首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Roger H. Mitchell   《Lithos》2004,76(1-4):551-564
Liquidus and sub-liquidus phase relationships are reported for melts formed from an aphanitic kimberlite composition crystallized at 5–12 GPa and 900–1400 °C. The liquidus phase over the pressure range investigated is forsteritic olivine. This is followed with decreasing temperature by olivine plus garnet as the initial sub-liquidus solid phase assemblage. Supra-solidus assemblages consist of olivine+garnet+clinopyroxene+Mg-ilmenite+liquid at 5–7 GPa or olivine+garnet+clinopyroxene+hematite–ilmenite solid solutions (+/−perovskite)+liquid at 8–12 GPa. Phlogopite forms as a near-solidus phase only at 900 °C and 6 GPa. Orthopyroxene does not form at any temperature and pressure. All garnets formed at 6–7 GPa are Ti-rich almandine–grossular–pyrope solid solutions and not Cr-pyrope, whereas garnets formed above 8 GPa are Ti- and Fe3+-rich and have no natural counterparts. Quenched liquids are represented by magnesite at 10–12 GPa and Mg–Ca-carbonates at lower pressures. In addition to forming discrete crystals, Mg-ilmenite and hematite–ilmenite solid solutions occur as lamellar intergrowths that are identical in texture to naturally occurring intergrowths. Mg-ilmenite compositions at 6–7 GPa are similar to those of the natural occurrences, whereas clinopyroxenes are richer in Ca. The effects of graphite versus platinum capsules on the oxygen fugacity of the experimental charges and the composition of the olivine, clinopyroxene, Fe–Ti-oxides and garnets formed are described. These experimental data are interpreted to indicate that kimberlite magmas are unlikely to be formed by very small degrees of partial melting of a simple homogeneous carbonated garnet lherzolite mantle. It is proposed that kimberlite magmas form by extensive partial melting of metasomatized mantle, i.e. mineralogically complex carbonate-bearing veins in a lherzolitic/harzburgitic substrate, and that lamellar ilmenite–clinopyroxene intergrowths represent the products of non-equilibrium growth in kimberlite magma.  相似文献   

2.
Anhydrous partial melting experiments, at 10 to 30 kbar from solidus to near liquidus temperature, have been performed on an iron-rich martian mantle composition, DW. The DW subsolidus assemblage from 5 kbar to at least 24 kbar is a spinel lherzolite. At 25 kbar garnet is stable at the solidus along with spinel. The clinopyroxene stable on the DW solidus at and above 10 kbar is a pigeonitic clinopyroxene. Pigeonitic clinopyroxene is the first phase to melt out of the spinel lherzolite assemblage at less than 20°C above the solidus. Spinel melts out of the assemblage about 50°C above the solidus followed by a 150° to 200°C temperature interval where melts are in equilibrium with orthopyroxene and olivine. The temperature interval over which pigeonitic clinopyroxene melts out of an iron-rich spinel lherzolite assemblage is smaller than the temperature interval over which augite melts out of an iron-poor spinel lherzolite assemblage. The dominant solidus assemblage in the source regions of the Tharsis plateau, and for a large percentage of the martian mantle, is a spinel lherzolite.  相似文献   

3.
Six crystalline mixtures, picrite, olivine-rich tholeiite, nepheline basanite, alkali picrite, olivine-rich basanite, and olivine-rich alkali basalt were recrystallized at pressures to 40 kb, and the phase equilibria and sequences of phases in natural basaltic and peridotitic rocks were investigated.The picrite was recrystallized along the solidus to the assemblages (1) olivine+orthopyroxene+ clinopyroxene +plagioclase+spinel below 13 kb, (2) olivine+orthopyroxene+clinopyroxene+spinel between 13 kb and 18 kb, (3) olivine+orthopyroxene+clinopyroxene+ garnet+spinel between 18 kb and 26 kb, and (4) olivine+clinopyroxene+garnet above 26 kb. The solidus temperature at 1 atm is slightly below 1,100° and rises to 1,320° at 20 kb and 1,570° at 40 kb. Olivine is the primary phase crystallizing from the melt at all pressures to 40 kb.The olivine-rich tholeiite was recrystallized along the solidus into the assemblages (1) olivine+ clinopyroxene+plagioclase+spinel below 13 kb, (2) clinopyroxene+orthopyroxene+ spinel between 13 kb and 18 kb, (3) clinopyroxene+garnet+spinel above 18 kb. The solidus temperature is slightly below 1,100° at 1 atm, 1,370° at 20 kb, and 1,590° at 40 kb. The primary phase is olivine below 20 kb but is orthopyroxene at 40 kb.In the nepheline basanite, olivine is the primary phase below 14 kb, but clinopyroxene is the first phase to appear above 14 kb. In the alkali-picrite the primary phase is olivine to 40 kb. In the olivine-rich basanite, olivine is the primary phase below 35 kb and garnet is the primary phase above 35 kb. In the olivine-rich alkali basalt the primary phase is olivine below 20 kb and is garnet at 40 kb.Mineral assemblages in a granite-basalt-peridotite join are summarized according to reported experimental data on natural rocks. The solidus of mafic rock is approximately given by T=12.5 P Kb+1,050°. With increasing pressure along the solidus, olivine disappears by reaction with plagioclase at 9 kb in mafic rocks and plagioclase disappears by reaction with olivine at 13 kb in ultramafic rocks. Plagioclase disappears at around 22 kb in mafic rocks, but it persists to higher pressure in acidic rocks. Garnet appears at somewhat above 18 kb in acidic rocks, at 17 kb in mafic rocks, and at 22 kb in ultramafic rocks.The subsolidus equilibrium curves of the reactions are extrapolated according to equilibrium curves of related reactions in simple systems. The pyroxene-hornfels and sanidinite facies is the lowest pressure mineral facies. The pyroxene-granulite facies is an intermediate low pressure mineral facies in which olivine and plagioclase are incompatible and garnet is absent in mafic rocks. The low pressure boundary is at 7.5 kb at 750° C and at 9.5 kb at 1,150° C. The high pressure boundary is 8.0 kb at 750° C and 15.0 kb at 1,150° C. The garnet-granulite facies is an intermediate high pressure facies and is characterized by coexisting garnet and plagioclase in mafic rocks. The upper boundary is at 10.3 kb at 750° C and 18.0 kb at 1,150° C. The eclogite facies is the highest pressure mineral facies, in which jadeite-rich clinopyroxene is stable.Compositions of minerals in natural rocks of the granulite facies and the eclogite facies are considered. Clinopyroxenes in the granulite-facies rocks have smaller jadeite-Tschermak's molecule ratios and higher amounts of Tschermak's molecule than clinopyroxenes in the eclogite-facies rocks. The distribution coefficients of Mg between orthopyroxene and clinopyroxene are normally in the range of 0.5–0.6 in metamorphic rocks in the granulite facies. The distribution coefficients of Mg between garnet and clinopyroxene suggest increasing crystallization temperature of the rocks in the following order: eclogite in glaucophane schist, eclogite and granulite in gneissic terrain, garnet peridotite, and peridotite nodules in kimberlite.Temperatures near the bottom of the crust in orogenic zones characterized by kyanitesillimanite metamorpbism are estimated from the mineral assemblages of metamorphic rocks in Precambrian shields to be about 700° C at 7 kb and 800° C at 9 kb, although heat-flow data suggest that the bottom of Precambrian shield areas is about 400° C and the eclogite facies is stable.The composition of liquid which is in equilibrium with peridotite is estimated to be close to tholeiite basalt at the surface pressure and to be picrite at around 30 kb. The liquid composition becomes poorer in normative olivine with decreasing pressure and temperature.During crystallization at high pressure, olivine and orthopyroxene react with liquid to form clinopyroxene, and a discontinuous reaction series, olivine orthopyroxene clinopyroxene is suggested. By fractional crystallization of pyroxenes the liquid will become poorer in SiO2. Therefore, if liquid formed by partial melting of peridotite in the mantle slowly rises maintaining equilibrium with the surrounding peridotite, the liquid will become poorer in MgO by crystallization of olivine, and tholeiite basalt magma will arrive at the surface. On the other hand, if the liquid undergoes fractional crystallization in the mantle, the liquid may change in composition to alkali-basalt magma and alkali-basalt volcanism may be seen at a late stage of volcanic activity.Publication No. 681, Institute of Geophysics and Planetary Physics, University of California, Los Angeles.  相似文献   

4.
Melting experiments were performed on a natural mica-amphibole-rutile-ilmenite-clinopyroxene (MARID) sample from the Kaapvaal mantle lithosphere (AJE137) at 20 to 35 kbar and 800 to 1450°C. A solidus was determined at 1260°C and 30 kbar above which phlogopite, clinopyroxene and olivine were stable with an alkali-rich silicate melt. Olivine is the only crystallizing phase just below the liquidus of the AJE137 bulk composition and K-richterite was only stable in the subsolidus region ( 1100°C at 30 kbar). These results are consistent with previous studies in more simple systems. In experiments with 10 wt% added water the solidus was depressed by ca. 300°C and K-richterite was stabilized above this solidus. MARIDs represent a potential lowtemperature component in the lithospheric mantle beneath the Kaapvaal Craton of southern Africa. The addition of > 10 wt% water (with less than a 120°C rise of temperature above the geotherm) to this mantle region would create conditions for the melting of this component. This may then be incorporated in any continental flood basalt parent magma that traverse this lithospheric mantle. The derivation of MARIDs from a silicate melt of their bulk composition, even if water saturated, is considered unlikely as such small degree melts could not sustain the elevated liquidus temperatures required (> 1200°C at 30 kbar) in a cold (< 800°C at 30 kbar) mantle lithosphere. MARID xenoliths may be produced by the interaction of an alkali-rich fluid with a peridotite or as the residue to a group II kimberlitic parent magma that has undergone fractionation of olivine and the exsolution of a carbonatite component.  相似文献   

5.
The water-undersaturated melting relationships of a mafic, peralkaline, potassic madupite (with about 3% H2O as shown by chemical analysis) from the Leucite Hills, Wyoming, have been studied at pressures up to 30 kb. At low pressures (<5 kb) leucite is the dominant liquidus phase, but it is replaced at higher pressures by clinopyroxene plus olivine (<5–7 kb), clinopyroxene (7–12.5 kb), clinopyroxene plus minor spinel (12.5–17.5 kb), and clinopyroxene alone (17.5–> 30 kb). At all pressures there is a reaction relationship with falling temperature between melt, olivine and probably clinopyroxene to yield phlogopite. Apatite is stable within the melting interval to pressures above 25 kb. Electron microprobe analyses demonstrate that the clinopyroxene is diopsidic, with low aluminium and titanium contents. Pressure has relatively little effect on the composition of the pyroxene. Phlogopite is also aluminium-poor and has only a moderate titanium content. The experimental results indicate that madupite is not the partial melting product of hydrous lherzolite or garnet lherzolite in the upper mantle and it seems improbable that it is derived by melting of mantle peridotite with a mixed H2O-CO2 volatile component. Madupite could, however, be the partial melting product of mica-pyroxenite or mica-olivine-pyroxenite in the upper mantle. It is pointed out that the chemistry of some potassium-rich volcanics may have been affected by volatile transfer and other such processes during eruption and that experimental studies of material affected in this way have little bearing upon the genesis of potassic magmas. Finally, the experimental results enable constraints to be placed upon the P-T conditions of the formation of richterite-bearing mica nodules found in kimberlites and associated rocks. Maximum conditions are 25 kb and 1,100 ° C.  相似文献   

6.
An olivine basalt, a tonalite (andesite), a granite (rhyolite), and a red clay (pelagic sediment) were reacted, with known quantities of water in sealed noble metal capsules, in a piston-cylinder apparatus at 30 kb pressure. For the pelagic sediment, with H2O+=7.8% and no additional water, the liquidus temperature is 1240°C, the primary phases are garnet and kyanite. The subsolidus phase assemblage is phengite mica+garnet+clinopyroxene+coesite+kyanite. With 5 wt.% water added, the liquidus temperatures and primary phases for the calc-alkaline rocks are 1280°-1180°-1080°, garnet+clinopyroxene, garnet, and quartz respectively. Garnet and clinopyroxene occur throughout the melting interval of the olivine tholeiite for all water contents. Garnet is joined by clinopyroxene 80° below the andesite plus 5% H2O liquidus, quartz is joined by clinopyroxene 180° below the rhyolite plus 5% H2O liquidus. The subsolidus phase assemblage is garnet+clinopyroxene+coesite+minor kyanite for all the calc-alkaline compositions. We conclude that calc-alkaline andesites and rhyolites are not equilibrium partial melting pruducts of subducted oceanic crust consisting of olivine tholeiite basalt and siliceous sediments. Partial melting in subduction zones produces broadly acid and intermediate liquids, but these liquids lie off the calc-alkaline basalt-andesite-rhyolite join and must undergo modification at lower pressures to produce calcalkaline magmas erupted in overlying island arcs.  相似文献   

7.
The stability and partial melting of synthetic pargasite in the presence of enstatitic orthopyroxene (opx), forsterite, diopsidic clinopyroxene (cpx), plagioclase (An50), and water has been studied in the range of 0.4–6.0 kb and 750–1000°C in the system Na2O-CaO-MgO-Al2O3-SiO2-H2O with a fixed bulk composition of pargasite+5 opx. The addition of orthopyroxene effectively reduces the stability field of pargasite by approximately 200°C at 1 kb. The invariant point involving pargasite coexisting with water-saturated liquid and anhydrous phase shifts from about 0.85 kb and 1025°C to 2.5±0.5 kb and 925±25°C with the addition of opx. Based on the solidus mineral assemblage and direct chemical analysis of quenched glass, the vapor-saturated liquid has a composition close to that of intermediate plagioclase. A layered silicate, interpreted to be Na-phlogopite, has an upper-thermal stability that nearly equals that of pargasite in the field of partial melting and coexists with liquid, pargasite, cpx, and forsterite at 6 kb, 1000°C. These results support the hypothesis that mantle metasomatism could involve formation of pargasitic amphibole from a silicate melt at depths as shallow as 8–10 km.  相似文献   

8.
Two kimberlite pipes in Elliott County contain rare ultramafic xenoliths and abundant megacrysts of olivine (Fo85–93), garnet (0.21–9.07% Cr2O3), picroilmenite, phlogopite, Cr-poor clinopyroxene (0.56–0.88% Cr2O3), and Cr-poor orthopyroxene (<0.03–0.34% Cr2O3) in a matrix of olivine (Fo88–92), picroilmenite, Cr-spinel, magnetite, perovskite, pyrrhotite, calcite, and hydrous silicates. Rare clinopyroxene-ilmenite intergrowths also occur. Garnets show correlation of mg (0.79–0.86) and CaO (4.54–7.10%) with Cr2O3 content; the more Mg-rich garnets have more uvarovite in solution. Clinopyroxene megacrysts show a general decrease in Cr2O3 and increase in TiO2 (0.38–0.56%) with decreasing mg (0.87–0.91). Clinopyroxene megacrysts are more Cr-rich than clinopyroxene in clinopyroxene-ilmenite intergrowths (0.06–0.38% Cr2O3) and less Cr-rich than peridotite clinopyroxenes (1.39–1.46% Cr2O3). Orthopyroxene megacrysts and orthopyroxene inclusions in olivine megacrysts form two populations: high-Ca, high-Al (1.09–1.16% CaO and 1.16–1.18% Al2O3) and low-Ca, low-Al (0.35–0.46% CaO and 0.67–0.74% Al2O3). Three orthopyroxenes belonging to a low-Ca subgroup of the high-Ca, high-Al group were also identified (0.86–0.98% CaO and 0.95–1.01% Al2O3). The high-Ca, high-Al group (Group I) has lower mg (0.88–0.90) than low-Ca, low-Al group (Group II) with mg=0.92–0.93; low mg orthopyroxenes (Group Ia) have lower Cr2O3 and higher TiO2 than high mg orthopyroxenes (Group II). The orthopyroxene megacrysts have lower Cr2O3 than peridotite orthopyroxenes (0.46–0.57% Cr2O3). Diopside solvus temperatures indicate equilibration of clinopyroxene megacrysts at 1,165°–1,390° C and 1,295°–1,335° C for clinopyroxene in clinopyroxene-ilmenite intergrowths. P-T estimates for orthopyroxene megacrysts are bimodal: high-Ca, high-Al (Group I) orthopyroxenes equilibrated at 1,165°–1,255° C and 51–53 kb (± 5kb) and the low-Ca, low-Al (Group II) orthopyroxenes equilibrated at 970°–1,020°C and 46–56 kb (± 5kb). Garnet peridotites equilibrated at 1,240°–1,360° C and 47–49 kb. Spinel peridotites have discordant temperatures of 720°–835° C (using spinel-olivine Fe/Mg) and 865°–1,125° C (Al in orthopyroxene).Megacrysts probably precipitated from a fractionating liquid at >150 km depth. They are not disaggregated peridotite because: (1) of large crystal size (up to 1.5 cm), (2) compositions are distinctly different from peridotite phases, and (3) they display fractionation trends. The high mg, low T orthopyroxenes and the clustering of olivine rims near Fo89–90 reflect liquid changes to higher MgO contents due to (1) assimilation of wall-rock and/or (2) an increase in Fe3+/Fe2+ and subsequently MgO/FeO as a result of an increase in f o.  相似文献   

9.
To investigate eclogite melting under mantle conditions, wehave performed a series of piston-cylinder experiments usinga homogeneous synthetic starting material (GA2) that is representativeof altered mid-ocean ridge basalt. Experiments were conductedat pressures of 3·0, 4·0 and 5·0 GPa andover a temperature range of 1200–1600°C. The subsolidusmineralogy of GA2 consists of garnet and clinopyroxene withminor quartz–coesite, rutile and feldspar. Solidus temperaturesare located at 1230°C at 3·0 GPa and 1300°C at5·0 GPa, giving a steep solidus slope of 30–40°C/GPa.Melting intervals are in excess of 200°C and increase withpressure up to 5·0 GPa. At 3·0 GPa feldspar, rutileand quartz are residual phases up to 40°C above the solidus,whereas at higher pressures feldspar and rutile are rapidlymelted out above the solidus. Garnet and clinopyroxene are theonly residual phases once melt fractions exceed 20% and garnetis the sole liquidus phase over the investigated pressure range.With increasing melt fraction garnet and clinopyroxene becomeprogressively more Mg-rich, whereas coexisting melts vary fromK-rich dacites at low degrees of melting to basaltic andesitesat high melt fractions. Increasing pressure tends to increasethe jadeite and Ca-eskolaite components in clinopyroxene andenhance the modal proportion of garnet at low melt fractions,which effects a marked reduction in the Al2O3 and Na2O contentof the melt with pressure. In contrast, the TiO2 and K2O contentsof the low-degree melts increase with increasing pressure; thusNa2O and K2O behave in a contrasted manner as a function ofpressure. Altered oceanic basalt is an important component ofcrust returned to the mantle via plate subduction, so GA2 maybe representative of one of many different mafic lithologiespresent in the upper mantle. During upwelling of heterogeneousmantle domains, these mafic rock-types may undergo extensivemelting at great depths, because of their low solidus temperaturescompared with mantle peridotite. Melt batches may be highlyvariable in composition depending on the composition and degreeof melting of the source, the depth of melting, and the degreeof magma mixing. Some of the eclogite-derived melts may alsoreact with and refertilize surrounding peridotite, which itselfmay partially melt with further upwelling. Such complex magma-genesisconditions may partly explain the wide spectrum of primitivemagma compositions found within oceanic basalt suites. KEY WORDS: eclogite; experimental petrology; mafic magmatism; mantle melting; oceanic basalts  相似文献   

10.
A grospydite from Roberts Victor contains the most Ca-rich garnets yet found in South African kimberlite xenoliths and also sub-micron sized sodic nepheline in melted and quenched clinopyroxene. Three stages can be recognised in the textural evolution of the grospydite. The first is the development of a layering of large kyanite laths. Kyanite together with complex aluminous clinopyroxene precipitated and accumulated from an evolved residual eclogitic liquid which has penetrated across the garnet join so that garnet no longer precipitated. Solidus conditions for the Roberts Victor grospydite are estimated as T = 1350–1550 ° C, P = 27–39 kbars. Adjacent layers in the grospydite have slightly different mineral compositions suggesting that the small-scale layering (1–5 cm) in this, and associated rocks, may be related to varying activities of R2O3 components and possibly to f o 2.The second stage is represented by a necklace texture in which all the garnet and some kyanite developed along grain boundaries of clinopyroxenes with triple-point textures. This is interpreted as an example of incoherent, grain-boundary exsolution resulting from large subsolidus volume changes. The conditions for subsolidus equilibration are estimated to be T= 1120–1320 ° C, P = 42–56 kbars.Moderate Ca-contents in garnet and excess Al[6] in clinopyroxene may be subsolidus indicators of eclogite samples evolving towards grospydite at the solidus.The third stage is represented by the melting of jadeite-rich clinopyroxenes and quenching to glass, nepheline and plagioclase. Most of the glass has a composition similar to clinopyroxene, except for K2O, though local areas of different glass, possibly the result of phase separation, also occur. The melting process seems to be a low-pressure feature involving limited addition of H2O at temperatures between 900–1000 ° C. Water-absent melting could indicate temperatures up to 1500 ° C.The temperatures and pressures assigned to the three-stage evolution of this grospydite imply formation at moderate pressures and subsolidus equilibration at higher pressures. This is equated with downgoing mantle/asthenosphere tectonic processes. After entrainment in a kimberlite magma the grospydite fragment apparently ascended rapidly, thus allowing low-pressure melting and quenching.  相似文献   

11.
Bowen's petrogenetic grid was based initially on a series of decarbonation reactions in the system CaO-MgO-SiO2-CO2 with starting assemblages including calcite, dolomite, magnesite and quartz, and products including enstatite, forsterite, diopside and wollastonite. We review the positions of 14 decarbonation reactions, experimentally determined or estimated, extending the grid to mantle pressures to evaluate the effect of CO2 on model mantle peridotite composed of forsterite(Fo)+orthopyroxene(Opx)+clinopyroxene(Cpx). Each reaction terminates at an invariant point involving a liquid, CO2, carbonates, and silicates. The fusion curves for the mantle mineral assemblages in the presence of excess CO2 also terminate at these invariant points. The points are connected by a series of reactions involving liquidus relationships among the carbonates and mantle silicates, at temperatures lower (1,100–1,300° C) than the silicate-CO2 melting reactions (1,400–1,600° C). Review of experimental data in the bounding ternary systems together with preliminary data for the system CaO-MgO-SiO2-CO2 permits construction of a partly schematic framework for decarbonation and melting reactions at upper mantle pressures. The key to several problems in the peridotite-CO2 subsystem is the intersection of a subsolidus carbonation reaction with a melting reaction at an invariant point near 24 kb and 1,200°C. There is an intricate series of reactions between 25 kb and 35 kb involving changes in silicate and carbonate phase fields on the CO2-saturated liquidus surfaces. Conclusions include the following: (1) Peridotite Fo+Opx+Cpx can be carbonated with increasing pressure, or decreasing temperature, to yield Fo+Opx+Cpx+Cd (Cd=calcic dolomite), Fo+Opx+Cd, Fo+Opx+Cm (Cm=calcic magnesite), and finally Qz+Cm. (2) Free CO2 cannot exist in subsolidus mantle peridotite with normal temperature distributions; it is stored as carbonate, Cd. (3) The CO2 bubbles in peridotite nodules do not represent free CO2 in mantle peridotite along normal geotherms. (4) CO2 is as effective as H2O in causing incipient melting, our preferred explanation for the low-velocity zone. (5) Fusion of peridotite with CO2 at depths shallower than 80 km produces basic magmas, becoming more SiO2-undersaturated with depth. (6) The solubility of CO2 in mantle magmas is less than about 5 wt% at depths to 80 km, increasing abruptly to about 40 wt% at 80 km and deeper. (7) Deeper than 80 km, the first liquids produced are carbonatitic, changing towards kimberlitic and eventually, at considerably higher temperatures, to basic magmas. (8) Kimberlite and carbonatite magmas rising from the asthenosphere must evolve CO2 at depths 100-80 km, which contributes to their explosive emplacement. (9) Fractional crystallization of CO2-bearing SiO2-undersaturated basic magmas at most pressures can yield residual kimberlite and carbonatite magmas.  相似文献   

12.
Enstatite-jadeite join and its role in the Earth's mantle   总被引:4,自引:0,他引:4  
Phase relations on the enstatite-jadeite join were experimentally determined at solidus temperatures and 90–152 kb, and at 1400–2050°C/175–219 kb, with a split-sphere anvil apparatus (USSA-2000). New findings include immiscibility in garnet and determination of the stability of NaAlSiO4 (calcium ferrite structure) with stishovite. A thermodynamic model for the enstatite-jadeite join was developed to calculate a complete phase diagram for the join at 500–2500°C and 0–270 kb. The results indicate that the two major discontinuities in the Earth's mantle at 400 and 670 km depths could correspond respectively to the formation and the breakdown of garnet with a pyroxene composition. A model for a chondritic upper mantle is proposed in which large-scale chemical and mineral layering was produced by fractionation of liquidus phases in a magma ocean. Solidification was completed at 400 km depth by crystallization of sodium-enriched residual melts, which produced a pyroxene layer at 300–400 km depths.  相似文献   

13.
Summary The mineral phase relationships have been determined in the presence of excess water to a water pressure of 10 kb for three quartz diorites, a granodiorite, and a quartz monzonite from the Central and Southern Coast Ranges of California. Water pressure-temperature curves were constructed to locate the beginning of melting and the disappearance of K-feldspar, quartz, biotite, plagioclase and hornblende. Results indicate that plagioclase is the silicate liquidus phase in all granitoids studied at low water pressures, while hornblende or biotite is the silicate liquidus phase at high water pressure. New data illustrate the potent effect of water pressure on magma composition at temperatures 50° to 100°C above the solidus. At a water pressure of 1 kb, magmas are granitic to quartz monzonitic, while at water pressures of 10 kb, they are granodioritic to quartz dioritic.
Des études expérimentales des granitoids des chaînes du centre et du sud de la côte de la Californie
Résumé On a determiné en présence d'un excès d'eau jusqu'à une pression d'eau de 10 kb les corrélations entre les phases minérales de trois diorites quartziques, une granodiorite, et une monzonite quartzique obtenues des chaînes du centre et du sud de la côte de la Californie. On a utilisé des courbes de pression d'eau contre température afin de fixer le commencement de fusion et la disparition de K-feldspath, quartz, biotite, plagioclase, et hornblende. Les résultats indiquent que plagioclase est la phase liquidus de silicate pour tous les granitoids examinés aux pressions d'eau basses, en même temps que soit hornblende, soit biotite la phase liquidus de silicate aux pressions d'eau hautes. Des données nouvelles manifestent l'effet puissant de la pression d'eau sur la composition de magma aux températures élevées 50° ou 100°C plus que le solidus. Avec une pression d'eau de 1 kb les magmas sont granitiques à quartz monzonitiques; avec une pression d'eau de 10 kb ils sont granodioritiques à quartz dioritiques.


With 8 Figures  相似文献   

14.
We performed a series of piston-cylinder experiments on a synthetic pelite starting material over a pressure and temperature range of 3.0–5.0 GPa and 1,100–1,600°C, respectively, to examine the melting behaviour and phase relations of sedimentary rocks at upper mantle conditions. The anhydrous pelite solidus is between 1,150 and 1,200°C at 3.0 GPa and close to 1,250°C at 5.0 GPa, whereas the liquidus is likely to be at 1,600°C or higher at all investigated pressures, giving a large melting interval of over 400°C. The subsolidus paragenesis consists of quartz/coesite, feldspar, garnet, kyanite, rutile, ±clinopyroxene ±apatite. Feldspar, rutile and apatite are rapidly melted out above the solidus, whereas garnet and kyanite are stable to high melt fractions (>70%). Clinopyroxene stability increases with increasing pressure, and quartz/coesite is the sole liquidus phase at all pressures. Feldspars are relatively Na-rich [K/(K + Na) = 0.4–0.5] at 3.0 GPa, but are nearly pure K-feldspar at 5.0 GPa. Clinopyroxenes are jadeite and Ca-eskolaite rich, with jadeite contents increasing with pressure. All supersolidus experiments produced alkaline dacitic melts with relatively constant SiO2 and Al2O3 contents. At 3.0 GPa, initial melting is controlled almost exclusively by feldspar and quartz, giving melts with K2O/Na2O ~1. At 4.0 and 5.0 GPa, low-fraction melting is controlled by jadeite-rich clinopyroxene and K-rich feldspar, which leads to compatible behaviour of Na and melts with K2O/Na2O ≫ 1. Our results indicate that sedimentary protoliths entrained in upwelling heterogeneous mantle domains may undergo melting at greater depths than mafic lithologies to produce ultrapotassic dacitic melts. Such melts are expected to react with and metasomatise the surrounding peridotite, which may subsequently undergo melting at shallower levels to produce compositionally distinct magma types. This scenario may account for many of the distinctive geochemical characteristics of EM-type ocean island magma suites. Moreover, unmelted or partially melted sedimentary rocks in the mantle may contribute to some seismic discontinuities that have been observed beneath intraplate and island-arc volcanic regions.  相似文献   

15.
The bulk compositions of the groundmass alkali feldspar from the Hell Canyon Pluton is 0.146mole% albite. The composition of the outermost zone of the oscillatory zoned plagioclase is 0.686 mole% albite, whereas the most calcic cores have a composition of 0.43 mole% albite. The structural state of the alkali feldspar is near orthoclase. Both composition of coexisting feldspars and structural state of the alkali feldspar are nearly constant throughout the pluton.Exsolved albite in the alkali feldspar have a composition of 0.965 mole% albite and the orthoclase host has a composition of 0.032 mole%. Singe crystal X-ray studies indicate that the albite intergrowths are coherent with the host.Equilibrium temperatures derived from the coexisting feldspar average 554 ° C; about 150 ° C, too low for the minimum solidus temperatures for reasonable emplacement pressures (2 kb). If this minimum solidus temperature is assumed, then the alkali feldspar has lost about 0.15 mole% albite. This loss was most likely caused by hydrothermal solutions associated with the crystallizing magma and equilibrated at about 550 ° C. However, based on the coherent albite intergrowths and the orthoclase structure state it can be inferred that the system was relatively free of volatiles below 500 ° C. Final equilibirium between orthoclase host and albite intergrowths occurred at about 311 ° C.  相似文献   

16.
Melting of the Shallow Upper Mantle: A New Perspective   总被引:4,自引:3,他引:4  
Detailed examination of liquidus phase relationships in binaryand ternary joins of the CFMAS +Cr system has permitted a rigorousdetermination of the dry melting path of an initially fertilespinel peridotite composition resembling Bulk Silicate Earthor MORB-pyrolite. It is demonstrated that it is impossible tomodel mantle melting accurately using only one set of ratiosof phases entering the melt; this implies that the melting processis primarily controlled by solid solution rather than eutecticbehaviour. The proportions of phases entering a melt dependon whether a phase reacts and/or disappears from a system, andon the choice of the initial and final peridotite compositions.Four discrete domains in the melting regime of upper-mantleperidotites are distinguished, each characterized by differentphase melting coefficients, relating to the melting of: (1)lherzolites, (2) clinopyroxene-bearing harzburgites (i.e., free-clinopyroxene),(3) clinopyroxene-saturated harzburgites (i.e., clinopyroxenein solid solution in orthopyroxene), and (4) clinopyroxene-freeharzburgites (i.e., no clinopyroxene). The proposed non-linearfashion in which mantle lithologies melt explains the inadequacyof all previous models to reproduce the observed compositionsof upper-mantle peridotite melting residues. It is suggestedthat: (1) olivine and orthopyroxene will melt cotectically;(2) clinopyroxene and spinel will lose most of their aluminouscomponent after {small tilde}8% melting within the first 4 kb({smalltilde} 12 km) of ascent from the dry solidus; and that (3) clinopyroxenewill disappear completely from a MORB-pyrolite mantle after{small tilde}42% melting. Although such a number is significantlyhigher than that dictated by the position of the clinopyroxene-outcurves from peridotite isobaric equilibrium melting experiments({small tilde}22%), it is emphasized that the latter are a grossoversimplification of the natural melting process and are notequivalent to melting during adiabatic upwelling. It is concludedthat the commonly postulated disappearance of clinopyroxenefrom fertile peridotite compositions at {small tilde}22% meltingis greatly in error if melting in an adiabatically rising mantleis considered, thus providing an explanation for many unsuccessfulattempts by various authors to model the behaviour of transitionelements in sub-oceanic and supra-subduction-zone mantle andderivative magmas.  相似文献   

17.
The melting reaction at the solidus of mantle peridotite is commonly peritectic in nature, with liquid and one or more solid phases produced upon melting. In some situations, one of the phases participating on the reactant side of the reaction is present in low abundance. This article explores the possible effects of the low abundance of a reactant phase on the melting behavior of mantle peridotite.For example, spinel lherzolite begins to melt via the peritectic reaction, clinopyroxene + orthopyroxene + spinel = olivine + liquid in the ∼1- to 2-GPa pressure range. In natural spinel lherzolites, spinel is a modally minor mineral and may be infrequently in contact with both clinopyroxene and orthopyroxene. If these mutual contacts are insufficient to generate an interconnected melt, then significant melting may not occur until a combination of minerals that are modally abundant and in contact begin to melt. This scenario could have implications for the physical process of melting and for the timing of formation of an interconnected melt network and separation of the melt from the residue.To begin to investigate this possibility, the spatial relationships between the constituent minerals in two fertile spinel lherzolites were determined by elemental mapping with the electron microprobe. Olivine, orthopyroxene, and clinopyroxene are of similar size, whereas the spinel was smaller and interstitial. Spinel and clinopyroxene are frequently in contact, but mutual contacts of spinel, clinopyroxene, and orthopyroxene are rare. Because of the changes in modal mineralogy anticipated for these lherzolites with increasing temperature, these mutual contacts will be even less common at the solidus. Therefore, an interconnected, potentially extractable, melt may not occur by the solidus spinel + orthopyroxene + clinopyroxene melting reaction.  相似文献   

18.
Effect of Water on the Composition of Magmas Formed at High Pressures   总被引:4,自引:3,他引:4  
KUSHIRO  IKUO 《Journal of Petrology》1972,13(2):311-334
Portions of the system MgO-CaO-Na2O-Al2O3-SiO2-H2O have beenstudied in the pressure range 13–35 kb at near-liquidustemperatures. The liquidus field of forsterite relative to thatof orthopyroxene is considerably wider under anhydrous thanunder anhydrous conditions and it covers part of the plane ofsilica-saturation in a wide pressure range. Partial meltingof simple garnet lherzolite (= forsterite+orthopyroxene+clinopyroxene+garnet)with water produces quartz-normative liquids at pressures upto at least 25 kb regardless of water content. Hydrous mineralsare not encountered at or near the solidus temperatures exceptin a Na-rich part of the system. Microprobe analysis of therun products in this synthetic system shows that the liquid(glass) in equilibrium with the lherzolite mineral assemblageis silica and alumina-rich at 20 kb under vapor-present conditions.With increasing degree of partial melting, the liquid changesits composition, passing into a ‘vapour-absent region’and becoming less silicic. Fractional crystallization of olivinetholeiitic magma under hydrous conditions also produces silica-richmagmas at high pressures. If the system is open to water, andwater pressure is less than total pressure, the compositionof the liquid varies from quartz-normative to olivine (±nepheline)-normativedepending on water pressure. It is suggested that in the presenceof water, silica-rich magmas such as those of calc-alkalic andesiteor dacite may be formed by direct partial melting of the peridotiticupper mantle at depths down to about 80 km. A large degree ofpartial melting of lherzolite under hydrous conditions wouldproduce SiO2 and MgO-rich magmas. The clinoenstatite rock fromCape Vogel, Papua, may have been formed by such a process. Peridotiteswith low CaAl2SiO5/jadeite ratios in the clinopyroxene couldproduce nepheline-normative magma by small degree of partialmelting and tholeiitic magma by large degree of partial meltingunder hydrous conditions.  相似文献   

19.
The melting of undepleted mantle peridotite proceeds through a temperature interval which decreases with increasing pressure. If liquidus and solidus actually meet in the range 100–150 Kb, as suggested by Herzberg (1983), peridotite must transform there directly to a melt of its own composition. Thermodynamic analysis shows that such a liquidus/solidus meeting would be very unlikely in a system as chemically complex as mantle peridotite and would require that unanticipated phase equilibrium relations suppress all incongruent melting behavior. But Takahashi and Scarfe's (1985) preliminary experiments suggest that the upper mantle itself may indeed have a special composition with respect to phase equilibrium relations between liquids and solids at very high pressure. If so, mantle peridotite composition cannot be generated as a crystal accumulate or melting residue, because these two popular theories of origin are difficult to reconcile with a supposed eutecticlike composition. If upper mantle peridotite were itself a solidified liquid composition produced either as a partial melt or, more likely, as a crystallization residue of some more primitive melt composition representative of the whole mantle, an approach of liquidus to solidus might be expected at high pressure although the phase relations of Herzberg (1983) and Herzberg and O'Hara (1985) remain implausible.  相似文献   

20.
Anhydrous P-T phase relations, including phase compositions and modes, are reported from 10–31 kbar for a near-primary high-alumina basalt from the South Sandwich Islands in the Scotia Arc. The water content of natural subduction-related basalt is probably <0.5 wt.% and thus, these results are relevant to the generation of primary basaltic magmas in subduction zones. At high pressures (>27 kbar) garnet is the liquidus phase followed by clinopyroxene, then quartz/coesite at lower temperatures. At intermediate pressures (17–27 kbar), clinopyroxene is the liquidus phase followed by either garnet, quartz, plagioclase, then orthopyroxene or plagioclase, quartz, garnet, then orthopyroxene depending on the pressure within this interval. At all lower pressures, plagioclase is the liquidus phase followed at much lower temperatures (100° C at 5 kbar) by clinopyroxene. The absence of olivine from the liquidus suggests that the composition studied here could not have been derived from a more mafic parent by olivine fractionation at any pressure investigated, and supports the interpretation that it is primary. If so, these results also preclude an origin for this melt by partial melting of olivine-rich mantle periddotite and suggest instead that it was generated by partial melting of the descending slab (quartz eclogite) leaving clinopyroxene, garnet, or both in the residue. The generally flat REE patterns for low-K series subduction related basalts argue against any significant role for garnet, however, and it is thus concluded that the composition studied here was extracted at 20–27 kbar after sufficiently high degrees of partial melting (50%) to totally consume garnet in the eclogite source. Melting experiments on three MORB composition, although not conclusive, are in agreement with this mechanism. Results at 30 kbar support an origin for tonalite/trondhjemite series rocks by lower degrees of melting (15–30%), leaving both garnet and clinopyroxene in the residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号