首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
For numerical weather prediction models and models resolving deep convection, shallow convective ascents are subgrid processes that are not parameterized by classical local turbulent schemes. The mass flux formulation of convective mixing is now largely accepted as an efficient approach for parameterizing the contribution of larger plumes in convective dry and cloudy boundary layers. We propose a new formulation of the EDMF scheme (for Eddy Diffusivity\Mass Flux) based on a single updraft that improves the representation of dry thermals and shallow convective clouds and conserves a correct representation of stratocumulus in mesoscale models. The definition of entrainment and detrainment in the dry part of the updraft is original, and is specified as proportional to the ratio of buoyancy to vertical velocity. In the cloudy part of the updraft, the classical buoyancy sorting approach is chosen. The main closure of the scheme is based on the mass flux near the surface, which is proportional to the sub-cloud layer convective velocity scale w *. The link with the prognostic grid-scale cloud content and cloud cover and the projection on the non- conservative variables is processed by the cloud scheme. The validation of this new formulation using large-eddy simulations focused on showing the robustness of the scheme to represent three different boundary layer regimes. For dry convective cases, this parameterization enables a correct representation of the countergradient zone where the mass flux part represents the top entrainment (IHOP case). It can also handle the diurnal cycle of boundary-layer cumulus clouds (EUROCS\ARM) and conserve a realistic evolution of stratocumulus (EUROCS\FIRE).  相似文献   

2.
This study first illustrates the utility of using the Doppler spectrum width from millimetre wavelength radar to calculate the energy dissipation rate and then to use the energy dissipation rate to study turbulence structure in a continental stratocumulus cloud. It is shown that the turbulence kinetic energy dissipation rate calculated from the radar-measured Doppler spectrum width agrees well with that calculated from the Doppler velocity power spectrum. During the 16-h stratocumulus cloud event, the small-scale turbulence contributes 40 % of the total velocity variance at cloud base, 50 % at normalized cloud depth = 0.8 and 70 % at cloud top, which suggests that small-scale turbulence plays a critical role near the cloud top where the entrainment and cloud-top radiative cooling act. The 16-h mean vertical integral length scale decreases from about 160 m at cloud base to 60 m at cloud top, and this signifies that the larger scale turbulence dominates around cloud base whereas the small-scale turbulence dominates around cloud top. The energy dissipation rate, total variance and squared spectrum width exhibit diurnal variations, but unlike marine stratocumulus they are high during the day and lowest around sunset at all levels; energy dissipation rates increase at night with the intensification of the cloud-top cooling. In the normalized coordinate system, the averaged coherent structure of updrafts is characterized by low energy dissipation rates in the updraft core and higher energy dissipation rates surround the updraft core at the top and along the edges. In contrast, the energy dissipation rate is higher inside the downdraft core indicating that the downdraft core is more turbulent. The turbulence around the updraft is weaker at night and stronger during the day; the opposite is true around the downdraft. This behaviour indicates that the turbulence in the downdraft has a diurnal cycle similar to that observed in marine stratocumulus whereas the turbulence diurnal cycle in the updraft is reversed. For both updraft and downdraft, the maximum energy dissipation rate occurs at a cloud depth = 0.8 where the maximum reflectivity and air acceleration or deceleration are observed. Resolved turbulence dominates near cloud base whereas unresolved turbulence dominates near cloud top. Similar to the unresolved turbulence, the resolved turbulence described by the radial velocity variance is higher in the downdraft than in the updraft. The impact of the surface heating on the resolved turbulence in the updraft decreases with height and diminishes around the cloud top. In both updrafts and downdrafts, the resolved turbulence increases with height and reaches a maximum at cloud depth = 0.4 and then decreases to the cloud top; the resolved turbulence near cloud top, just as the unresolved turbulence, is mostly due to the cloud-top radiative cooling.  相似文献   

3.
Aircraft measurements were made from the NCAR Electra in stratus and stratocumulus clouds off the coast of California in June 1976. Several types of cloud conditions were observed, including (1) a broken layer less than 100 m thick, capped by an inversion at ~1000 m, (2) a broken stratocumulus layer ~300 m thick with an inversion at ~500 m, and (3) a solid stratocumulus layer ~250 m thick with an inversion at ~500 m. Although these observations indicate that a variety of cloud conditions may exist in mixed layers, simple one-dimensional mixed-layer models implicitly assume a solid cloud layer with no unsaturated region within the cloud. In order to generalize these simple models, a parametric representation of the heat and moisture fluxes is considered. In this scheme, the fluxes are parameterized in terms of the product of a cloud mass flux and the characteristic difference between the thermodynamic properties of an updraft-downdraft circulation. This representation allows for an explicit representation of the buoyancy flux when the downdraft has no liquid water.Data collected during these flights were used to calculate heat and moisture fluxes and to obtain the mean difference in the thermodynamic properties of the updrafts and downdrafts at a given level. The mass flux was calculated using updraft-downdraft differences and the fluxes. The mass fluxes obtained using various thermodynamic quantities are examined for consistency. The vertical distribution of the mass flux is determined. These results indicate that a mass flux formulation could prove to be useful in modeling applications where cloud conditions may vary between solid and broken.  相似文献   

4.
Comprehensive, ground-based observations from the US Department of Energy Atmospheric Radiation Measurements program Southern Great Plains site are used to study the variability of turbulence forcings and cloud-scale turbulence structures in a continental stratocumulus cloud. The turbulence observations are made from an upward facing cloud (35 GHz) Doppler radar. Cloud base and liquid water path are characterized using a lidar at the surface and a microwave radiometer. The turbulence characterizations are compared and contrasted with those observed in marine stratocumulus clouds. During the 16-h observation period used in this study the cloud-base and cloud-top heights evolve with time and changes in liquid water path observed by the radiometer are consistent with variations in cloud depth. Unlike marine stratocumulus clouds, a diurnal cycle of cloud thickness and liquid water path is not observed. The observed surface latent, sensible, and virtual sensible heat fluxes and the radiative fluxes exhibit a diurnal cycle with values increasing from sunrise to afternoon and decreasing afterwards. During the night, the sensible heat, virtual sensible heat and the net radiative fluxes at the surface are slightly negative. Solar radiative heating prevails in the cloud layer during the day and strong radiative cooling exists at cloud top even during the day. Unlike marine stratocumulus, surface heating described by the convective velocity scale \(W_\mathrm{s}^{*}\) and cloud-top cooling described by \(W_\mathrm{r}^{*}\) are both important in driving the in-cloud turbulence during the day, whereas cloud-top cooling is the exclusive contributor during the night. The combined \(W_\mathrm{s}^{*}\) and \(W_\mathrm{r}^{*}\) (the total velocity scale \(W_\mathrm{t}^{*})\) provides a useful way to track the evolution of the turbulence structure in the cloud. The variance of the radar-measured radial velocity, which is related to resolved turbulence, follows the diurnal cycle and is consistent with the total velocity scale \(W_\mathrm{t}^{*}\) variations. It is higher during the day and lower during the night, which is contrary to that in marine stratocumulus. The \(W_\mathrm{t}^{*}\) values are lowest around sunset when the radiative cooling is also small due to upper-level clouds observed above the low-level stratus. The vertical distribution of the variance results from the surface heating during the day and cloud-top cooling during the night. The squared spectrum width, which is related to turbulence structures within the radar sampling volume (unresolved turbulence) also follows the diurnal cycle. Its vertical distribution indicates that the unresolved turbulence more closely relates to the processes near cloud top. Turbulence in the cloud requires about an hour to respond to the external forcings of surface heating and cloud-top radiative cooling. Positive skewness prevails during the day and negative skewness prevails at night with a sharp transition around sunset. Resolved turbulence dominates near cloud base whereas unresolved turbulence dominates near cloud top. The turbulence characteristics and variability defined in this study can be used to evaluate the time evolution of turbulence structures in large eddy simulation forced by surface and cloud-top radiative forcings.  相似文献   

5.
In this study, a one-dimensional ensemble-average model is used to simulatethe Atlantic Stratocumulus Transition Experiment firstLagrangian, where the same airmass was followed from the subtropical high pressure region en route towards the trade wind region. The airmass experiences increasing sea-surface temperature and achange from subsidence to weak ascent on its way south. Thiscauses the marine boundary layer (MBL)to grow and the cloud deck to change from a solid stratocumulus deck tomore broken stratocumulus clouds with cumulus cloudsdeveloping beneath, and reaching up into the stratocumulus clouds.A control run is analyzed and compared in detail with theobservations. Both a statistical evaluation and a more subjective evaluation are performed, where both establish confidencein the model performance. The model captures the MBL growth and the cloudliquid water, as well as the drizzle flux, is well predicted by the model.A sensitivity study was performed with the objective of examining theMBL and the cloud response to external and internal 'forces'.The results show that, if drizzle formation is not allowed,unrealistically high cloud liquid water mixing ratios are predicted. Even though the drizzle flux is very small, it is still important for the water budget of the MBL and for the boundary-layer dynamics.We also found that the sea-surface temperature increase is more important for the increasing cloud top height than the synoptic-scale divergence fields. However, the synoptic-scale subsidence is crucial during the first day, when the sea-surface temperature was constant, in keepingthe cloud top at a constant height. Drizzle evaporation below the cloud base seems to be important for below-cloud condensation. The drizzle predictions are significantly altered when the prescribed cloud droplet and/or drizzle drop numbers are altered.  相似文献   

6.
利用辽宁阜新国家站(121.7458°E,42.0672°N)的毫米波云雷达(8 mm)和微雨雷达(12.5 mm)对2020年8月12-13日东北冷涡影响下的一次降水过程进行了观测,分析了云降水的垂直结构特征并探讨了降水机制。结果表明:本次过程中,云水平方向发展不均匀,以层状云和层积混合云为主,云内有时还嵌有对流泡。云降水阶段性变化明显,先后出现了层状云降水、层积混合云降水和对流云降水。层状云降水和层积混合云降水均表现出明显的亮带特征,但层积混合云降水的雷达回波强度、回波顶高和降水强度明显大于层状云降水。对流云降水的雷达回波会因强降水而产生明显衰减,因此回波顶高不能表示出实际的云顶情况。层状云降水阶段,云雷达反射率随高度降低增长缓慢,雨滴在下落过程中受蒸发和碰并的共同作用,反射率降低。与层状云降水相比,层积混合云降水的碰并效应强,且由于前期降水对近地面的增湿作用,使云下蒸发弱。对流云降水阶段,反射率的增长主要发生在冰水混合层,有利于大滴的产生,拓宽了云滴谱,提高了碰并效率。  相似文献   

7.
A convection scheme for climate model is developed based on Tiedtke’s (Mon Weather Rev 117:1779–1800, 1989) bulk mass flux framework and is evaluated with observational data and cloud resolving model simulation data. The main differences between the present parameterization and Tiedtke’s parameterization are the convection trigger, fractional entrainment and detrainment rate formulations, and closure method. Convection is triggered if the vertical velocity of a rising parcel is positive at the level at which the parcel is saturated. The fractional entrainment rate depends on the vertical velocity and buoyancy of the parcel as well as the environmental relative humidity. For the fractional detrainment rate, a linear decrease in the updraft mass flux above maximum buoyancy level is assumed. In the closure method, the cloud base mass flux is determined by considering both cloud layer instability and subcloud layer turbulent kinetic energy as controlling factors in the strength of the convection. The convection scheme is examined in a single column framework as well as using a general circulation model. The present bulk mass flux (BMF) scheme is compared with a simplified Relaxed Arakawa-Schubert (RAS) scheme. In contrast to the RAS, which specifies the cloud top, cloud top height in BMF depends on environmental properties, by considering the conditions of both the parcel and its environment in a fractional entrainment and detrainment rate formulations. As a result, BMF shows improved sensitivity in depth and strength of convection on environmental humidity compared to RAS, by strengthening coupling between cloud and environment. When the mid to lower troposphere is dry, the cloud resolving model and BMF produce cloud top around the dry layer and moisten the layer. In the framework of general circulation model, enhanced coupling between convection and environmental humidity in BMF results in improved representation of eastward propagating intraseasonal variability in the tropics—the Madden-Julian oscillation.  相似文献   

8.
A one-dimensional grid-level model including longwave radiative transfer and a level-4 second-order turbulent transfer closure which contains prognostic equations for turbulent quantities, is used to study the physics and dynamics of inversion-capped marine stratocumulus clouds.A set of numerical experiments had been performed to examined the role of sea surface temperature, large-scale vertical velocity, wind speed, and vertical wind shear in the formation and the structure of low-level clouds. For a given sea surface and geostrophic wind speed, stratocumulus clouds can grow higher with smaller large-scale subsidence as less dry air entrains into the cloud. Clouds grow higher with higher sea surface temperature for a given geostrophic wind speed and large-scale subsidence as a result of enhanced moist convection. In high wind speeds, the entire cloud deck is lifted up because of larger surface energy flux. In the budget studies of the turbulent kinetic energy (TKE), the buoyancy term is a major source term when the wind speed and the vertical shear are small across the inversion top. When the wind speed and the vertical wind shear across the inversion top become large, the mixed layer is decoupled into a cloud and a subcloud layer. In the TKE budget studies, the shear generation term becomes an important term in the budgets of the TKE and the variance of vertical velocity.  相似文献   

9.
Stratocumulus-capped mixed layers derived from a three-dimensional model   总被引:22,自引:7,他引:22  
Results of a three-dimensional numerical model are analysed in a study of turbulence and entrainment within mixed layers containing stratocumulus with or without parameterized cloud-top radiative cooling. The model eliminates most of the assumptions invoked in theories of cloud-capped mixed layers, but suffers disadvantages which include poor resolution and large truncation errors in and above the capping inversion.For relatively thick mixed layers with relatively thick capping inversions, the cloud-top radiative cooling is found to be lodged mostly within the capping inversion when the cooling is confined locally to the upper 50 m or less of the cloud. It does not then contribute substantially towards increased buoyancy flux and turbulence within the well mixed layer just below.The optimal means of correlating the entrainment rate, or mixed-layer growth rate, for mixed layers of variable amounts of stratocumulus is found to be through functional dependence upon an overall jump Richardson number, utilizing as scaling velocity the standard deviation of vertical velocity existing at the top of the mixed layer (near the center of the capping inversion). This velocity is found to be a fraction of the generalized convective velocity for the mixed layer as a whole which is greater for cloud-capped mixed layers than for clear mixed layers.  相似文献   

10.
High-resolution measurements of thermodynamic, microphysical, and turbulence properties inside a turbulent inversion layer above a marine stratocumulus cloud layer are presented. The measurements are performed with the helicopter-towed measurement payload Airborne Cloud Turbulence Observation System (ACTOS), which allows for sampling with low true air speeds and steep profiles through cloud top. Vertical profiles show that the turbulent inversion layer consists of clear air above the cloud top, with nearly linear profiles of potential temperature, horizontal wind speed, absolute humidity, and concentration of interstitial aerosol. The layer is turbulent, with an energy dissipation rate nearly the same as that in the lower cloud, suggesting that the two are actively coupled, but with significant anisotropic turbulence at the large scales within the turbulent inversion layer. The turbulent inversion layer is traversed six times and the layer thickness is observed to vary between 37 and 85 m, whereas the potential temperature and horizontal wind speed differences at the top and bottom of the layer remain essentially constant. The Richardson number therefore increases with increasing layer thickness, from approximately 0.2 to 0.7, suggesting that the layer develops to the point where shear production of turbulence is sufficiently weak to be balanced by buoyancy suppression. This picture is consistent with prior numerical simulations of the evolution of turbulence in localized stratified shear layers. It is observed that the large eddy scale is suppressed by buoyancy and is on the order of the Ozmidov scale, much less than the thickness of the turbulent inversion layer, such that direct mixing between the cloud top and the free troposphere is inhibited, and the entrainment velocity tends to decrease with increasing turbulent inversion-layer thickness. Qualitatively, the turbulent inversion layer likely grows through nibbling rather than engulfment.  相似文献   

11.
The objective of this study is to investigate the quality of clouds simulated by the National Centers for Environmental Prediction global forecast system (GFS) model and to examine the causes for some systematic errors seen in the simulations through use of satellite and ground-based measurements. In general, clouds simulated by the GFS model had similar spatial patterns and seasonal trends as those retrieved from passive and active satellite sensors, but large systematic biases exist for certain cloud regimes especially underestimation of low-level marine stratocumulus clouds in the eastern Pacific and Atlantic oceans. This led to the overestimation (underestimation) of outgoing longwave (shortwave) fluxes at the top-of-atmosphere. While temperature profiles from the GFS model were comparable to those obtained from different observational sources, the GFS model overestimated the relative humidity field in the upper and lower troposphere. The cloud condensed water mixing ratio, which is a key input variable in the current GFS cloud scheme, was largely underestimated due presumably to excessive removal of cloud condensate water through strong turbulent diffusion and/or an improper boundary layer scheme. To circumvent the problem associated with modeled cloud mixing ratios, we tested an alternative cloud parameterization scheme that requires inputs of atmospheric dynamic and thermodynamic variables. Much closer agreements were reached in cloud amounts, especially for marine stratocumulus clouds. We also evaluate the impact of cloud overlap on cloud fraction by applying a linear combination of maximum and random overlap assumptions with a de-correlation length determined from satellite products. Significantly better improvements were found for high-level clouds than for low-level clouds, due to differences in the dominant cloud geometry between these two distinct cloud types.  相似文献   

12.
层积云覆盖的海洋边界层云详细微物理过程的数值模拟   总被引:1,自引:0,他引:1  
文中建立了一个含显式分档的云微物理模式和辐射传输模式的一维 3阶湍流闭合模式 ,该模式可用于研究海洋边界层云中气溶胶和云的相互作用过程 ,同时提出了一种新的动力模式和微物理模式耦合方法 ,该方法可使动力模式中液态水相关项可以直接由微物理模式变量计算得到。作为模式的初步应用模拟了 2 0 0 1年APEX/ACE Asia在西太平洋上所观测到的一个个例。模拟结果和观测资料比较表明该模式基本上模拟出层积云覆盖的海洋边界层的基本结构  相似文献   

13.
The effect of a vertical diffusion scheme over a stratocumulus topped boundary layer (STBL) was investigated using the YONU AGCM (Yonsei University Atmospheric General Circulation Model). To consider the impact of clouds on the turbulence production, the turbulence mixing term, driven by radiative cooling at the cloud top, is implemented as an extended non-local diffiusion scheme. In the model with this new scheme, the STBL parameterization significantly influences the lower atmosphere over the tropical and...  相似文献   

14.
张苏平  王媛  衣立  刘海坤  王倩 《大气科学》2017,41(2):227-235
由于缺乏海上现场观测,对天气尺度扰动下,海表面温度锋 (海洋锋) 对海洋大气边界层 (MABL) 垂直结构和MABL内海洋性低云 (marine stratus) 的影响研究较少。2014年4月12日,中国海洋大学东方红2号科学考察船在黑潮延伸体海区的海洋锋附近捕捉到一次层积云的迅速发展。在比较稳定的天气形势下,由暖水侧向北穿越海洋锋时,云底和云顶高度升高,云区范围迅速扩大。本文利用多种大气-海洋联合观测数据,结合卫星观测和再分析资料,对此次层积云迅速发展的机理进行了综合分析。结果表明,在海上低压后部西北风控制下,在海洋锋的暖水侧 (下风方) 形成热通量大值中心和低压槽,有助于高空西风动量下传,进而又使得海气界面热通量增加,这种正反馈效应为MABL内混合层厚度加大和云底/顶高度在海洋锋的下风方升高提供有利背景条件。4月12日09:00~12:00(协调世界时),来自日本本州岛陆地的低空暖平流到达该热通量中心上空,暖平流与热通量中心的共同作用,导致该时段近海面暖中心强度异常增加,MABL中静力不稳定层加深和低压槽发展,综合作用的结果使得混合层厚度明显加深,云底高度升高,云区迅速发展。本研究有助于理解在复杂大气背景扰动下MABL对海洋强迫的响应机理。  相似文献   

15.
积层混合云结构和云微物理的数值模拟   总被引:3,自引:0,他引:3  
对三维非静力中尺度模式ARPS的云微物理方案进行了改进,利用改进后的模式模拟了华北地区的积层混合云降水个例,通过对模拟结果的分析并结合实况资料研究了积层混合云的降水特征、云物理结构特征和微物理过程。结果表明,积层混合云降水分布不均匀,雨区中存在多个强降水中心,云系中微物理量在水平和垂直方向上分布都不均匀,积云中的垂直液态水积分含量大大高于层云中含量,此次降水冰相过程占主导地位,霰的融化是最主要的雨生成项。  相似文献   

16.
The Sundqvist parameterization for warm rain production by autoconversion processes as the function of cloud liquid water mixing ratio m is tested by defining a realistic ‘driving’ profile m(z) for a maritime low, warm stratocumulus cloud, and comparing with various recent observations. The results show that the parameterization is acceptable, especially after tuning its rain collection constant C1. It is somewhat sensitive to the vertical resolution of the host model, though. Extending the calculations by considering typical cloud and raindrop size spectra, extra variables such as drizzle amounts and droplet effective radii (forced by the bulk Sundqvist rain rates) could be estimated by numerical integration. Also, these seem to agree fairly well with the available observations.  相似文献   

17.
The modification of a relatively cold air mass over the warm water of Lake Michigan is studied by using a two-dimensional nonlinear mesoscale model. Considerable amounts of heat and water vapor are supplied from the water surface to the lower atmosphere by turbulent eddies. A convective mixed layer develops and grows toward the downwind region with stratocumulus clouds over the lake.The model simulates the warming and moistening of the mixed layer, the development of a boundary layer, the divergence and convergence of wind near the coastlines, and the turbulent fluxes.The model warming of the mixed layer across the lake was about 2.2 °K and the moistening of the mixed layer was about 0.8 g kg–1, which are comparable to 2.7 °K and 0.8 g kg–1 observed by Lenschow (1973). The convective boundary layer, which includes the cloud layer, subcloud layer, and superadiabatic layer near the water surface, is well simulated. The tilt of the inversion which coincides with the cloud top is also well reproduced. When a prescribed cooling rate is applied at the cloud top, stronger turbulence and a deeper cloud layer are generated. Without the cooling, the cloud is shallow and the shape of the cloud base is determined by surface conditions. The rise of the inversion is due to upward vertical motion, and deepening of the convective layer in the downwind region.  相似文献   

18.
使用中尺度数值模式WRF中的双参数云微物理方案WDM6针对2008年台风“凤凰”登陆过程中造成的强降水进行数值模拟,通过卫星模拟器利用MTSAT-1R和TRMM卫星观测的红外云顶黑体亮温TBB、PR雷达反射率资料使用统计方法验证模拟结果。通过修改云水向雨水自动转化过程、冰晶核化过程、雪和霰的下落末速度、雪和霰的截距进行敏感性试验,减小模拟结果和卫星观测结果的差异。研究结果表明:WDM6方案模拟的台风“凤凰”登陆后的降水,强对流云系及对流柱状雷达回波基本符合实况,但模拟结果局部偏强。WDM6方案模拟产生了较多的浅对流云,低估了对流云系的出现频率。不同云类型模拟的雷达回波均偏强,对流云系雷达回波垂直分布接近观测。敏感性试验结果说明修改WDM6方案中云水向雨水自动转化率有效地改善了模拟效果。同时发现云滴初始数浓度影响云水向雨水自动转化率并最终影响云系结构和雷达反射率的模拟结果,过高的云滴初始数浓度会使模拟结果变差。  相似文献   

19.
Numerical models of climate have great difficulties with the simulation of marine low clouds in the subtropical Pacific and Atlantic Oceans. It has been especially difficult to reproduce the observed geographical distributions of the different cloud regimes in those regions. The present study discusses mechanisms proposed in previous works for changing one regime into another. One criterion is based on the theory of stratocumulus destruction through cloud top entrainment instability due to buoyancy reversal—situations in which the mixture of two air parcels becomes denser than either of the original parcels due to evaporation of cloud water. Another criterion is based on the existence of decoupling in the boundary layer. When decoupled, the stratocumulus regime changes to another in which these clouds can still exist together with cumulus. In a LES study, the authors have suggested that a combination of those two criteria can be used to diagnose whether, at a location, the cloud regime corresponds to a well-mixed stratocumulus regime, a shallow cumulus regime, or to a transitional regime where the boundary layer is decoupled. The concept is tested in the framework of an atmospheric general circulation model (GCM). It is found that several outstanding features of disagreement between simulation and observation can be interpreted as misrepresentations of the cloud regimes by the GCM. A novel criterion for switching among regimes is proposed to alleviate the effects of these misrepresentations.  相似文献   

20.
Extended sheets of stratocumulus (Sc) in the upper part of the atmospheric boundary layer (ABL) often occur under appropriate meteorological conditions. These cloud decks are important both in climate studies and in weather forecasting. We review the current knowledge of the turbulent structure of the ABL capped by a cloud deck, in the light of recent observations and model studies. The most important physical processes determining this structure are longwave radiative cooling at cloud top, shortwave radiative wanning by absorption in the cloud, surface buoyancy flux, and wind shear in the ABL. As a result, turbulence can cause entrainment against the buoyancy jump at cloud top. In cases where only longwave radiative fluxes and surface buoyancy fluxes are important, the turbulent structure is relatively well understood. When shortwave radiative fluxes and/or wind shear are also important, the resulting turbulent structure may change considerably. A decoupling of the cloud from the sub-cloud layer or of the top of the cloud from the rest of the ABL is then regularly observed. In no cases are the details of the entrainment at cloud top understood well enough to derive a relatively simple formulation that is consistent with observations. Cloud-top entrainment instability may lead to the break-up of a cloud deck (but also to cloud deepening). The role of mesoscale circulations in determining fractional cloudiness is not yet well understood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号