首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 676 毫秒
1.
Global mean sea level is a potentially sensitive indicator of climate change. Global warming will contribute to worldwide sea-level rise (SLR) from thermal expansion of ocean water, melting of mountain glaciers and polar ice sheets. A number of studies, mostly using tide-gauge data from the Permanent Service for Mean Sea Level, Bidston Observatory, England, have obtained rates of global SLR within the last 100 years that range between 0·3 and 3 mm yr?1, with most values concentrated between 1 and 2 mm yr?1. However, the reliability of these results has been questioned because of problems with data quality and physical processes that introduce a high level of spatial and temporal variability. Sources of uncertainty in the sea-level data include variations in winds, ocean currents, river runoff, vertical earth movements, and geographically uneven distribution of long-term records. Crustal motions introduce a major source of error. To a large extent, these can be filtered by employing palaeo-sea-level proxies, and geophysical modelling to remove glacio-isostatic changes. Ultimately, satellite geodesy will help resolve the inherent ambiguity between the land and ocean level changes recorded by tide gauges. Future sea level is expected to rise by ~ 1 m, with a ‘best-guess’ value of 48 cm by the year 2100. Such rates represent an acceleration of four to seven times over present rates. Local land subsidence could substantially increase the apparent SLR. For example, Louisiana is currently experiencing SLR trends nearly 10 times the global mean rate. These recently reduced SLR estimates are based on climate models that predict a zero to negative contribution to SLR from Antarctica. Most global climate models (GCMs) indicate an ice accumulation over Antarctica, because in a warmer world, precipitation will exceed ablation/snow-melt. However, the impacts of attritional processes, such as thinning of the ice shelves, have been downplayed according to some experts. Furthermore, not all climate models are in agreement. Opposite conclusions may be drawn from the results of other GCMs. In addition, the West Antarctic Ice Sheet is potentially subject to dynamic and volcanic instabilities that are difficult to predict. Because of the great uncertainty in SLR projections, careful monitoring of future sea-level trends by upgraded tide-gauge networks and satellite geodesy will become essential. Finally, because of the high spatial variability in crustal subsidence rates, wave climates and tidal regimes, it will be the set of local conditions (especially the relative sea-level rise), rather than a single global mean sea-level trend, that will determine each locality's vulnerability to future SLR.  相似文献   

2.
Meltwater from the Greenland Ice Sheet (GIS) has been a major contributor to sea level change in the recent past. Global and regional sea level variations caused by melting of the GIS are investigated with the finite element sea-ice ocean model (FESOM). We consider changes of local density (steric effects), mass inflow into the ocean, redistribution of mass, and gravitational effects. Five melting scenarios are simulated, where mass losses of 100, 200, 500, and 1000 Gt/yr are converted to a continuous volume flux that is homogeneously distributed along the coast of Greenland south of 75°N. In addition, a scenario of regional melt rates is calculated from daily ice melt characteristics. The global mean sea level modeled with FESOM increases by about 0.3 mm/yr if 100 Gt/yr of ice melts, which includes eustatic and steric sea level change. In the global mean the steric contribution is one order of magnitude smaller than the eustatic contribution. Regionally, especially in the North Atlantic, the steric contribution leads to strong deviations from the global mean sea level change. The modeled pattern mainly reflects the structure of temperature and salinity change in the upper ocean. Additionally, small steric variations occur due to local variability in the heat exchange between the atmosphere and the ocean. The mass loss has also affects on the gravitational attraction by the ice sheet, causing spatially varying sea level change mainly near the GIS, but also at greater distances. This effect is accounted for by using Green's functions.  相似文献   

3.
Calculations were performed with the Earth system model of intermediate complexity LOVECLIM to study the response of the Greenland and Antarctic ice sheets to sustained multi-millennial greenhouse warming. Use was made of fully dynamic 3D thermomechanical ice-sheet models bidirectionally coupled to an atmosphere and an ocean model. Two 3,000-year experiments were evaluated following forcing scenarios with atmospheric CO2 concentration increased to two and four times the pre-industrial value, and held constant thereafter. In the high concentration scenario the model shows a sustained mean annual warming of up to 10°C in both polar regions. This leads to an almost complete disintegration of the Greenland ice sheet after 3,000 years, almost entirely caused by increased surface melting. Significant volume loss of the Antarctic ice sheet takes many centuries to initiate due to the thermal inertia of the Southern Ocean but is equivalent to more than 4 m of global sea-level rise by the end of simulation period. By that time, surface conditions along the East Antarctic ice sheet margin take on characteristics of the present-day Greenland ice sheet. West Antarctic ice shelves have thinned considerably from subshelf melting and grounding lines have retreated over distances of several 100 km, especially for the Ross ice shelf. In the low concentration scenario, corresponding to a local warming of 3?C4°C, polar ice-sheet melting proceeds at a much lower rate. For the first 1,200 years, the Antarctic ice sheet is even slightly larger than today on account of increased accumulation rates but contributes positively to sea-level rise after that. The Greenland ice sheet loses mass at a rate equivalent to 35 cm of global sea level rise during the first 1,000 years increasing to 150 cm during the last 1,000 years. For both scenarios, ice loss from the Antarctic ice sheet is still accelerating after 3,000 years despite a constant greenhouse gas forcing after the first 70?C140 years of the simulation.  相似文献   

4.
In this review, the carbon dioxide problem is discussed, with special reference to the possible effects of a global warming on the ice sheets of Greenland and Antarctica. Instead of detailed projections of future climate and the consequences, the basic mechanisms are explained and illustrated with results described in the literature.It is concluded that a doubling of the atmospheric CO2 content (most likely to occur somewhere in the second half of the next century) will result in a globally-averaged warming of 2–4°C, and an intensification of the hydrological cycle. In the polar regions, this warming will be a few degrees larger and as a consequence the Greenland Ice Sheet will decrease in size. Antarctica, on the other hand, is expected to grow because of the increased snowfall. The instability of the West Antarctic Ice Sheet is also discussed and, although no conclusive prediction to its long-term response can be made, it is argued that on a short time scale (less than about 100 y) nothing dramatically wil happen to this part of Antarctica.  相似文献   

5.
Ice shelf breakups account for most mass loss from the Antarctic Ice Sheet as the consequence of the propagation of crevasses(or rift)in response to stress.Thus there is a pressing need for detecting crevasses’location and depth,to understand the mechanism of calving processes.This paper presents a method of crevasse detection using the ICESat-1/GLAS data.A case study was taken at the Amery Ice Shelf of Antarctica to verify the accuracy of geo-location and depth of crevasses detected.Moreover,based on the limited crevasse points,we developed a method to detect the peak stress points which can be used to track the location of the crack tips and to identify the possible high-risk area where an ice shelf begins to break up.The spatial and temporal distribution of crevasse depth and the spatial distribution of peak stress points of the Amery Ice Shelf were analyzed through 132 tracks in 16 campaign periods of ICESat-1/GLAS between 2003 and 2008.The results showed that the depth of the detected crevasse points ranged from 2 to 31.7 m,which were above the sea level;the crevasse that advected downstream to the front edge of an ice shelf has little possibility to directly result in breakups because the crevasse depth did not show any increasing trend over time;the local stress concentration is distributed mainly in the suture zones on the ice shelves.  相似文献   

6.
7.
We have used satellite solutions to the low degree zonal harmonics of the Earth's gravitational potential, and rates of surface accumulation to partially constrain, by means of repeated forward solution, the time rates of thickness change over the Antarctic and Greenland Ice Sheets (dTA and dTG respectively). In addition to the observed zonal coefficients j2 through j5 we impose only one other constraint: That dTA and dTG are proportional to surface accumulation. The lagged response of the Earth to secular changes in ice thickness spanning recent time periods (up to 2000 years before present) and the late Pleistocene is accounted for by means of two viscoelastic rebound models. The sea level contributions from the ice sheets, calculated from dTA and dTG, lower mantle viscosity, and the start time of present-day thickness change are all variables subject to the constraints. For a given set of post glacial rebound inputs, a family of solutions that have similar characteristics and that agree well with observation are obtained from the large number of forward solutions. The off axis position of the Greenland ice sheet makes its contribution to the low degree zonal coefficients less sensitive to the spatial details of the mass balance than to the overall sea level contribution. dTG is therefore modeled as surface mass balance offset by a uniform and constant mass loss. Though dTA varies widely with choices of input parameters, the combined sea level contribution from both ice sheets is reasonably well constrained by the gravity coefficients, and is predicted to range from -0.9 to +1.6 mm yr-1. The sign of the slope of the low degree zonal coefficients versus sea level contribution for Greenland is positive, but for Antarctica, the sign of the slope is positive for even degree and negative for odd degree harmonics. By using this property of the zonal coefficients, it is possible to determine the individual sea level contributions for Greenland and Antarctica. They vary from -0.6 to +0.3 mm yr-1 for the Greenland Ice Sheet, and from -0.3 to +1.3 mm yr-1 for the Antarctic Ice Sheet.  相似文献   

8.
联合GRACE和ICESat数据分离南极冰川均衡调整(GIA)信号   总被引:1,自引:1,他引:0       下载免费PDF全文
2002年发射的GRACE重力卫星为南极冰盖质量平衡提供了一种新的测量方式,但由于南极GIA模型的不确定较大,进而影响GRACE结果的可靠性.本文联合2003—2009年的GRACE和ICESat等数据实现了南极GIA信号的分离,联合方法所分离的GIA不依赖于不确定性很大的冰负荷等假设模型,而是直接基于卫星观测数据估算而来的,具有更大的可靠性.在分离过程中,本文提出了冰流速度加权改正法和GPS球谐拟合改正法对GIA结果进行精化,同时引入了南极GPS观测站的位移数据对分离的GIA进行详细的评估和验证,GPS验证表明经过冰流速度加权和GPS球谐拟合双改正后的GIA结果精度明显得到提高.最后本文利用所分离的GIA对GRACE和ICESat结果进行了改正,得到2003—2009年南极冰盖质量变化的趋势为-66.7±54.5 Gt/a(GRACE)和-77.2±21.5Gt/a(ICESat),相比采用其他的GIA模型,本文的GIA结果使GRACE和ICESat这两种不同观测技术得到的南极冰盖质量变化结果更加趋于一致.  相似文献   

9.
基于多源遥感数据的南极冰架与海岸线变化监测   总被引:2,自引:0,他引:2       下载免费PDF全文
综合使用光学与微波遥感数据,提出了南极冰架变化连续监测的系统方法,包括基于MOA的冰架基准图生成,基于相似性测度的影像匹配,及基于阈值与分水岭变换的图像分割方法.使用该方法获取了2002-2011年初全南极18个主要冰架的变化数据,并归纳了南极冰架变化的三种类别.进一步得出,近年间崩解变化为主的冰架均处于西南极,并主要集中在南极半岛;扩展变化为主的冰架集中在东南极;南极三大冰架的扩展变化明显,其中Amery冰架将在近年发生较大崩解.本研究首次获取了2002年初至2011年初每年一幅的动态的全南极海岸线数据,并得出近10年间南极海岸线扩展增加总量为5878 km2.  相似文献   

10.
Despite their harmful effects in the upper atmosphere, anthropogenic chlorofluorocarbons dissolved in seawater are extremely useful for studying ocean circulation and ventilation, particularly in remote locations. Because they behave as a passive tracer in seawater, and their atmospheric concentrations are well-mixed, well-known, and have changed over time, they are ideal for gaining insight into the oceanographic characteristics of the isolated cavities found under Antarctic ice shelves, where direct observations are difficult to obtain. Here we present results from a modeling study of air–sea chlorofluorocarbon exchange and ocean circulation in the Ross Sea, Antarctica. We compare our model estimates of oceanic CFC-12 concentrations along an ice shelf edge transect to field data collected during three cruises spanning 16 yr. Our model produces chlorofluorocarbon concentrations that are quite similar to those measured in the field, both in magnitude and distribution, showing high values near the surface, decreasing with depth, and increasing over time. After validating modeled circulation and air–sea gas exchange through comparison of modeled temperature, salinity, and chlorofluorocarbons with field data, we estimate that the residence time of water in the Ross Ice Shelf cavity is approximately 2.2 yr and that basal melt rates for the ice shelf average 10 cm yr−1. The model predicts a seasonal signature to basal melting, with highest melt rates in the spring and also the fall.  相似文献   

11.
利用ICESat数据确定格陵兰冰盖高程和体积变化   总被引:1,自引:0,他引:1       下载免费PDF全文
两极冰盖消融是造成海平面上升的重要原因,作为世界第二大冰盖,格陵兰冰盖消融速度在进入21世纪以后明显加快,引起了广泛关注.本文利用ICESat卫星激光测高数据,探讨了坡度改正的方法,通过改进平差模型解决了病态问题,并采用重复轨道方法计算了2003年9月至2009年10月间格陵兰冰盖的体积和高程变化趋势,对格陵兰冰盖各冰川流域系统的变化情况进行了详细分析.结果表明,格陵兰冰盖在这6年间平均高程变化趋势为-16.79±0.84cm·a^-1,体积变化速率为-301.37±15.16km^3·a^-1,体积流失主要发生在冰盖边缘,其中DS1、DS8等流域的体积损失正在加剧,而高程在2000m以上的冰盖内陆地区表现出高程积聚的状态,但增长速度明显减缓.与现有研究成果的对比表明,算法优化后的本文结果更具可靠性.  相似文献   

12.
全球变暖背景下的冰盖消融以及由此带来海平面上升日益明显,直接影响地球表面的陆地水质量平衡,以及固体地球瞬间弹性响应,研究冰盖质量变化的海平面指纹能够帮助深入了解未来海平面区域变化的驱动因素.本文基于海平面变化方程并考虑负荷自吸效应(SAL)与地球极移反馈的影响,借助美国德克萨斯大学空间研究中心(Center for Space Research,CSR)发布的2003年到2012年十年期间的GRACE重力场月模型数据(RL05),结合加权高斯平滑的区域核函数,反演得到格陵兰与南极地区冰盖质量变化的时空分布,并利用海平面变化方程计算得到了相对海平面的空间变化,结果表明:格陵兰与南极冰盖质量整体呈明显的消融趋势,变化速率分别为-273.31 Gt/a及-155.56 Gt/a,由此导致整个北极圈相对海平面降低,最高可达约-0.6 cm·a-1;而南极地区冰盖质量变化趋势分布不一,导致西南极近海相对海平面下降,而东南极地区近海相对海平面上升,最高可达约0.2 cm·a-1.远离质量负荷区域的全球海平面以上升趋势为主,平均全球相对海平面上升0.71 mm·a-1,部分远海地区相对海平面上升更加突出(例如北美与澳大利亚),高出全球平均海平面上升速率将近30%.此外,本文也重点探讨了GRACE监测冰盖消融结果中由于极地近海海平面变化导致的泄漏影响,经此项影响校正后的结果表明:海平面指纹效应对GRACE监测格陵兰与南极地区2003-2012期间整体冰盖消融速率的贡献分别为约3%与9%,建议在后期利用GRACE更精确地估算研究区冰盖质量变化时,应考虑海平面指纹效应的渗透影响.  相似文献   

13.
利用ICESat数据解算南极冰盖冰雪质量变化   总被引:5,自引:4,他引:1       下载免费PDF全文
南极冰盖冰雪质量变化反映了全球气候变化,并且直接影响着全球海平面变化.ICESat测高卫星的主要任务之一就是要确定南北两极冰盖的质量变化情况并评估其对全球海平面变化的影响.本文利用2003年10月至2008年12月的ICESat测高数据,针对南极DEM分辨率有限的特殊性,通过求解坡度改正值,解决重复轨道地面脚点不重合的问题,计算了南极大陆(86°S以北区域,后文所述南极冰盖均不包括86°S以南区域)在这5年里的冰雪质量变化情况,得到东南极冰盖的质量变化为-18±20Gt/a,西南极-26±6Gt/a,南极冰盖的冰雪质量变化为-44±21Gt/a,对全球海平面上升的影响约为0.12mm·a~(-1).解算结果表明,南极冰盖质量亏损主要集中在西南极阿蒙森海岸附近冰川以及东南极波因塞特角区域.  相似文献   

14.
The landscape of Antarctica, hidden beneath kilometre-thick ice in most places, has been shaped by the interactions between tectonic and erosional processes. The flow dynamics of the thick ice cover deepened pre-formed topographic depressions by glacial erosion, but also preserved the subglacial landscapes in regions with moderate to slow ice flow. Mapping the spatial variability of these structures provides the basis for reconstruction of the evolution of subglacial morphology. This study focuses on the Jutulstraumen Glacier drainage system in Dronning Maud Land, East Antarctica. The Jutulstraumen Glacier reaches the ocean via the Jutulstraumen Graben, which is the only significant passage for draining the East Antarctic Ice Sheet through the western part of the Dronning Maud Land mountain chain. We acquired new bed topography data during an airborne radar campaign in the region upstream of the Jutulstraumen Graben to characterise the source area of the glacier. The new data show a deep relief to be generally under-represented in available bed topography compilations. Our analysis of the bed topography, valley characteristics and bed roughness leads to the conclusion that much more of the alpine landscape that would have formed prior to the Antarctic Ice Sheet is preserved than previously anticipated. We identify an active and deeply eroded U-shaped valley network next to largely preserved passive fluvial and glacial modified landscapes. Based on the landscape classification, we reconstruct the temporal sequence by which ice flow modified the topography since the beginning of the glaciation of Antarctica.  相似文献   

15.
Changes of mean annual net accumulation at the surface on the grounded ice sheets of East Antarctica, West Antarctica and Greenland in response to variations in sea ice extent are estimated using grid-point values 100 km apart. The data bases are assembled principally by bilinear interpolation of remotely sensed brightness temperature (Nimbus-5 ESMR, Nimbus-7 SMMR), surface temperature (Nimbus-7 THIR), and surface elevation (ERS-1 radar altimeter). These data, complemented by field data where remotely sensed data are not available, are used in multivariate analyses in which mean annual accumulation (derived from firn emissivity) is the dependent variable; the independent variables are latitude, surface elevation, mean annual surface temperature, and mean annual distance to open ocean (as a source of energy and moisture). The last is the shortest distance measured between a grid point and the mean annual position of the 10% sea ice concentration boundary, and is used as an index of changes in sea ice extent as well as of mean concentration. Stepwise correlation analyses indicate that variations in sea ice extent of ± 50 km would lead to changes in accumulation inversely of ± 4% on East Antarctica, ± 10% on West Antarctica, and ±4% on Greenland. These results are compared with those obtained in a previous study using visually interpolated values from contoured compilations of field data; they substantiate the findings for the Antarctic ice sheets (±4% on East Antarctica, ±9% in West Antarctica), and suggest a reduction by one half of the probable change of accumulation on Greenland (from ±8%). The results also suggest a reduction of the combined contribution to sea level variability to ±0.19 mm a-1 (from ±0.22 mm a-1).  相似文献   

16.
Thirteen years of GRACE data provide an excellent picture of the current mass changes of Greenland and Antarctica, with mass loss in the GRACE period 2002–2015 amounting to 265 ± 25 GT/year for Greenland (including peripheral ice caps), and 95 ± 50 GT/year for Antarctica, corresponding to 0.72 and 0.26 mm/year average global sea level change. A significant acceleration in mass loss rate is found, especially for Antarctica, while Greenland mass loss, after a corresponding acceleration period, and a record mass loss in the summer of 2012, has seen a slight decrease in short-term mass loss trend. The yearly mass balance estimates, based on point mass inversion methods, have relatively large errors, both due to uncertainties in the glacial isostatic adjustment processes, especially for Antarctica, leakage from unmodelled ocean mass changes, and (for Greenland) difficulties in separating mass signals from the Greenland ice sheet and the adjacent Canadian ice caps. The limited resolution of GRACE affects the uncertainty of total mass loss to a smaller degree; we illustrate the “real” sources of mass changes by including satellite altimetry elevation change results in a joint inversion with GRACE, showing that mass change occurs primarily associated with major outlet glaciers, as well as a narrow coastal band. For Antarctica, the primary changes are associated with the major outlet glaciers in West Antarctica (Pine Island and Thwaites Glacier systems), as well as on the Antarctic Peninsula, where major glacier accelerations have been observed after the 2002 collapse of the Larsen B Ice Shelf.  相似文献   

17.
鉴于卫星测高技术在南极周边海域会受到海面浮冰影响,且在利用测高序列分析海平面周期性动态变化时还会受到潮汐周期混叠效应的影响,为此,本文开展了基于GPS和验潮数据联合的南极大陆附近海域从1994-2014年间海平面的绝对变化研究.研究结果显示:在围绕南极大陆及附近海域的15个验潮站中,海平面绝对变化速度最大的是Diego Ramirez验潮站,达到11.10±0.04 mm·a-1;在西南极南极半岛的德雷克海峡,海平面变化最为活跃,变化均值在8.31±0.05 mm·a-1;在东南极,从Syowa站依次到Casey站,海平面的绝对变化速度相对平稳,四个潮位站海平面变化均值为3.35±0.04 mm·a-1;在罗斯冰架右下侧的罗斯岛附近,由于冰川崩解入海导致Scott Base站处的海平面上升速度较快,达到了9.61±0.07 mm·a-1.综合15个验潮站计算结果可得南极半岛德雷克海峡和罗斯岛附近海域,海平面绝对变化速度要高于同期南大洋海平面绝对变化速度,而东南极4个潮位站海平面绝对变化均值则与其相当.这也进一步反映了南极不同海域间海平面变化的差异性,相比较于对南大洋海平面变化的一个整体研究,分区研究海平面变化更具针对性,能更好地了解南极不同区域冰盖、冰架崩解和消融的情况.  相似文献   

18.
The surface mass balance for Greenland and Antarctica has been calculated using model data from an AMIP-type experiment for the period 1979?C2001 using the ECHAM5 spectral transform model at different triangular truncations. There is a significant reduction in the calculated ablation for the highest model resolution, T319 with an equivalent grid distance of ca 40?km. As a consequence the T319 model has a positive surface mass balance for both ice sheets during the period. For Greenland, the models at lower resolution, T106 and T63, on the other hand, have a much stronger ablation leading to a negative surface mass balance. Calculations have also been undertaken for a climate change experiment using the IPCC scenario A1B, with a T213 resolution (corresponding to a grid distance of some 60?km) and comparing two 30-year periods from the end of the twentieth century and the end of the twenty-first century, respectively. For Greenland there is change of 495?km3/year, going from a positive to a negative surface mass balance corresponding to a sea level rise of 1.4?mm/year. For Antarctica there is an increase in the positive surface mass balance of 285?km3/year corresponding to a sea level fall by 0.8?mm/year. The surface mass balance changes of the two ice sheets lead to a sea level rise of 7?cm at the end of this century compared to end of the twentieth century. Other possible mass losses such as due to changes in the calving of icebergs are not considered. It appears that such changes must increase significantly, and several times more than the surface mass balance changes, if the ice sheets are to make a major contribution to sea level rise this century. The model calculations indicate large inter-annual variations in all relevant parameters making it impossible to identify robust trends from the examined periods at the end of the twentieth century. The calculated inter-annual variations are similar in magnitude to observations. The 30-year trend in SMB at the end of the twenty-first century is significant. The increase in precipitation on the ice sheets follows closely the Clausius-Clapeyron relation and is the main reason for the increase in the surface mass balance of Antarctica. On Greenland precipitation in the form of snow is gradually starting to decrease and cannot compensate for the increase in ablation. Another factor is the proportionally higher temperature increase on Greenland leading to a larger ablation. It follows that a modest increase in temperature will not be sufficient to compensate for the increase in accumulation, but this will change when temperature increases go beyond any critical limit. Calculations show that such a limit for Greenland might well be passed during this century. For Antarctica this will take much longer and probably well into following centuries.  相似文献   

19.
As fundamental parameters of the Antarctic Ice Sheet, ice thickness and subglacial topography are critical factors for studying the basal conditions and mass balance in Antarctica. During CHINARE 24 (the 24th Chinese National Antarctic Research Expedition, 2007/08), the research team used a deep ice-penetrating radar system to measure the ice thickness and subglacial topography of the “Chinese Wall” around Kunlun Station, East Antarctica. Preliminary results show that the ice thickness varies mostly from 1600 m to 2800 m along the “Chinese Wall”, with the thickest ice being 3444 m, and the thinnest ice 1255 m. The average bedrock elevation is 1722 m, while the minimum is just 604 m. Compared with the northern side of the ice divide, the ice thickness is a little greater and the subglacial topography lower on the southern side, which is also characterized by four deep valleys. We found no basal freeze-on ice in the Gamburtsev Subglacial Mountains area, subglacial lakes, or water bodies along the “Chinese Wall”. Ice thickness and subglacial topography data extracted from the Bedmap 2 database along the “Chinese Wall” are consistent with our results, but their resolution and accuracy are very limited in areas where the bedrock fluctuates intensely. The distribution of ice thickness and subglacial topography detected by ice-penetrating radar clarifies the features of the ice sheet in this “inaccessible” region. These results will help to advance the study of ice sheet dynamics and the determination of future locations of the GSM’s geological and deep ice core drilling sites in the Dome A region.  相似文献   

20.
Volcanic glass shards from three tephra layers at 788, 1457, 1711 m depth in the 2164-m Byrd Station ice core from the West Antarctic Ice Sheet were analysed by electron microprobe. Glass shards within each tephra layer are homogeneous and have peralkaline trachyte compositions. Mt. Takahe, 450 km north-northwest of the drill site is considered the most likely eruptive source, although Toney Mountain, 460 km to the north is also a possible source. Tephra layers in ice cores from the West Antarctic ice sheet may offer a valuable tool for stratigraphic correlation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号