首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A method for calculating turbulent diffusion in the planetary boundary layer is developed based on Donaldson's second-order closure approach. The resulting partial differential equation for the turbulent mass flux has a hyperbolic character for early times when the plume scale is small compared with the ambient turbulent scale, with a smooth transition to a parabolic, gradient-diffusion-type character when the plume scale is large. Calculations are compared with available estimates from the literature for different values of Rossby number and Richardson number in the ambient atmosphere. Comparison of model predictions with laboratory simulation of diffusion in a free convection, mixed layer is good, with the model able to predict the maximum concentration rising from the ground as observed.This project has been funded in part with Federal funds from the Environmental Protection Agency under contract number EPA 68-02-1310.  相似文献   

2.
A simple closure scheme for nocturnal stratocumulus is proposed. The scheme is formulated in conserved variables. Cloud fraction and cloud water amount are diagnosed assuming a top-hat distribution for total water. Conversion of cloud water into rain water is parameterized in terms of cloud water and the incoming rain flux. Turbulence transport in the cloud layer is accounted for by a first-order vertical diffusion scheme with a profile-type diffusivity. The length scale corresponds to the thickness of the cloud layer. The turbulent velocity scale is directly related to the long wave radiative flux divergence in the cloud. Entrainment at cloud top is implicitly treated by extending the in-cloud mixing profile slightly beyond cloud top. The excess height is derived from the buoyancy frequency at cloud top and a radiative–convective velocity scale. The scheme is capable of simulating realistic profiles of the conserved variables and cloud parameters for a case of nocturnal stratocumulus prepared on the basis of ASTEX data.  相似文献   

3.
A simple turbulent flow model for geophysical flows is presented, which is based on the transport equation for turbulent energy and on algebraic expressions relating the Reynolds stress and turbulent heat flux to the velocity and temperature gradients. The model, which is similar to the 2.5 level closure model of Mellor and Yamada, includes constraints based on the realizability conditions as well as expressions for the length scale which account for the influence of stratification and the Coriolis acceleration. The model is shown to reproduce satisfactorily the main features of existing laboratory measurements of stress-induced and convective turbulent entrainment in stratified flows.  相似文献   

4.
When modelling the turbulent dispersion of a passive tracer using Reynolds-averaged Navier–Stokes (RANS) simulations, two different approaches can be used. The first consists of solving a transport equation for a scalar, where the governing parameters are the mean velocity field and the turbulent diffusion coefficient, given by the ratio of the turbulent viscosity and the turbulent Schmidt number Sc t . The second approach uses a Lagrangian particle tracking algorithm, where the governing parameters are the mean velocity and the fluctuating velocity field, which is determined from the turbulence kinetic energy and the Lagrangian time T L . A comparison between the two approaches and wind-tunnel data for the dispersion in the wake of a rectangular building immersed in a neutral atmospheric boundary layer (ABL) is presented. Particular attention was paid to the influence of turbulence model parameters on the flow and concentration field. In addition, an approach to estimate Sc t and T L based on the calculated flow field is proposed. The results show that applying modified turbulence model constants to enable correct modelling of the ABL improves the prediction for the velocity and concentration fields when the modification is restricted to the region for which it was derived. The difference between simulated and measured concentrations is smaller than 25% or the uncertainty of the data on 76% of the points when solving the transport equation for a scalar with the proposed formulation for Sc t , and on 69% of the points when using the Lagrangian particle tracking with the proposed formulation for T L .  相似文献   

5.
Second- and third-order turbulence closure models have met with mixed success when applied to the prediction of turbulent flows within and above plant canopies and model predictions are typically no better than those obtained using simpler two-equation (k-e){(k-\varepsilon)} models. This is because the local gradient diffusion approximation (a crucial model requirement) cannot represent accurately turbulent transport that is dominated by the presence of ejections and sweeps whose length scales are comparable with the canopy height. To make progress, turbulent transport must be treated without approximation, as in Lagrangian probability density function (PDF) models. This study is the first to develop and to validate a PDF model of horizontally-homogeneous canopy flow. The model relies upon a prescribed length-scale that has been used elsewhere in the modelling of turbulent flows. Model predictions compare favourably with measurements of neutrally stratified turbulent flows within and above canopies of mature corn and forested eucalypt trees.  相似文献   

6.
In the first part of this study, results of a computational fluid dynamics simulation over an array of cubes have been validated against a set of wind-tunnel measurements. In Part II, such numerical results are used to investigate spatially-averaged properties of the flow and passive tracer dispersion that are of interest for high resolution urban mesoscale modelling (e.g. non resolved obstacle approaches). The results show that vertical profiles of mean horizontal wind are linear within the canopy and logarithmic above. The drag coefficient, derived from the numerical results using the classical formula for the drag force, is height dependent (it decreases with height). However, a modification of the formula is proposed (accounting for subgrid velocity scales) that makes the drag coefficient constant with height. Results also show that the dispersive fluxes are similar in magnitude to the turbulent fluxes, and that they play a very important role within the canopy. Vertical profiles of turbulent length scales (to be used in kl closure schemes, where k is the turbulent kinetic energy and l a turbulent length scale) are also derived. Finally the distribution of the values around the mean over the reference volumes are analysed for wind and tracer concentrations.  相似文献   

7.
Predictions of the surface drag in turbulent boundary-layer flow over two-dimensional sinusoidal topography from various numerical models are compared. For simple 2D terrain, the model results show that the drag increases associated with topography are essentially proportional to (slope)2 up to the steepness at which the flow separates. For the purposes of boundary-layer parameterisation within larger-scale models, we propose a representation of the effects of simple 2D topography via an effective roughness length, z 0 eff. The form of the varation of z 0 eff with terrain slope and topographic wavelength is established for small slopes from the model results and a semi-empirical formula is proposed.  相似文献   

8.
Numerical weather prediction (NWP) model forecasts at horizontal grid lengths in the range of 100 m to 1 km are now possible. Within this range of grid lengths, the convective boundary layer (CBL) is partially resolved and thus in the so-called ‘grey zone’. For simulations in the grey zone, numerical dissipation sources from both the advection scheme and the subgrid model are likely to be significant. Until now, these effects have not been incorporated fully into our understanding of the grey zone. In order to quantify these effects, a dissipation length scale is defined based on the second moment of the turbulent kinetic energy (TKE) spectrum. An ensemble of simulations of a CBL are performed using a large-eddy model across the grey-zone resolutions and for a range of subgrid model, advection scheme and vertical grid configurations. The dissipation length scale distinguishes the effects of the different model configurations in the grey zone. In the middle of the boundary layer, the resolved TKE is strongly controlled by the numerical dissipation. This leads to a similarity law for the resolved TKE in the grey zone using the dissipation length scale. A new definition of the grey zone emerges where the inversion depth and dissipation length scale are the same size. This contrasts with the typical definition using the horizontal grid length. At the inversion, however, the variation of the dissipation length scale with grid length is less predictable, reflecting significant challenges for modelling entrainment in the grey zone. The dissipation length scale is thus a simple diagnostic to aid both NWP and large-eddy modellers in understanding the grey zone.  相似文献   

9.
Chatwin and Sullivan (1990) proposed simple results for the relationships between moments of scalar fluctuations in self-similar turbulent shear flows. They showed these relationships to be well satisfied by observations from a range of experiments. Here their theory is extended to the skewness, kurtosis and higher order equivalents. It is shown that the relationships between these normalised moments are parameter-free, and are identical to those for zero molecular diffusion. Experimental observations are presented which show a remarkable degree of collapse when these normalised moments are plotted against each other. The agreement with the theoretical results is reasonably good, and better than for some other standard statistical distributions which are commonly applied to such observations. This is true not only for the concentration, but also for generalised doses. It is concluded that the simple theory provides a satisfactory basis for a model of both the concentration and of dose. Furthermore, the results suggest that the concentration and the dose can be modelled through a perturbation to a two-state model.  相似文献   

10.
To assist validation of the experimental data of urban pollution dispersion, the effect of an isolated building on the flow and gaseous diffusion in the wake region have been investigated numerically in the neutrally stratified rough-walled turbulent boundary layer. Numerical studies were carried out using Computational Fluid Dynamics (CFD) models. The CFD models used for the simulation were based on the steady-state Reynolds-Average Navier-Stoke equations (RANS) with κ-ε turbulence models; standard κ-ε and RNG κ-ε models. Inlet conditions and boundary conditions were specified numerically to the best information available for each fluid modeling simulation. A gas pollutant was emitted from a point source within the recirculation cavity behind the building model. The accuracy of these simulations was examined by comparing the predicted results with wind tunnel experimental data. It was confirmed that simulation using the model accurately reproduces the velocity and concentration diffusion fields with a fine-mish resolution in the near wake region. Results indicated that there is a good agreement between the numerical simulation and the wind tunnel experiment for both wind flow and concentration diffusion. The results of this work can help to improve the understanding of mechanisms of and simulation of pollutant transport in an urban environment.  相似文献   

11.
A model is presented for determining the location and magnitude of the maximum ground-level concentration arising from an elevated buoyant source in a very stable atmospheric boundary layer. The development combines the turbulent structure of such a boundary layer, Lagrangian similarity of the diffusion process, and similarity solutions of the conservation equations of the buoyant plume with mass conservation to produce a simple, experimentally verifiable formulation. Functional analogy with previous results for the constant flux layer and a deep convectively unstable layer suggest a heuristic model by which to visualize the process.  相似文献   

12.
雷孝恩  张时禹 《大气科学》1992,16(2):228-236
本文设计了一冠层(CL)和大气边界层(ABL)之间物质和动量交换的耦合模式,并对CL内风速、物质随高度分布和日变化作了数值模拟.结果表明,由大尺度扩散引起冠层低层的第二个风速极大和多极值的浓度分布,CL内湍流通量和物质浓度随高度减小而迅速降低,以及CL动量减小对浓度分布的重要影响,模式都能很好地描述,模拟结果与观测事实有好的一致性.利用浓度和温度廓线相似假设,导出了质量汇的经验关系.  相似文献   

13.
The rate at which, and the processes by which, a passive tracer is stirred and mixed in a turbulent mesoscale eddy field are examined for environmental parameters characteristic of a homogeneous mid-ocean region. The simulated, time-dependent eddy field is obtained by direct integration of the forced/damped barotropic vorticity equation; the dispersal of a spatially localized, instantaneous release of tracer (a “tracer spot”) within the evolving velocity field is subsequently computed from the advective-diffusive equation. An ensemble of 10 independent releases is used to determin the average spreading properties of the tracer spot.On an f-plane, the ensemble-averaged dispersal is approximately isotropic, and is associated with an effective diffusion rate substantially greater than that supported in the absence of turbulent advection. Quantitatively, the effective ensemble-averaged diffusivity is shown to be 0(UL), where U and L are characteristic velocity and length scales of the turbulent flow. This estimate is consistent with the traditional mixing length hypothesis. With the addition of β, the simulated flow field has substantial zonal anisotropy. Ensemble-averaged dispersal of tracer spots is similarly anisotropic, and the overall rate of tracer dispersal is substantially reduced over its f-plane value.Both with and without β, the initial rate at which maximum tracer concentration and total tracer variance decay are given by the approximate law exp[? αγt] where γ is the RMS rate of strain, and α is approximately constant at a value of 0.5. The heightened rate of variance loss over that associated with pure (subgridscale) diffusion is shown to be accommodated by the rapid transfer of tracer variance from the largest to the shortest scale tracer features, that is, by the rapid sharpening of tracer gradients by turbulent advection. A detailed examination of the dispersal of individual tracer realizations, and the associated question of tracer streakiness, is given in part II of this work (Keffer and Haidvogel, in preparation).  相似文献   

14.
An analytical one-dimensional second-order closure model is developed to describe the within canopy velocity variances, turbulent intensities, dissipation rates, Lagrangian time scale and Lagrangian far field diffusivities for vegetation canopies of arbitrary structure and density. The model incorporates and extends the model of momentum transfer developed by Massman (1997) and the model of within canopy velocity variances developed by Weil (unpublished) from the second-order closure model of Wilson and Shaw (1977). Model predictions of within and above canopy velocity variances, turbulent intensities, dissipation rates and the Lagrangian time scale are in reasonable agreement with previously measured or estimated values for these parameters. The present model suggests that the Lagrangian time scale and the far field diffusivity could be strongly dependent upon foliage structure and density through the foliage effects on the velocity variances. A simple formulation for the Lagrangian time scale at canopy height is derived from model results. Taken as a whole, the present model may provide a relatively simple way to incorporate turbulence parameters into models of soil/canopy/atmosphere mass transfer.  相似文献   

15.
The imitating numerical model of the turbulent exchange between the ocean conveyor belt and the surrounding waters is proposed. The water particle exchange through the belt surface of the given size during its movement along the deep conveyor branch is considered. The length of the turbulent jump is parameterized with the aid of coefficients of vertical and horizontal turbulent diffusion and its direction is simulated using the Monte Carlo method. By means of the computation of trajectories of 106 separate particles, their spatial distribution is determined for different time intervals after the deep water formation. It is demonstrated that due to the lateral exchange, the water in the given part of the belt is renewed by 60% during 25 years and by 75% during 75 years. A comparison with the computations based on the usual method is carried out for the vertical exchange: it is revealed that in both cases the considerable renewal of water in the conveyor belt occurs during the time period of about 104 years.  相似文献   

16.
This study investigates the performance of two planetary boundary layer (PBL) parameterisations in the regional climate model RegCM4.2 with specific focus on the recently implemented prognostic turbulent kinetic energy parameterisation scheme: the University of Washington (UW) scheme. When compared with the default Holtslag scheme, the UW scheme, in the 10-year experiments over the European domain, shows a substantial cooling. It reduces winter warm bias over the north-eastern Europe by 2 °C and reduces summer warm bias over central Europe by 3 °C. A part of the detected cooling is ascribed to a general reduction in lower tropospheric eddy heat diffusivity with the UW scheme. While differences in temperature tendency due to PBL schemes are mostly localized to the lower troposphere, the schemes show a much higher diversity in how vertical turbulent mixing of the water vapour mixing ratio is governed. Differences in the water vapour mixing ratio tendency due to the PBL scheme are present almost throughout the troposphere. However, they alone cannot explain the overall water vapour mixing ratio profiles, suggesting strong interaction between the PBL and other model parameterisations. An additional 18-member ensemble with the UW scheme is made, where two formulations of the master turbulent length scale in unstable conditions are tested and unconstrained parameters associated with (a) the evaporative enhancement of the cloud-top entrainment and (b) the formulation of the master turbulent length scale in stable conditions are systematically perturbed. These experiments suggest that the master turbulent length scale in the UW scheme could be further refined in the current implementation in the RegCM model. It was also found that the UW scheme is less sensitive to the variations of the other two selected unconstrained parameters, supporting the choice of these parameters in the default formulation of the UW scheme.  相似文献   

17.
A model of \(\hbox {CO}_{2}\) atmospheric transport in vegetated canopies is tested against measurements of the flow, as well as \(\hbox {CO}_{2}\) concentrations at the Norunda research station located inside a mixed pine–spruce forest. We present the results of simulations of wind-speed profiles and \(\hbox {CO}_{2}\) concentrations inside and above the forest canopy with a one-dimensional model of profiles of the turbulent diffusion coefficient above the canopy accounting for the influence of the roughness sub-layer on turbulent mixing according to Harman and Finnigan (Boundary-Layer Meteorol 129:323–351, 2008; hereafter HF08). Different modelling approaches are used to define the turbulent exchange coefficients for momentum and concentration inside the canopy: (1) the modified HF08 theory—numerical solution of the momentum and concentration equations with a non-constant distribution of leaf area per unit volume; (2) empirical parametrization of the turbulent diffusion coefficient using empirical data concerning the vertical profiles of the Lagrangian time scale and root-mean-square deviation of the vertical velocity component. For neutral, daytime conditions, the second-order turbulence model is also used. The flexibility of the empirical model enables the best fit of the simulated \(\hbox {CO}_{2}\) concentrations inside the canopy to the observations, with the results of simulations for daytime conditions inside the canopy layer only successful provided the respiration fluxes are properly considered. The application of the developed model for radiocarbon atmospheric transport released in the form of \(^{14}\hbox {CO}_{2}\) is presented and discussed.  相似文献   

18.
A simple model of the atmospheric boundary layer over the ocean where the swell impact on the atmosphere is explicitly accounted for is suggested. The model is based on Ekman’s equations, where the stress in the wave boundary layer is split into two parts: the turbulent and wave-induced stress. The turbulent stress is parameterized traditionally via the eddy viscosity proportional to the generalized mixing length. The wave-induced stress directed upward (from swell to the atmosphere) is parameterized using the formalism of the wind-over-waves coupling theory. The model can be seen as an extension of the model by Kudryavtsev and Makin (J Phys Oceanogr 34:934–949, 2004) to the scale of the entire atmospheric boundary layer by including the Coriolis force into the momentum conservation equation and generalizing the definition of the mixing length. The regime of low winds for swell propagating along the wind direction is studied. It is shown that the impact of swell on the atmosphere is governed mainly by the swell parameter—the coupling parameter that is the product of the swell steepness and the growth rate coefficient. When the coupling parameter drops below − 1 the impact of swell becomes significant and affects the entire atmospheric boundary layer. The turbulent stress is enhanced near the surface as compared to the no-swell case, and becomes negative above the height of the inner region. The wind profile is characterized by a positive gradient near the surface and a negative gradient above the height of the inner region forming a characteristic bump at the height of the inner region. Results of the model agree at least qualitatively with observations performed in the atmosphere in presence of swell.  相似文献   

19.
A variable vertical mesh spacing for large-eddy simulation (LES) models in a convective boundary layer (CBL) is proposed. The argument is based on the fact that in the vertical direction the turbulence near the surface in a CBL is inhomogeneous and therefore the subfilter-scale effects depend on the relative location between the spectral peak of the vertical velocity and the filter cut-off wavelength. From the physical point of view, this lack of homogeneity makes the vertical mesh spacing the principal length scale and, as a consequence, the LES filter cut-off wavenumber is expressed in terms of this characteristic length scale. Assuming that the inertial subrange initial frequency is equal to the LES filter cut-off frequency and employing fitting expressions that describe the observed convective turbulent energy one-dimensional spectra, it is feasible to derive a relation to calculate the variable vertical mesh spacing. The incorporation of this variable vertical grid within a LES model shows that both the mean quantities (and their gradients) and the turbulent statistics quantities are well described near to the ground level, where the LES predictions are known to be a challenging task.  相似文献   

20.
This note describes a numerically stable version of the improved Mellor–Yamada (M–Y) Level-3 model proposed by Nakanishi and Niino [Nakanishi, M. and Niino, H.: 2004, Boundary-Layer Meteorol. 112, 1–31] and demonstrates its application to a regional prediction of advection fog. In order to ensure the realizability for the improved M–Y Level-3 model and its numerical stability, restrictions are imposed on computing stability functions, on L/q, the temperature and water-content variances, and their covariance, where L is the master length scale and q 2/2 the turbulent kinetic energy per unit mass. The model with these restrictions predicts vertical profiles of mean quantities such as temperature that are in good agreement with those obtained from large-eddy simulation of a radiation fog. In a regional prediction, it also reasonably reproduces the satellite-observed horizontal distribution of an advection fog.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号