首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Knowledge of cloud properties and their vertical structure is important for meteorological studies due to their impact on both the Earth’s radiation budget and adiabatic heating within the atmosphere. The objective of this study is to evaluate bulk cloud properties and vertical distribution simulated by the US National Oceanic and Atmospheric Administration National Centers for Environmental Prediction Global Forecast System (GFS) using three global satellite products. Cloud variables evaluated include the occurrence and fraction of clouds in up to three layers, cloud optical depth, liquid water path, and ice water path. Cloud vertical structure data are retrieved from both active (CloudSat/CALIPSO) and passive sensors and are subsequently compared with GFS model results. In general, the GFS model captures the spatial patterns of hydrometeors reasonably well and follows the general features seen in satellite measurements, but large discrepancies exist in low-level cloud properties. More boundary layer clouds over the interior continents were generated by the GFS model whereas satellite retrievals showed more low-level clouds over oceans. Although the frequencies of global multi-layer clouds from observations are similar to those from the model, latitudinal variations show discrepancies in terms of structure and pattern. The modeled cloud optical depth over storm track region and subtropical region is less than that from the passive sensor and is overestimated for deep convective clouds. The distributions of ice water path (IWP) agree better with satellite observations than do liquid water path (LWP) distributions. Discrepancies in LWP/IWP distributions between observations and the model are attributed to differences in cloud water mixing ratio and mean relative humidity fields, which are major control variables determining the formation of clouds.  相似文献   

2.
Knowledge of cloud vertical structure is important for meteorological and climate studies due to the impact of clouds on both the Earth’s radiation budget and atmospheric adiabatic heating. Yet it is among the most difficult quantities to observe. In this study, we develop a long-term (10 years) radiosonde-based cloud profile product over the Southern Great Plains and along with ground-based and space-borne remote sensing products, use it to evaluate cloud layer distributions simulated by the National Centers for Environmental Prediction global forecast system (GFS) model. The primary objective of this study is to identify advantages and limitations associated with different cloud layer detection methods and model simulations. Cloud occurrence frequencies are evaluated on monthly, annual, and seasonal scales. Cloud vertical distributions from all datasets are bimodal with a lower peak located in the boundary layer and an upper peak located in the high troposphere. In general, radiosonde low-level cloud retrievals bear close resemblance to the ground-based remote sensing product in terms of their variability and gross spatial patterns. The ground-based remote sensing approach tends to underestimate high clouds relative to the radiosonde-based estimation and satellite products which tend to underestimate low clouds. As such, caution must be exercised to use any single product. Overall, the GFS model simulates less low-level and more high-level clouds than observations. In terms of total cloud cover, GFS model simulations agree fairly well with the ground-based remote sensing product. A large wet bias is revealed in GFS-simulated relative humidity fields at high levels in the atmosphere.  相似文献   

3.
层积云覆盖的海洋边界层云详细微物理过程的数值模拟   总被引:1,自引:0,他引:1  
文中建立了一个含显式分档的云微物理模式和辐射传输模式的一维 3阶湍流闭合模式 ,该模式可用于研究海洋边界层云中气溶胶和云的相互作用过程 ,同时提出了一种新的动力模式和微物理模式耦合方法 ,该方法可使动力模式中液态水相关项可以直接由微物理模式变量计算得到。作为模式的初步应用模拟了 2 0 0 1年APEX/ACE Asia在西太平洋上所观测到的一个个例。模拟结果和观测资料比较表明该模式基本上模拟出层积云覆盖的海洋边界层的基本结构  相似文献   

4.
Modification of cloud microphysics and cloud albedo by cloud-active aerosol is generally identified and accepted, but the nature and magnitude of aerosol-cloud interactions are vaguely understood and thought to include a myriad of processes that vary regionally and confound the application of simple physical models of cloud-aerosol sensitivity. This paper presents observations demonstrating that cloud top stability through its regulation of mixing and vertical development is one of the critical mechanisms that regulate cloud response to cloud-active aerosol in some cloud systems. Strong above-cloud inversions are shown to buffer marine stratocumulus from the effects of mixing with drier, warmer inversion air. This buffering reduces the variability of the cloud liquid water path (LWP) and enables the clouds to remain nearly adiabatic. While weaker above-cloud inversions in continental stratocumulus promote variability in the LWP and sub-adiabatic LWPs, stronger inversions in marine stratocumulus enables a relatively adiabatic existence that increases the relationship of cloud microphysical alteration to cloud-active aerosol. This study has important implications for Geoengineering in that it demonstrates that cloud systems overlain by strong thermal inversions are more likely to respond predictably to intentional manipulation of the in-cloud concentration of cloud-active aerosol.  相似文献   

5.
张寅  罗亚丽  管兆勇 《大气科学》2012,36(1):170-184
利用美国大气辐射测量项目(ARM)制作的“气候模拟最佳估计”(CMBE)观测数据集,检验美国环境预报中心(NCEP)全球预报系统(GFS)2001~2008年在ARM Southern Great Plains(SGP)站点预报的大气温度、相对湿度和云量的垂直分布,主要结论如下:(1)NCEP GFS较好地预报出了温度...  相似文献   

6.
牛玺  马晓燕  贾海灵 《气象科学》2022,42(4):467-480
本文利用A-Train卫星队列中的Cloudsat卫星所提供的二级云分类产品资料(结合了CALIPSO卫星气溶胶激光雷达)2B-CLDCLASS-LIDAR,选取2007年3月至2017年2月的样本数据进行统计分析,研究北半球主要的气溶胶排放源区(中国东部,美国东部和欧洲西部)不同云型出现频率的分布特征。结果表明,在以单层云出现的8种云类中卷云,层积云和积云的发生频率总和高达50%~70%,其次为高层云、高积云和雨层云,而深对流云和层云这两种云仅占10%以下。各类云的发生频率的空间分布可看出卷云和层积云的发生频率可高达90%以上,高层云的发生频率在70%~80%左右,高积云和积云的发生频率则接近70%以上,深对流云和层云的发生频率则在20%以下。其中,卷云、深对流云和积云主要出现在低纬度的海洋上;高层云和高积云主要出现在中低纬工业发达的陆地上;层积云、层云和雨层云主要出现在中高纬地区,其中层积云和层云出现在海洋上居多,雨层云出现频次的海陆差别不大。不同云型在不同的季节出现频次差异明显,在夏季出现较多的云型以卷云、深对流云,积云和层云为主;在冬季则是高层云、层积云和雨层云这样稳定型的云型占据主导,同时还发现卷云和层积云发生频率的月变化相反,而高层云和雨层云发生频率的月变化相似。  相似文献   

7.
In this study, a one-dimensional ensemble-average model is used to simulatethe Atlantic Stratocumulus Transition Experiment firstLagrangian, where the same airmass was followed from the subtropical high pressure region en route towards the trade wind region. The airmass experiences increasing sea-surface temperature and achange from subsidence to weak ascent on its way south. Thiscauses the marine boundary layer (MBL)to grow and the cloud deck to change from a solid stratocumulus deck tomore broken stratocumulus clouds with cumulus cloudsdeveloping beneath, and reaching up into the stratocumulus clouds.A control run is analyzed and compared in detail with theobservations. Both a statistical evaluation and a more subjective evaluation are performed, where both establish confidencein the model performance. The model captures the MBL growth and the cloudliquid water, as well as the drizzle flux, is well predicted by the model.A sensitivity study was performed with the objective of examining theMBL and the cloud response to external and internal 'forces'.The results show that, if drizzle formation is not allowed,unrealistically high cloud liquid water mixing ratios are predicted. Even though the drizzle flux is very small, it is still important for the water budget of the MBL and for the boundary-layer dynamics.We also found that the sea-surface temperature increase is more important for the increasing cloud top height than the synoptic-scale divergence fields. However, the synoptic-scale subsidence is crucial during the first day, when the sea-surface temperature was constant, in keepingthe cloud top at a constant height. Drizzle evaporation below the cloud base seems to be important for below-cloud condensation. The drizzle predictions are significantly altered when the prescribed cloud droplet and/or drizzle drop numbers are altered.  相似文献   

8.
 This study compares radiative fluxes and cloudiness fields from three general circulation models (the HadAM4 version of the Hadley Centre Unified model, cycle 16r2 of the ECMWF model and version LMDZ 2.0 of the LMD GCM), using a combination of satellite observations from the Earth Radiation Budget Experiment (ERBE) and the International Satellite Cloud Climatology Project (ISCCP). To facilitate a meaningful comparison with the ISCCP C1 data, values of column cloud optical thickness and cloud top pressure are diagnosed from the models in a manner consistent with the satellite view from space. Decomposing the cloud radiative effect into contributions from low-medium- and high-level clouds reveals a tendency for the models' low-level clouds to compensate for underestimates in the shortwave cloud radiative effect caused by a lack of high-level or mid-level clouds. The low clouds fail to compensate for the associated errors in the longwave. Consequently, disproportionate errors in the longwave and shortwave cloud radiative effect in models may be taken as an indication that compensating errors are likely to be present. Mid-level cloud errors in the mid-latitudes appear to depend as much on the choice of the convection scheme as on the cloud scheme. Convective and boundary layer mixing schemes require as much consideration as cloud and precipitation schemes when it comes to assessing the simulation of clouds by models. Two distinct types of cloud feedback are discussed. While there is reason to doubt that current models are able to simulate potential `cloud regime' type feedbacks with skill, there is hope that a model capable of simulating potential `cloud amount' type feedbacks will be achievable once the reasons for the remaining differences between the models are understood. Received: 23 January 2000 / Accepted: 24 January 2001  相似文献   

9.
广东省新丰江流域4—5月暖云的微物理特征   总被引:7,自引:1,他引:6  
本文对新丰江流域初夏暧云的含水量与小云滴谱特征进行了分析。指出暖积云的含水量比暖性层积云大;广东初夏暧性层积云的含水量大于北方降水性As—Ns云系。被探测云的主要降水机制均为碰并增长过程,但浓积云中云滴碰并增长条件比层积云优越;与湖南等地积云相比,广东积云更具有海洋性积云的特征。   相似文献   

10.
登陆北上台风暴雨突发性增强的一种机制研究   总被引:6,自引:1,他引:5  
采用一个三维混合模式对1992年8月30日至9月2日一次登陆北上台风暴雨过程进行了模拟。模式可以较准确地预报出与地面倒槽相一致的地面降水位置及降水量值。模拟的台风云系结构与卫星云图比较表明,外围云场与实例云况吻合很好,验证了本模式模拟卫星云图的能力,对卫星云图预报有实际意义;暴雨突然增幅的直接原因是高层冰云与低层供水云的突然北移重叠造成的。受地面倒槽附近强烈辐合抬升的动力作用,各相态云系的分布与垂直运动紧密相关;辐合线右侧的东南低空急流为降水的增幅及维持提供水汽来源;云的相变潜热非绝热加热作用对暴雨的增幅及维持具有正反馈作用,它对暴雨维持具有积极贡献。  相似文献   

11.
During a field measuring campaign at Kleiner Feldberg (Taunus) in 1990, microphysical characteristics of clouds have been measured by Forward Scattering Spectrometer Probes (FSSP). The aim was to study the influence of aerosol and meteorological factors on droplet size and number. The results are: More mass in the accumulation size range of the aerosol leads to more droplets in stratocumulus clouds and to higher soluble masses in droplets of stratus clouds. However, the aerosol distribution was coarser in the stratus clouds compared to the stratocumulus clouds. Within the first 200 m from cloud base, the droplets grow while their number decreases. The growth results in a stable size of about 14 µm diameter over a large distance from cloud base in many stratocumulus clouds. Two types of mixing processes were observed: processes with reductions in the number of droplets (inhomogeneous mixing) and with reductions in the size of the droplets (homogeneous mixing).  相似文献   

12.
The effect of a vertical diffusion scheme over a stratocumulus topped boundary layer (STBL) was investigated using the YONU AGCM (Yonsei University Atmospheric General Circulation Model). To consider the impact of clouds on the turbulence production, the turbulence mixing term, driven by radiative cooling at the cloud top, is implemented as an extended non-local diffiusion scheme. In the model with this new scheme, the STBL parameterization significantly influences the lower atmosphere over the tropical and...  相似文献   

13.
The Chinese Academy of Meteorological Sciences (CAMS) two-moment bulk microphysics scheme was adopted in this study to investigate the representation of cloud and precipitation processes under different environmental conditions.The scheme predicts the mixing ratio of water vapor as well as the mixing ratios and number concentrations of cloud droplets,rain,ice,snow,and graupel.A new parameterization approach to simulate heterogeneous droplet activation was developed in this scheme.Furthermore,the improved CAMS scheme was coupled with the Weather Research and Forecasting model (WRF v3.1),which made it possible to simulate the microphysics of clouds and precipitation as well as the cloud-aerosol interactions in selected atmospheric condition.The rain event occurring on 27-28 December 2008 in eastern China was simulated using the CAMS scheme and three sophisticated microphysics schemes in the WRF model.Results showed that the simulated 36-h accumulated precipitations were generally agreed with observation data,and the CAMS scheme performed well in the southern area of the nested domain.The radar reflectivity,the averaged precipitation intensity,and the hydrometeor mixing ratios simulated by the CAMS scheme were generally consistent with those from other microphysics schemes.The hydrometeor number concentrations simulated by the CAMS scheme were also close to the experiential values in stratus clouds.The model results suggest that the CAMS scheme performs reasonably well in describing the microphysics of clouds and precipitation in the mesoscale WRF model.  相似文献   

14.
The cloudiness fields simulated by a general circulation model and a validation using the International Satellite Cloud Climatology Project (ISCCP) satellite observations are presented. An adapted methodology is developed, in which the issue of the sub-grid scale variability of the cloud fields, and how it may affect the comparison exercise, is considered carefully. In particular different assumptions about the vertical overlap of cloud layers are made, allowing us to reconstruct the cloud distribution inside a model grid column. Carrying out an analysis directly comparable to that of ISCCP then becomes possible. The relevance of this method is demonstrated by its application to the evaluation of the cloud schemes used in Laboratoire de Météoroligie Dynamique (LMD) general circulation model. We compare cloud properties, such as cloud-top height and cloud optical thickness, analysed by ISCCP and simulated by the LMD GCM. The results show that a direct comparison of simulated low cloudiness and that shown from satellites is not possible. They also reveal some model deficiencies concerning the cloud vertical distribution. Some of these features depend little on the cloud overlap assumption and may reveal inadequate parameterisation of the boundary layer mixing or the cloud water precipitation rate. High convective clouds also appear to be too thick.  相似文献   

15.
A quantitative performance assessment of cloud regimes in climate models   总被引:4,自引:3,他引:1  
Differences in the radiative feedback from clouds account for much of the variation in climate sensitivity amongst General Circulation Models (GCMs). Therefore metrics of model performance which are demonstrated to be relevant to the cloud response to climate change form an important contribution to the overall evaluation of GCMs. In this paper we demonstrate an alternative method for assigning model data to observed cloud regimes obtained from clustering histograms of cloud amount in joint cloud optical depth—cloud top pressure classes. The method removes some of the subjectivity that exists in previous GCM cloud clustering studies. We apply the method to ten GCMs submitted to the Cloud Feedback Model Intercomparison Project (CFMIP), evaluate the simulated cloud regimes and analyse the climate change response in the context of these regimes. We also propose two cloud regime metrics, one of which is specifically targeted at assessing GCMs for the purpose of obtaining the global cloud radiative response to climate change. Most of the global variance in the cloud radiative response between GCMs is due to low clouds, with 47% arising from the stratocumulus regime and 18% due to the regime characterised by clouds undergoing transition from stratocumulus to cumulus. This result is found to be dominated by two structurally similar GCMs. The shallow cumulus regime, though widespread, has a smaller contribution and reduces the variance. For the stratocumulus and transition regimes, part of the variance results from a large model spread in the radiative properties of the regime in the control simulation. Comparison with observations reveals a systematic bias for both the stratocumulus and transition regimes to be overly reflective. If this bias was corrected with all other aspects of the response unchanged, the variance in the low cloud response would reduce. The response of some regimes with high cloud tops differ between the GCMs. These regimes are simulated too infrequently in a few of the models. If the frequency in the control simulation were more realistic and changes within the regimes were unaltered, the variance in the cloud radiative response from high-top clouds would increase. As a result, use of observations of the mean present-day cloud regimes suggests that whilst improvements in the simulation of the cloud regimes would impact the climate sensitivity, the inter-model variance may not reduce. When the cloud regime metric is calculated for the GCMs analysed here, only one model is on average consistent with observations within their uncertainty (and even this model is not consistent with the observations for all regimes), indicating scope for improvement in the simulation of cloud regimes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Numerical models of climate have great difficulties with the simulation of marine low clouds in the subtropical Pacific and Atlantic Oceans. It has been especially difficult to reproduce the observed geographical distributions of the different cloud regimes in those regions. The present study discusses mechanisms proposed in previous works for changing one regime into another. One criterion is based on the theory of stratocumulus destruction through cloud top entrainment instability due to buoyancy reversal—situations in which the mixture of two air parcels becomes denser than either of the original parcels due to evaporation of cloud water. Another criterion is based on the existence of decoupling in the boundary layer. When decoupled, the stratocumulus regime changes to another in which these clouds can still exist together with cumulus. In a LES study, the authors have suggested that a combination of those two criteria can be used to diagnose whether, at a location, the cloud regime corresponds to a well-mixed stratocumulus regime, a shallow cumulus regime, or to a transitional regime where the boundary layer is decoupled. The concept is tested in the framework of an atmospheric general circulation model (GCM). It is found that several outstanding features of disagreement between simulation and observation can be interpreted as misrepresentations of the cloud regimes by the GCM. A novel criterion for switching among regimes is proposed to alleviate the effects of these misrepresentations.  相似文献   

17.
A one-dimensional grid-level model including longwave radiative transfer and a level-4 second-order turbulent transfer closure which contains prognostic equations for turbulent quantities, is used to study the physics and dynamics of inversion-capped marine stratocumulus clouds.A set of numerical experiments had been performed to examined the role of sea surface temperature, large-scale vertical velocity, wind speed, and vertical wind shear in the formation and the structure of low-level clouds. For a given sea surface and geostrophic wind speed, stratocumulus clouds can grow higher with smaller large-scale subsidence as less dry air entrains into the cloud. Clouds grow higher with higher sea surface temperature for a given geostrophic wind speed and large-scale subsidence as a result of enhanced moist convection. In high wind speeds, the entire cloud deck is lifted up because of larger surface energy flux. In the budget studies of the turbulent kinetic energy (TKE), the buoyancy term is a major source term when the wind speed and the vertical shear are small across the inversion top. When the wind speed and the vertical wind shear across the inversion top become large, the mixed layer is decoupled into a cloud and a subcloud layer. In the TKE budget studies, the shear generation term becomes an important term in the budgets of the TKE and the variance of vertical velocity.  相似文献   

18.
A simple closure scheme for nocturnal stratocumulus is proposed. The scheme is formulated in conserved variables. Cloud fraction and cloud water amount are diagnosed assuming a top-hat distribution for total water. Conversion of cloud water into rain water is parameterized in terms of cloud water and the incoming rain flux. Turbulence transport in the cloud layer is accounted for by a first-order vertical diffusion scheme with a profile-type diffusivity. The length scale corresponds to the thickness of the cloud layer. The turbulent velocity scale is directly related to the long wave radiative flux divergence in the cloud. Entrainment at cloud top is implicitly treated by extending the in-cloud mixing profile slightly beyond cloud top. The excess height is derived from the buoyancy frequency at cloud top and a radiative–convective velocity scale. The scheme is capable of simulating realistic profiles of the conserved variables and cloud parameters for a case of nocturnal stratocumulus prepared on the basis of ASTEX data.  相似文献   

19.
利用MODIS数据反演多层云光学厚度和有效粒子半径   总被引:2,自引:0,他引:2  
叶晶  李万彪  严卫 《气象学报》2009,67(4):613-622
利用卫星资料反演云微物理参数不仅有助于对天气变化的监测和预报,而且对人工影响天气的研究十分有益.目前卫星反演云微物理参数的算法一般是假设视场中只有一层云,但是实际环境中多层云出现很频繁.文中研究了多层云的光学厚度和有效粒子半径微物理参数的反演算法,主要针对薄的冰云覆盖在低层水云的多层云情形.算法利用中分辨率成像光谱仪(MODIS)吸收通道和非吸收通道同时进行反演,在此基础上利用SBDART辐射传输模式模拟冰云覆盖在低层水云上的多层云对云微物理参数反演的影响,模拟表明反演时将多层云作为单层云处理会使反演结果产生较大误差.为此,文中提出了云光学厚度和有效粒子半径反演算法中要考虑多层云的因素,并设计了一套云光学厚度和有效粒子半径反演方案.该方案使用SBDART辐射传输模式建立不同观测几何条件、下垫面类型、大气环境等条件下以光学厚度和有效粒子半径为函数变量的多层云、水云和冰云辐射查找表.经过云检测、云相态识别和多层云检测后,在该查找表的基础上,对MODIS通道1和通道7的数据采用最小方差拟合法反演光学厚度、有效粒子半径.利用该方案对2006年7月12日TERRA卫星MODIS数据进行反演试验,反演结果与NASA发布的MOD06产品中云的光学厚度和有效粒子半径的结果较一致,表明方案具有合理性.  相似文献   

20.
一次高原强降水过程及其云物理结构的数值模拟   总被引:2,自引:2,他引:0  
马恩点  刘晓莉 《气象科学》2018,38(2):177-190
本文利用中尺度WRF数值模式,对2010年8月7—8日发生在青藏高原东部一次强降水过程进行数值模拟,利用常规观测资料、FY卫星云图和数值模拟结果对此次强降水过程的宏微观演变特征和降水机制进行分析。本次模拟选用Milbrandt-Yau(MY)微物理方案,有较为完整的双参数计算过程,较为全面地考虑了各类云物理过程,对云微物理结构的描述和处理精细而复杂。结果表明,此次强对流降水发生在副热带高压与南亚高压相连、中高纬短波槽分裂南下、并与西南暖湿气流相遇形成低涡切变线的有利天气形势下,西南暖湿气流带来大量水汽、降水区存在大量不稳定能量、以及低层辐合高层辐散的高低空配置为暴雨发生发展提供了必要条件。WRF模式较好地模拟出了此次强降水过程的降水落区、降水中心和降水量级,对青海平安和甘南上空云团合并过程、强对流云团范围也模拟较好。对云微物理结构的分析结果表明,此次对流云降水为冷云降水,暖层浅薄,冰相粒子丰富,其中霰粒对过冷水的碰冻能力最强,使得其含量远大于冰雪晶含量,其融化是雨水的主要来源。雪晶含量最少,或与其碰冻过冷水能力较弱有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号