively stable in the short-range, with a general tendency of decline in stability over the long-range. A comparison to a study of diffusion of another innovation in the same area supports the assumption that channels may be more universal than innovation-specific.  相似文献   

16.
The paper presents a comparison of hydrologic issues and technical approaches used in deep-well injection and disposal of liquid wastes, and those issues and approaches associated with injection and storage of CO2 in deep brine formations. These comparisons have been discussed in nine areas: injection well integrity; abandoned well problems; buoyancy effects; multiphase flow effects; heterogeneity and flow channeling; multilayer isolation effects; caprock effectiveness and hydromechanics; site characterization and monitoring; effects of CO2 storage on groundwater resources. There are considerable similarities, as well as significant differences. Scientifically and technically, these two fields can learn much from each other. The discussions presented in this paper should help to focus on the key scientific issues facing deep injection of fluids. A substantial but by no means exhaustive reference list has been provided for further studies into the subject.  相似文献   

17.
长期以来,各地质勘探部门积累了大量地质数据,为了有效管理和共享这些信息,需建立数据共享平台。探讨了地理元数据的现状和地理元数据共享存在的问题,以及用XML文件存储和关系数据库存储的优缺点等问题;提出用XML与数据库技术相结合的方式构建地质元数据,解决地质数据共享问题,并以此为基础构建了用于管理、使用和发布地质数据的共享平台。  相似文献   

18.
Measurement of barometric efficiency (BE) from open monitoring wells or loading efficiency (LE) from formation pore pressures provides valuable information about the hydraulic properties and confinement of a formation. Drained compressibility (α) can be calculated from LE (or BE) in confined and semi-confined formations and used to calculate specific storage (S s). S s and α are important for predicting the effects of groundwater extraction and therefore for sustainable extraction management. However, in low hydraulic conductivity (K) formations or large diameter monitoring wells, time lags caused by well storage may be so long that BE cannot be properly assessed in open monitoring wells in confined or unconfined settings. This study demonstrates the use of packers to reduce monitoring-well time lags and enable reliable assessments of LE. In one example from a confined, high-K formation, estimates of BE in the open monitoring well were in good agreement with shut-in LE estimates. In a second example, from a low-K confining clay layer, BE could not be adequately assessed in the open monitoring well due to time lag. Sealing the monitoring well with a packer reduced the time lag sufficiently that a reliable assessment of LE could be made from a 24-day monitoring period. The shut-in response confirmed confined conditions at the well screen and provided confidence in the assessment of hydraulic parameters. A short (time-lag-dependent) period of high-frequency shut-in monitoring can therefore enhance understanding of hydrogeological systems and potentially provide hydraulic parameters to improve conceptual/numerical groundwater models.  相似文献   

19.
海上二氧化碳(CO2)地质封存是中国应对滨海地区温室气体排放的重要举措,是实现“碳达峰、碳中和”目标不可或缺的关键技术。中国沿海地区工业发达、碳源丰富,近海盆地具有良好的储盖层物性和圈闭特征,封存潜力巨大,目前中国首个海上CO2地质封存示范工程已在南海珠江口盆地正式启动。CO2监测作为CCUS技术的重要组成部分,贯穿CO2地质封存的全生命周期,是确保封存工程安全性和合理性的必要手段。然而,中国海上CO2地质封存技术处于起步阶段,海上监测任务颇具挑战。文章回顾了国际上海上CO2地质封存的相关代表性研究工作以及示范项目案例,对监测指标、技术、监测方案等进行分析,提出海上CO2地质封存监测技术筛选优化方法和监测建议,旨在为中国海上CO2地质封存示范项目的开展提供参考依据。  相似文献   

20.
The Ketzin pilot site, led by the GFZ German Research Centre for Geosciences, is Europe??s longest-operating on-shore CO2 storage site with the aim of increasing the understanding of geological storage of CO2 in saline aquifers. Located near Berlin, the Ketzin pilot site is an in situ laboratory for CO2 storage in an anticlinal structure in the Northeast German Basin. Starting research within the framework of the EU project CO2SINK in 2004, Ketzin is Germany??s first CO2 storage site and fully in use since the injection began in June 2008. After 39?months of operation, about 53,000 tonnes of CO2 have been stored in 630?C650?m deep sandstone units of the Upper Triassic Stuttgart Formation. An extensive monitoring program integrates geological, geophysical and geochemical investigations at Ketzin for a comprehensive characterization of the reservoir and the CO2 migration at various scales. Integrating a unique field and laboratory data set, both static geological modeling and dynamic simulations are regularly updated. The Ketzin project successfully demonstrates CO2 storage in a saline aquifer on a research scale. The results of monitoring and modeling can be summarized as follows: (1) Since the start of the CO2 injection in June 2008, the operation has been running reliably and safely. (2) Downhole pressure data prove correlation between the injection rate and the reservoir pressure and indicates the presence of an overall dynamic equilibrium within the reservoir. (3) The extensive geochemical and geophysical monitoring program is capable of detecting CO2 on different scales and gives no indication for any leakage. (4) Numerical simulations (history matching) are in good agreement with the monitoring results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号