首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 714 毫秒
1.
A classification diagram was empirically developed for acid volcanic rocks formed in modern geodynamic settings and reflects their peculiar chemical features. The testing of the binary diagram Al2O3/(CaO + MgO)?Fe2O 3 Tot /(CaO + MgO) for the Late Cretaceous (Pimorsky, Siyanovsky, Kamensky, and Levosobolevsky) and Paleogene (Bogopolsky) Volcanic Complexes of East Sikhote Alin demonstrated its high efficiency for deciphering the tectonic settings of ancient acid volcanism.  相似文献   

2.
In the stratigraphic sequence of volcanic rocks in the Eastern Sikhote Alin, Maestrichtian-Danian predominantly andesitic volcanics are characterized by a boundary position between the Late Cretaceous subduction, mostly acid volcanic rocks and Cenozoic post-subduction basaltoids. Data on these rocks are important for elucidating the genesis of andesitic magmas, constraining and specifying the geodynamic evolutionary stages in this territory, and revealing the conditions under which the parental melts of these rocks were derived and evolved. Results of detailed mineralogical and geochemical studies, including ICP-MS analysis for trace elements point to a hybrid character of the andesitic volcanic rocks and an important role of fractional crystallization and crustal contamination in their genesis. Although geological evidence (variations in the style of volcanism, the composition of its products, and the character of their distribution) testifies to a change in the geodynamic environment in the Eastern Sikhote Alin in the Maestrichtian-Danian, geochemically the volcanics of this age range are typical subduction-related rocks with anomalously low concentrations of Nb and high contents of K, Ba, Rb, Pb, and U. The volcanic piles contain no adakites, which are indicators of the geodynamic environment in which slab windows are formed. The inconsistency between geological and geochemical indicators of the geodynamic environment suggests certain genetic features of the transitional magmatic series. The parental magmas of the andesitic volcanics were derived from the suprasubduction mantle wedge, which had been metasomatically recycled in the course of the dehydration and melting of the subducted oceanic slab. The increasing extension provided the possibility for the parental basaltic magmas to enter upper crustal levels, where they could interact with the host rocks and form hybrid andesitic melts.  相似文献   

3.
ABSTRACT

The northern zone of the Chon Aike Igneous Province, located in the North Patagonian Massif, exhibits extensive outcrops of Jurassic volcanic rocks of the Marifil Formation. In the Arroyo Verde area, the initial volcanic stage of the Marifil Formation, that we denominate V0 (192.6 ± 2.5 Ma), includes coulées, megabreccias and lapilli tuffs assigned to plinian-type volcanism. This magmatism was generated by cold-wet-oxidized magmas that resemble those produced in active continental margins and volcanic arcs. The second stage, located unconformably over the first, includes welded lava-like ignimbrites, massive lapilli tuff and rhyolitic lava flow that resemble the Snake River-type volcanism. The magma that produces this volcanic stage exhibit the characteristics of hot-dry-reduced magmas emplaced in intraplate continental environments associated with continental rifting. This stage coincides with the V1 volcanic episode early recorded in the Marifil Formation.  相似文献   

4.
Abstract: Seven zircon fission-track ages and 30 magnetic susceptibilities were measured on welded pyroclastic rocks from the Bogopol and Sijanov Groups of the Cretaceous to Paleogene volcanic rocks in the southeastern part of the eastern Sikhote Alin volcano-plutonic belt, Far East Russia. The fission-track ages range from 42. 7 Ma to 64. O Ma which indicate that both the groups are of Early Paleogene time. Two thirds of the samples from the Bogopol Group have high magnetic susceptibility values, more than 3 A- 10-3 SI unit, which imply that they are of the magnetite–series, whereas the samples from the Sijanov Group show 3 A- 10-3 to 8 A- 10-5 SI unit which suggest this group of probably the ilmenite-series.
The Paleogene age and high magnetic susceptibility of the Bogopol Group are quite similar to the Paleogene igneous rocks of the San'in belt, Southwest Japan. This suggests, taking accounts of the opening of the Japan Sea, that the eastern Sikhote Alin volcano-plutonic belt continued to the San'in Belt, and that the Paleogene igneous rocks along the Japan Sea coast of Northeast Japan were situated along the volcanic front of the eastern Sikhote Alin volcano-plutonic belt.  相似文献   

5.
Abstract: Age of magmatism and tin mineralization in the Khingan‐Okhotsk volcano–plutonic belt, including the Khingan, Badzhal and Komsomolsk tin fields, were reviewed in terms of tectonic history of the continental margin of East Asia. This belt consists mainly of felsic volcanic rocks and granitoids of the reduced type, being free of remarkable geomagnetic anomaly, in contrast with the northern Sikhote‐Alin volcano–plutonic belt dominated by oxidized‐type rocks and gold mineralization. The northern end of the Khingan‐Okhotsk belt near the Sea of Okhotsk, accompanied by positive geomagnetic anomalies, may have been overprinted by magmatism of the Sikhote‐Alin belt. Tin–associated magmatism in the Khingan‐Okhotsk belt extending over 400 km occurred episodically in a short period (9510 Ma) in the middle Cretaceous time, which is coeval with the accretion of the Kiselevka‐Manoma complex, the youngest accretionary wedge in the eastern margin of the Khingan‐Okhotsk accretionary terranes. The episodic magmatism is in contrast with the Cretaceous‐Paleogene long–lasted magmatism in Sikhote–Alin, indicating the two belts are essentially different arcs, rather than juxtaposed arcs derived from a single arc. The tin‐associated magmatism may have been caused by the subduction of a young and hot back‐arc basin, which is inferred from oceanic plate stratigraphy of the coeval accre‐tionary complex and its heavy mineral assemblage of immature volcanic arc provenance. The subduction of the young basin may have resulted in dominance of the reduced‐type felsic magmas due to incorporation of carbonaceous sediments within the accretionary complex near the trench. Subsequently, the back‐arc basin may have been closed by the oblique collision of the accretionary terranes in Sikhote–Alin, which was subjected to the Late Cretaceous to Paleogene magmatism related to another younger subduction system. These processes could have proceeded under transpressional tectonic regime due to oblique subduction of the paleo‐Pacific plates under Eurasian continent.  相似文献   

6.
The Proterozoic to Cambrian VanDieland microcontinent was accreted to mainland Australia at ca 400?Ma, and its northern tip, the Selwyn Block, forms the basement in central Victoria. Here, mainly Late Devonian, silicic magmas were derived from the Selwyn Block and intruded into the shallow crust. We use the phase petrology of Late Devonian, S-type rhyolitic ignimbrites and a xenolith of pelitic migmatite, together with Nd-model ages for the silicic magmatic rocks to constrain the lithological characteristics of the metasedimentary component of the Selwyn Block, to infer minimum depths and temperature conditions here in the Late Devonian, and the likely ages of the source rocks for the S-type magmas. The most abundant source rocks are inferred to be volcaniclastic metagreywackes, with minor metadacites, meta-andesites and metapelites. The metapelitic xenolith cannot have been the source for any of the silicic magmas but constrains the upper amphibolite-facies part of the Selwyn Block to depths around 17?km, where temperatures reached ~775?°C. The older ignimbrite magma was formed by partial melting at perhaps 770?°C and a depth of at least 33?km, while the younger ignimbrite magma formed at ~23?km and 900?°C. These depths suggest source rocks in the Paleoproterozoic to Mesoproterozoic lower parts of the Selwyn Block. Nd-model ages of the silicic magmatic rocks confirm a dominance of Mesoproterozoic to Paleoproterozoic sources. If the inferred rock types in the Mesoproterozoic formations were as current correlations suggest, the sources for the Late Devonian silicic magmas would have to lie in the undocumented Paleoproterozoic basement of the Selwyn Block. Rock types here must include andesitic to dacitic volcanic components as well as volcaniclastic greywackes and minor pelites, which suggests a continental arc setting. The Late Devonian magmatism in the region may record the progression from amphibolite- to granulite-facies conditions during post-orogenic extension, with heat advected to the crust by mantle-derived mafic magmas. These processes would have resulted in mafitisation of the deep Selwyn Block.  相似文献   

7.
Ignimbrites in the Devonian and Late Paleozoic volcanic belts in central Kazakhstan were produced in various geotectonic environments and are diverse in composition. The bulk composition of the Devonian ignimbrites is rhyolitic. The Eifelian rocks of the Chingiz island-arc system belong to the calc-alkaline series and are enriched in Zr, Nb, Y, and REE (predominantly LREE). The Frasnian ignimbrites that were formed in unusual island arcs of the Mediterranean type are ultrapotassic. Compared to the Eifelian ignimbrites, they bear lower concentrations of Zr, Nb, Y, and REE but are richer in Rb and Ba. Both rock varieties show clearly pronounced Eu minima and Ce anomalies. The Carboniferous and Permian ignimbrites were generated within a volcanic belt in a continental margin. The Carboniferous ignimbrites are mostly of dacite-rhyolite and sometimes of dacitic andesite composition. Compared to the Devonian ignimbrites, they are depleted in Zr, Nb, and Y at higher concentrations of Ba and low REE sums, which are notably dominated by LREE; their Eu minima are small, and they have no Ce anomalies. The Permian ignimbrites are predominantly of rhyolite composition. The Early Permian rocks have REE sums close to those in the Carboniferous rocks, but the former have clearly pronounced Eu minima and Ce anomalies. The Late Permian ignimbrites have total REE concentrations close to those in the Devonian ignimbrites, but the former are strongly enriched in LREE and have prominent Eu minima and Ce anomalies. The major-and trace-element composition of fiamme in all ignimbrite varieties varies depending on the relative age of the fiamme. The REE patterns of the fiamme differ from massif to massif, but their systematic changes from older to younger fiamme are similar. Along with the identity of the isotopic characteristics of whole-rock ignimbrite samples and fiamme of different ages in them, this testifies that the ignimbrites were formed not via the mixing of various melts but by the systematic evolution of a parental melts, which were different for different massifs.  相似文献   

8.
The Late Devonian Tolmie Igneous Complex (in north-eastern Victoria, Australia) contains S-type, intracaldera, rhyolitic ignimbrites with multiple generations of phenocrysts of biotite, garnet, cordierite and orthopyroxene; one unit also contains fayalitic olivine. Geothermometry and calculated phase relations indicate high-T deep- to mid-crustal origins for the magmas, with crystallisation at several levels. At least four separate magma groups make up the complex. Compositional variations within and between ignimbrites are adequately modelled by selective entrainment of peritectic garnet, ilmenite, orthopyroxene and plagioclase into the magmas. Neither crystal fractionation nor mafic-felsic magma mixing played a role. Chemical and isotope data suggest that the magma sources were once variably Ba-enriched arc greywackes with different proportions of clay. The deep origin of some of the Tolmie Complex magmas means that supracrustal rocks underlie parts of north-eastern Victoria at depths of around 35 km. This has important implications for understanding the region’s tectonic development.  相似文献   

9.
Based on textural and geochemical evidence, the existence of Late Precambrian rhyolitic volcanism related to the Cape Granite Suite is illustrated. Recrystallised rhyolitic ignimbrites represent the volcanic phase of a subvolcanic to volcanic sequence composed of rhyodacite to rhyolitic magma. Textural features including faimme, pumice fragments and glass shards provide unquivocal evidence for the volcanic origin of these rocks.  相似文献   

10.

The Early Devonian Bindook Volcanic Complex consists of a thick silicic volcanic and associated sedimentary succession filling the extensional Wollondilly Basin in the northeastern Lachlan Fold Belt. The basal part of the succession (Tangerang Formation) is exposed in the central and southeastern Wollondilly Basin where it unconformably overlies Ordovician rocks or conformably overlies the Late Silurian to Early Devonian Bungonia Limestone. Six volcanic members, including three new members, are now recognised in the Tangerang Formation and three major facies have been delineated in the associated sedimentary sequence. The oldest part of the sequence near Windellama consists of a quartz turbidite facies deposited at moderate water depths together with the shallow‐marine shelf Windellama Limestone and Brooklyn Conglomerate Members deposited close to the eastern margin of the basin. Farther north the shelf facies consists of marine shale and sandstone which become progressively more tuffaceous northwards towards Marulan. The Devils Pulpit Member (new unit) is a shallow‐marine volcaniclastic unit marking the first major volcanic eruptions in the region. The overlying shallow‐marine sedimentary facies is tuffaceous in the north, contains a central Ordovician‐derived quartzose (?deltaic) facies and a predominantly mixed facies farther south. The initial volcanism occurred in an undefined area north of Marulan. A period of non‐marine exposure, erosion and later deposition of quartzose rocks marked a considerable break in volcanic activity. Volcanism recommenced with the widespread emplacement of the Kerillon Tuff Member (new unit), a thick, non‐welded rhyolitic ignimbrite followed by dacitic welded ignimbrite and air‐fall tuff produced by a large magnitude eruption leading to caldera collapse in the central part of the Bindook Volcanic Complex, together with an additional small eruptive centre near Lumley Park. The overlying Kerrawarra Dacite Member (new unit) is lava‐like in character but it also has the dimensions of an ignimbrite and covers a large part of the central Bindook Volcanic Complex. The Carne Dacite Member is interpreted as a series of subvolcanic intrusions including laccoliths, cryptodomes and sills. The Tangerang Formation is overlain by the extensive crystal‐rich Joaramin Ignimbrite (new unit) that was erupted from an undefined centre in the central or northern Bindook Volcanic Complex. The volcanic units at Wombeyan and the Kowmung Volcaniclastics in the northwestern part of the complex are probably lateral time‐equivalents of the Tangerang Formation and Joaramin Ignimbrite. All three successions pre‐date the major subaerial volcanic plateau‐forming eruptions represented by the Barrallier Ignimbrite (new unit). The latter post‐dated folding and an extensive erosional phase, and unconformably overlies many of the older units in the Bindook Volcanic Complex. This ignimbrite was probably erupted from a large caldera in the northern part of the complex and probably represents surface expressions of part of the intruding Marulan Batholith. The final volcanic episode is represented by the volcanic units at Yerranderie which formed around a crater at the northern end of the exposed Bindook Volcanic Complex.  相似文献   

11.
New data are presented on the geology and composition of volcanic and intrusive rocks of the Orochenka caldera, which is located in the western part of the East Sikhote Alin volcanic belt. The SHRIMP and ICP MS age of zircons of volcanic and intrusive rocks, respectively, and the composition of the volcanic rocks allow comparison of these complexes with volcanic rocks of the eastern part of the volcanic structure. New data indicate the period of transition between subduction to transform regimes.  相似文献   

12.
The results of study of the volcanic rocks of the Khabarovsk accretionary complex, a fragment of the Jurassic accretionary prism of the Sikhote Alin orogenic belt (the southern part of the Russian Far East), are presented. The volcanic rocks are associated with the Lower Permian limestones in the mélange blocks and Triassic layered cherts. The petrography, petrochemistry, and geochemistry of the rocks are characterized and their geodynamic formation conditions are deduced. The volcanic rocks include oceanic plume basalts of two types: (i) OIB-like intraplate basalts formed on the oceanic islands and guyots in the Permian and Triassic and (ii) T(transitional)-MORBs (the least enriched basalts of the E-MORB type) formed on the midoceanic ridge in the Permian. In addition to basalts, the mélange hosts suprasubduction dacitic tuff lavas.  相似文献   

13.
The Cayconi district of the Cordillera de Carabaya, SE Peru, exposes a remnant of an upper Oligocene–Lower Miocene (22.2–24.4 Ma) volcanic field, comprising a diverse assemblage of S-type silicic and calc-alkaline basaltic to andesitic flows, members of the Picotani Group of the Central Andean Inner Arc. Basaltic flows containing olivine, plagioclase, clinopyroxene, ilmenite and glass, and glassy rhyolitic agglutinates with phenocrystic quartz, cordierite, plagioclase, sanidine, ilmenite and apatite, respectively exhibit mineralogical and geochemical features characteristic of medium-K mafic and Lachlan S-type silicic lavas. Cordierite-bearing dacitic agglomerates and lavas, however, are characterized by dispersed, melanocratic micro-enclaves and phenocrysts set in a fine-grained quartzo-feldspathic matrix. They contain a bimodal mica population, comprising phlogopite and biotite, as well as complexly zoned, sieve-textured plagioclase grains, sector-zoned cordierite, sanidine, quartz, irregular patches of replaced olivine, clinopyroxene and orthopyroxene and accessory phases including zircon, monazite, ilmenite and chromite. The coexistence of minerals not in mutual equilibrium and the growth/dissolution textures exhibited by plagioclase are features indicative of magmatic commingling and mixing. Trachytic-textured andesite flows interlayered with olivine+plagioclase–glomerophyric, calc-alkaline basalts have a phenocrystic assemblage of resorbed orthopyroxene and plagioclase and exhibit melanocratic groundmass patches of microphenocrystic phlogopite, Ca-rich sanidine, ilmenite and aluminous spinel. The mineralogical and mineral chemical relationships in both the dacites and the trachytic-textured andesites imply subvolcanic mixing between distinct ultrapotassic mafic melts, not represented by exposed rock types, and both the S-type silicic and calc-alkaline mafic magmas. Such mixing relationships are commonly observed in the Oligo-Miocene rocks of the Cordillera de Carabaya, suggesting that the S-type rocks in this area and, by extension, elsewhere derive their unusually high K2O, Ba, Sr, Cr and Ni concentrations from commingling and mixing with diverse, mantle-derived potassic mafic magmas.  相似文献   

14.
Early Cretaceous rhyolitic tuffs, widely distributed on Port Island, provide insights into the volcanism and tectonic setting of Hong Kong. In this paper we present petrological, geochronological and geochemical data of the rhyolitic tuff to constrain the diagenesis age and petrogenesis of the rocks, tectonic setting and early Cretaceous volcanism of Hong Kong. The first geochronological data show that the zircons in the volcanic rocks have U-Pb age of 141.1–139.5 Ma, which reveals that the rhyolitic tuff on Port Island was formed in the early Cretaceous (K1). Geochemically, these acid rocks, which are enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), and depleted in high field strength elements (HFSEs), belong to the high K calc-alkaline to shoshonite series with strongly-peraluminous characteristic. The geochemical analyses suggest that the volcanic rocks were derived from deep melting in the continental crust caused by basaltic magma underplating. Based on the geochemical analysis and previous studies, we concluded that the rhyolitic tuffs on Port Island were formed in a back-arc extension setting in response to the subduction of the Paleo-Pacific Plate beneath the Eurasian Plate.  相似文献   

15.
We present paleomagnetic results of Paleocene welded tuffs of the 53–50 Ma Bogopol Group from the northern region (46°N, 137°E) of the Sikhote Alin volcanic belt. Characteristic paleomagnetic directions with high unblocking temperature components above 560 °C were isolated from all the sites. A tilt-corrected mean paleomagnetic direction from the northern region is D=345.8°, I=49.9°, α95=14.6° (N=9). The reliability of the magnetization is ascertained through the presence of normal and reversed polarities. The mean paleomagnetic direction from the northern region of the Sikhote Alin volcanic belt reflects a counterclockwise rotation of 29° from the Paleocene mean paleomagnetic direction expected from its southern region. The counterclockwise rotation of 25° is suggested from the paleomagnetic data of the Kisin Group that underlies the Bogopol Group. These results establish that internal tectonic deformation occurred within the Sikhote Alin volcanic belt over the past 50 Ma. The northern region from 44.6° to 46.0°N in the Sikhote Alin volcanic belt was subjected to counterclockwise rotational motion through 29±17° with respect to the southern region. The tectonic rotation of the northern region is ascribable to relative motion between the Zhuravlevka terrane and the Olginsk–Taukhinsk terranes that compose the basements of the Sikhote Alin volcanic belt.  相似文献   

16.
The epithermal El Peñon gold–silver deposit consists of quartz–adularia veins emplaced within a late Upper Paleocene rhyolitic dome complex, located in the Paleocene–Lower Eocene Au–Ag belt of northern Chile. Detailed K–Ar and 40Ar/39Ar geochronology on volcano–plutonic rocks and hydrothermal minerals were carried out to constrain magmatic and hydrothermal events. The Paleocene to Lower Eocene magmatism in the El Peñon area is confined to a rhomb-shaped basin, which was controlled by N–S trending normal faults and both NE- and NW-trending transtensional fault systems. The earliest products of the basin-filling sequences comprise of Middle to Upper Paleocene (~59–55 Ma) welded rhyolitic ignimbrites and andesitic to dacitic lavas, with occasional dacitic dome complexes. Later, rhyolitic and dacitic dome complexes (~55–52 Ma) represent the waning stages of volcanism during the latest Upper Paleocene and the earliest Eocene. Lower Eocene porphyry intrusives (~48–43 Ma) mark the end of the magmatism in the basin and a change to a compressive tectonomagmatic regime. 40Ar/39Ar geochronology of hydrothermal adularia from the El Peñon deposit yields ages between 51.0±0.6 and 53.1±0.5 Ma. These results suggest that mineralization occurred slightly after the emplacement of the El Peñon rhyolitic dome at 54.5±0.6 Ma (40Ar/39Ar age) and was closely tied to later dacitic–rhyodacitic bodies of 52 to 53 Ma (K–Ar ages), probably as short-lived pulses related to single volcanic events.  相似文献   

17.
This paper presents the results of studying the Cenozoic volcanogenic-sedimentary cover of the Vanchinskaya depression of Sikhote Alin. It was established that, in terms of the taxonomic composition of the fossil plants, the basal part of the Cenozoic section is attributed to the Paleocene, while the overlaying coal-bearing sequence, to the Early Eocene. The geochronological (K-Ar) dating showed that the volcanic rocks intruding and overlaying the coal-bearing deposits are Middle Eocene in age: rhyolites—44.7 ± 1.0; trachyandesites—43.7 ± 1.4 Ma. The petrographic and geochemical characteristics of the volcanic and volcanogenic-sedimentary rocks and related zeolitites are described. The zeolitized rocks containing plant detritus differ in their extremely high contents of Y and HREE. The zeolitization of the volcanic glass in tuffs, tuffites, and perlites was caused by hydrothermal solutions that ascended along NW fault zones from the subsurface magmatic chamber.  相似文献   

18.
火山是唯一能够直接反映地球深部存在岩浆的地球动力学现象,对于地球气候演变和宜居性具有重要影响。相比年轻火山,古老火山因其活动过程完整、且可能剥蚀出露多阶段火山喷发产物及岩浆通道、岩浆房等,从而为揭示火山岩浆系统演化和火山活动过程提供重要的研究窗口。本文选择中国东南沿海晚白垩世长屿破火山为研究对象,对其开展火山地质、岩石学、年代学及地球化学研究,以期揭示其火山活动历史及其对中国东南沿海白垩纪古环境的启示意义。长屿火山出露面积约100km^(2),呈近圆形分布,具有较厚的火山地层厚度(总厚度约570m),类似于破火山内的火山堆积特点。由早至晚三个喷发阶段形成的流纹质角砾凝灰岩都显示了典型的火山碎屑流相的特点,发育典型的条纹斑状结构,但表现出不同的晶屑、玻屑及岩屑含量以及熔结程度等岩相学特征,反映火山喷发从初始到高峰、再到减弱的过程,最后岩浆沿火山通道侵出形成流纹斑岩穹隆,标志着火山活动的结束。长屿火山的火山碎屑流式喷发伴随着快速的岩浆房塌陷,以及缺少普林尼式空落堆积,反映了火山活动发生在伸展的构造背景。系统的LA-ICP-MS锆石U-Pb年代学研究获得了不同阶段火山岩一致的形成年龄(97~96Ma),暗示它们具有较短的形成时限,是由同期火山岩浆活动先后喷发形成的。长屿火山岩高的SiO_(2)含量(67%~76%)以及分异的锆石微量元素地球化学特征,表明喷发岩浆来自晶粥提取的熔体,并有晶粥来源晶体的混入。此外,我们在长屿火山岩中发现了南洋杉型丝炭化木(贝壳杉型木属),暗示晚白垩世中国东南沿海地区可能为温暖湿润的亚热带山地气候环境,表明中国东南沿海白垩纪大规模火山活动,在古武夷山脉以东地区形成了地形高耸的海岸山脉。  相似文献   

19.
在浙江庆元大面积白垩纪火山岩分布区,首次发现层位可归入毛弄组的早—中侏罗世火山岩,用LA-ICP-MS技术测得其中流纹英安岩和流纹质弱熔结凝灰岩中的锆石U-Pb年龄分别为176.0±1.2Ma和169.1±3.3Ma。结合闽北地区发现的中侏罗世火山岩,推断东南沿海地区在早—中侏罗世时已开始进入古太平洋板块俯冲的构造体制。  相似文献   

20.
华北北缘作为古亚洲洋闭合和演化的重要研究地区,一直受到学者们广泛关注。已有研究表明其晚古生代岩浆作用 强烈,但以侵入岩为主,缺乏同期火山岩的报道。文章对华北北缘内蒙古大青山地区同盛茂拴马桩组上部的火山岩进行详 细的LA-ICP-MS锆石U-Pb年代学、地球化学和Hf同位素研究。结果表明,同盛茂火山岩形成于晚石炭世末期(305 Ma), 火山岩岩性为流纹质弱熔结凝灰岩,岩石发生强的高岭石化,具有相对低的REE总量、弱的Eu负异常以及低的重稀土 (Y、Yb) 含量,样品中原位锆石的εHf(t)值为-8.3~-4.0。综合资料表明,火山岩可能是由华北克拉通加厚的基底经部分熔融 形成,并有幔源物质参与。结合最近报道的区域晚古生代火山岩研究资料,推测华北北缘晚古生代至少发生过两期火山活 动:分别为305~290 Ma和278~261 Ma,且峰期在272 Ma。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号