首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 227 毫秒
1.
Eslamy peninsula in NW of Iran is formed by a strato-volcano with collapsed calderon, which is intruded by lamprophyric dykes with minette composition. Also trachytic and microsyenitic dykes have intruded the volcanic rocks. The oldest volcanic activity includes eruption of leucite basanite, leucite tephrite, basanite and tephrite, which are associated with pyroclastic rocks. Lamprophyric dykes are distinguishable with large mica phenocrysts. Mica-clinopyroxenite xenoliths can be found in the rocks. The source magma of the rocks had a ultrapotassic to shoshonitic nature, rich in LREE and LILE. Eslamy peninsula lamprophyres are between alkaline and calc-alkaline lamprophyres in terms of REE patterns and spider diagrams for trace elements, but are closer to clac-alkaline lamprophyres. The behaviour of trace elements studied by the means of spider diagrams show that the magma, producing the lamprophyres, is generated from deep-mantle probably from a garnet-bearing source (garnet lherzolite) with high CO2/H2O content. The resulted magma had interacted with crustal materials and had formed Eslamy peninsula lamprophyres in a post-collisional tectonic setting. Geochemistry of rare elements indicate an extensive rutile-rich metasomatism in the source magma of the lamprophyres.  相似文献   

2.
天山西南部白垩纪-老第三纪发育的托云盆地及其周边出露的岩浆岩是一套完整的碱性岩浆岩系列,包含了苦橄质玄武岩、玄武岩、碧玄岩、碱玄岩(橄榄玄武岩、黑云母辉长二长岩、辉长辉绿岩、辉石橄榄岩)和响岩等多种岩石类型。野外工作显示有火山喷出岩和侵入岩两种不同的产状。年代学结果指示岩浆岩形成于120-50Ma间,为晚白垩世-老第三纪盆地形成演化阶段岩浆活动的产物。分离结晶作用是岩浆演化和岩浆系列形成最主要的因素,托云岩浆岩大致经历了结晶分异过程的两个阶段:早期苦橄质岩浆中橄榄石、尖晶石的结晶分离,表现为MgO和微量元素Cr含量随SiO2含量增加大幅度的降低;晚期主要是单斜辉石、斜长石和钛铁矿等矿物的结晶分异,以CaO、FeO、TiO2等随SiO2含量增加大幅度的降低为特点。苦橄质岩石的出现指示了地幔较高温熔融事件的存在,进而为托云盆地地幔柱的存在提供了有力的证据。无论如何,碱性岩浆的活动表明托云盆地形成的大地构造背景是大陆主动裂谷环境,对应的深部背景为区域性的地幔柱构造。首次发现的响岩是结晶分异作用的最终产物。响岩较极端地指示了岩浆结晶分离过程对岩浆演化的巨大影响。托云岩浆岩的同位素特征指示其源区是一个接近于PREMA地幔,但微量元素特征显示其受地壳流体交代改造的特点。岩浆岩的Nd同位素TDM集中在250~600Ma之间,反映了一个古生代时期形成的新生岩石圈地幔,与新疆北部地区的晚古生代新生岩石圈地幔的事实相符。  相似文献   

3.
Mineralogical, major and trace element, and isotopic data are presented for leucite basanite and leucite tephrite eruptives and dykes from the Batu Tara volcano, eastern Sunda arc. In general, the eruptives are markedly porphyritic with phenocrysts of clinopyroxene, olivine, leucite ±plagioclase±biotite set in similar groundmass assemblages. These K-rich alkaline volcanics have high concentrations of large-ion-lithophile (LIL), light rare earth (LRE) and most incompatible trace elements, and are characterized by high 87Sr/86Sr (0.70571–0.70706) and low 143Nd/ 144Nd (0.512609–0.512450) compared with less alkaline volcanics from the Sunda arc. They also display the relative depletion of Ti and Nb in chondrite-normalized plots which is a feature of subalkaline volcanics from the eastern Sunda arc and arc volcanics in general. Chemical and mineralogical data for the Batu Tara K-rich rocks indicate that they were formed by the accumulation of variable amounts of phenocrysts in several melts with different major and trace element compositions. The compositions of one of these melts estimated from glass inclusions in phenocrysts is relatively Fe-rich (100 Mg/(Mg + Fe2+)=48–51) and is inferred to have been derived from a more primitive magma by low-pressure crystal fractionation involving olivine, clinopyroxene and spinel. Mg-rich (mg 90) and Cr-rich (up to 1.7 wt. % Cr2O3) zones in complex oscillatory-zoned clinopyroxene phenocrysts probably also crystallized from such a magma. The marked oscillatory zoning in the clinopyroxene phenocrysts is considered to be the result of limited mixing of relatively evolved with more primitive magmas, together with their phenocrysts, along interfaces between discrete convecting magma bodies.  相似文献   

4.
Holocene basaltic rocks of the Jingpohu area are located in the "Crater Forest" and Hamatang districts to the northwest of the Jingpohu Lake. Although there is only a distance of 15 km between the two districts, their petrological characteristics are very different: alkaline olivine basalt without any megacrysts in the former, and leu-cite tephrite with Ti-amphibole, phlogopite and anorthoclasite megacrysts in the latter. On the basis of their geo-chemical characteristics, the two types of basaltic rocks should belong to weakly sodian alkaline basalts. But leucite tephrite is characterized by higher Al2O3, Na2O and K2O, higher enrichment in light rare earth elements (LREE) and large ion lithophile elements (LILE), lower MgO and CaO, compatible elements and moderately compatible elements and lower Mg# values and Na/K ratios in comparison with alkaline olivine basalt. However, the two types of basaltic rocks have similar Sr, Nd, Pb isotopic compositions, which suggests that the mantle beneath the Jingpohu  相似文献   

5.
张招崇  李树才 《岩石学报》2000,16(3):327-336
镜泊湖地区全新世玄武岩分布在镜泊湖西北方向的“火山口森林”地区和蛤蟆塘地区。这两个地区相距只有15km,但其玄武质岩石在岩石学上具有明显的区别,前者为碱性橄榄玄武岩,后者为白榴石碱玄岩,并且具有钛角闪石、金云母和歪长石巨晶,而前者则没有这些巨晶。对它们的地球化学特征研究表明,两个地区的玄武夺石虽然均属于偏钠质的碱性玄武岩,但是白榴石碱玄岩相对于碱性橄榄玄武岩总体上具有高的Al2O3、Na2O、K2  相似文献   

6.
The paper presents data on inclusions in minerals of the least modified potassic lamprophyres in a series of strongly carbonatized potassic alkaline ultramafic porphyritic rocks. The rocks consist of diopside, kaersutite, analcime, apatite, and rare phlogopite and titanite phenocrysts and a groundmass, which is made up, along with these minerals, of potassic feldspar and calcite. The diopside and kaersutite phenocrysts display unsystematic multiple zoning. Chemically and mineralogically, the rock is ultramafic foidite and most likely corresponds to monchiquite. Primary and secondary melt inclusions were found in diopside, kaersutite, apatite, and titanite phenocrysts and are classified into three types: sodic silicate inclusions with analcime, potassic silicate inclusions with potassic feldspar, and carbonate inclusions, which are dominated by calcite. Heating and homogenization of the inclusions show that the potassic lamprophyres crystallized from a heterogeneous magma, with consisted of mixing mafic sodic and potassic alkaline magmas enriched in a carbonatite component. The composition of the magmas was close to nepheline and leucite melanephelinite. The minerals crystallized at 1150–1090°C from the sodic melts and at 1200–1250°C from the potassic ones. The sodic mafic melts were richer in Fe than the potassic ones, were the richest in Al, Mn, SO3, Cl, and H2O and poorer in Ti and P. The potassic mafic melts were not lamproitic, as follows from the presence of albite in the crystallized primary potassic melt inclusions. The diopside, the first mineral to crystallize in the rock, started to crystallize in the magmatic chamber from sodic mafic melt and ended to crystallize from mixed sodic–potassic melts. The potassic mafic melts were multiply replenished in the chamber in relation to tectonic motions. The ascent of the melts to the surface and rapidly varying P–T parameters of the magma were favorable for multiple separations of carbonatite melts from the alkaline mafic ones and their mixing and mingling.  相似文献   

7.
东北黑龙江小古里河-科洛-五大连池-二克山火山岩带是我国近代保存最好的火山群之一,此带火山岩的岩石化学特点全都强碱富钾,K2O/Na2O>1.2,属于一套高钾过碱性火山岩。通过对东北钾质火山岩及金云母橄榄岩地幔捕虏体中钾质矿物金云母、白榴石的成分、结晶环境与岩浆成分及来源关系的研究,认为在岩石圈伸展构造背景下,地幔金云母橄榄岩的低度部分熔融形成钾质岩浆,钾质岩浆上升到地壳浅部经历了白榴石的结晶作用。岩浆演化晚期,因钾质矿物大量晶出导致岩浆相对富钠而出现他形霞石和方钠石等填隙矿物。火山岩及地幔捕虏体中富挥发分矿物金云母、白榴石、磷灰石、霞石和方钠石还提供了钾质岩浆富含H2O、F、Cl、P等挥发分的证据。  相似文献   

8.
Chemical and Sr, Nd and Pb isotopic compositions of Late Cenozoic to Quaternary small-volume phonolite, trachyte and related mafic rocks from the Darfur volcanic province/NW-Sudan have been investigated. Isotope signatures indicate variable but minor crustal contributions. Some phonolitic and trachytic rocks show the same isotopic composition as their primitive mantle-derived parents, and no crustal contributions are visible in the trace element patterns of these samples. The magmatic evolution of the evolved rocks is dominated by crystal fractionation. The Si-undersaturated strongly alkaline phonolite and the Si-saturated mildly alkaline trachyte can be modelled by fractionation of basanite and basalt, respectively. The suite of basanite–basalt–phonolite–trachyte with characteristic isotope signatures from the Darfur volcanic province fits the compositional features of other Cenozoic intra-plate magmatism scattered in North and Central Africa (e.g., Tibesti, Maghreb, Cameroon line), which evolved on a lithosphere that was reworked or formed during the Neoproterozoic.  相似文献   

9.
A late-stage rift-related tholeiite-alkalic suite of igneous intrusions cut the Deccan Traps lavas at the western Indian continental margin. The suite comprises intrusives that can be grouped into ten lithotypes on the basis of their mutual relationships. Tholeiitic types predate the alkaline rocks and greatly predominate, however, the alkaline members exhibit more diversity in mineralogy and chemistry, and are amongst the rare magmatic rocks from the Deccan that host both mantle and lower crustal xenoliths. The mineralogy of most rock types is dominated by clinopyroxene. The diversity of the alkaline rocks could be mainly accounted for by fractional crystallization and mixing between evolved and primitive melts under varying P-T conditions. Sodic and potassic lamprophyres are amongst the most primitive samples with high Mg #, FeO/MgO < 1, high Cr and also with relatively high Ba, Sr, Zr and Nb. They are the most deeply derived magmas within the Deccan Traps as is evident from the mantle and lower crustal xenoliths entrained by them. They possibly represent low degree melts of incompatible element-enriched mantle source rocks. The nephelinites are strongly porphyritic and despite their high Mg #s can be regarded as evolved magmas that have been responsible for the formation of the tephriphonolite daughter. The nephelinites have undergone contamination by lower crustal granulites. The composite intrusions of microdiorites with their complexly zoned mineralogy dominated by plagioclase and amphiboles/micas represent hybrid rocks that have resulted from mixing between tholeiitic and trachytic melts partly at depth and partly at shallow crustal levels.  相似文献   

10.
石林  解广轰 《地球化学》1998,27(3):294-303
南极泰勒谷及罗斯岛地区火山岩的微量元素地球化学研究表明,它们可以分为两大类,博尼湖南岸、克雷克特山和鸟角的碧玄岩或碱玄岩是地幔平衡部分熔融作用的结果;罗德角和伊万思角的安粗岩是岩浆分离结晶作用的结果,其母岩浆相当于本区的碧玄岩。5个采样地区火山岩具有相同的地幔来源,地幔源区为轻稀土富集型,并富集重稀土元素。  相似文献   

11.
《地学前缘(英文版)》2020,11(3):925-942
The Pb isotope composition of the upper mantle beneath Central Europe is heterogeneous due to the subduction of regionally contrasting material during the Variscan and Alpine orogenies.Late Variscan to Cenozoic mantlederived melts allow mapping this heterogeneity on a regional scale for the last ca.340 Myr.Late Cretaceous and Cenozoic anorogenic magmatic rocks of the Bohemian Massif(lamprophyres,volcanic rocks of basanite/tephrite and trachyte/phonolite series) concentrate mostly in the Eger Rift.Cretaceous ultramafic lamprophyres yielded the most radiogenic Pb isotope signatures reflecting a maximum contribution from metasomatised lithospheric mantle,whereas Tertiary alkaline lamprophyres originated from mantle with less radiogenic ~(206)Pb/~(204)b ratios suggesting a more substantial modification of lithospheric source by interaction with asthenosphericderived melts.Cenozoic volcanic rocks of the basanite/tephrite and trachyte/phonolite series define a linear mixing trend between these components,indicating dilution of the initial lithospheric mantle signature by upwelling asthenosphere during rifting.The Pb isotope composition of Late Cretaceous and Cenozoic magmatic rocks of the Bohemian Massif follows the same Pb growth curve as Variscan orogenic lamprophyres and lamproites that formed during the collision between Laurussia,Gondwana,and associated terranes.This implies that the crustal Pb signature in the post-Variscan mantle is repeatedly sampled by younger anorogenic melts.Most Cenozoic mantle-derived rocks of Central Europe show similar Pb isotope ranges as the Bohemian Massif.  相似文献   

12.
The Mid to Late Miocene intraplate alkaline volcanic suites of western Bohemia are relict of the intensive voluminous volcanism accompanied by large-scale uplift and doming. The association with the uplift of the NE flank of the Cheb–Domažlice Graben (CDG) is uncertain in view of the mostly transpressional tectonics of the graben. The volcanism is most probably of the Ohře/Eger Rift off-rift settings. Two cogenetic volcanic suites have been recognised: (i) silica-saturated to oversaturated consisting of olivine basalt–trachybasalt-(basaltic) trachyandesite–trachyte–rhyolite (13.5 to 10.2 Ma) and (ii) silica-undersaturated (significantly Ne-normative) (melilite-bearing) olivine nephelinite–basanite–tephrite (18.3 to 6.25 Ma). A common mantle source is suggested by similar primitive mantle-normalised incompatible element patterns and Sr–Nd–Pb isotopic compositions for the assumed near-primary mantle-derived compositions of both suites, i.e., olivine basalt and olivine nephelinite. Apparently, they were generated by different degrees of partial melting of a common mantle source, with garnet, olivine and clinopyroxene in the residuum. Negative Rb and K anomalies indicate a residual K-phase (amphibole/phlogopite) and melting of partly metasomatised mantle lithosphere. The evolution of the basanite–olivine basalt–trachybasalt-(basaltic) trachyandesite–trachyte–rhyolite suite suggests the presence of an assimilation–fractional crystallization process (AFC). Substantial fractionation of olivine, clinopyroxene, Fe–Ti oxide, plagioclase/alkali feldspar and apatite accompanied by a significant assimilation of magma en route by crustal material is most evident in evolved member, namely, trachytes and rhyolites. The magmas were probably sourced by both sub-lithospheric and lithospheric partly metasomatised mantle. The evolution of the (melilite-bearing) olivine nephelinite–basanite–tephrite suite is less clear because of its limited extent. Parental magma of both these rock suites is inferred to have originated by low-degree melting of the mantle source initiated at ca. 18 Ma and reflects mixing of asthenosphere-derived melts with isotopically enriched lithospheric melts. The older Oligocene alkaline rocks (29–26 Ma) occur within the Cheb–Domažlice Graben (CDG) locally but are significant in the closely adjacent neighbouring western Ohře Rift. The Sr–Nd–Pb isotopic composition of primitive volcanic rocks of both suites is similar to that of the European Asthenospheric Reservoir (EAR). Initial Pb isotopic data plot partly above the northern hemisphere reference line at radiogenic 206Pb/204Pb ratios of ∼19 to 20, and indicate the presence of a Variscan crustal component in the source.  相似文献   

13.
Field, petrographical and geochemical studies of a group of late Pleistocene, alkaline and mildly peralkaline trachytic and trachyphonolitic lavas from the northern Kenya Rift have been undertaken. A large number of flows were erupted from widely dispersed centres to form an extensive volcanic shield within the floor of the rift. The major element composition of most rocks was substantially modified during crystallisation, but other data show that differentiation within the suite was the result of protracted feldspar fractionation of a trachytic magma with intially very low abundances of residual trace elements.  相似文献   

14.
The Bingham porphyry Cu-Au-Mo deposit, Utah, may only be world-class because of substantial contributions of sulfur and metals from mafic alkaline magma to an otherwise unremarkable calc-alkaline system. Volcanic mafic alkaline rocks in the district are enriched in Cr, Ni, and Ba as well as Cu, Au, platinum group elements (PGE), and S. The bulk of the volcanic section that is co-magmatic with ore-related porphyries is dacitic to trachytic in composition, but has inherited the geochemical signature of high Cr, Ni, and Ba from magma mixing with the mafic alkaline rocks. The volcanic section that most closely correlates in time with ore-related porphyries is very heterogeneous containing clasts of scoriaceous latite, latitic, and minette, and flows of melanephelinite, shoshonite, and olivine latite in addition to volumetrically dominant dacite/trachyte. Bingham ore-related porphyries show ample evidence of prior mixing with mafic alkaline magmas. Intrusive porphyries that have not been previously well-studied have several chemical and mineralogical indications of magma mixing. These "mixed" lithologies include the hybrid quartz monzonite porphyry, biotite porphyry, and minette dikes. Even some of the more silicic latite and monzonite porphyries retain high Cr and Ba contents indicative of mixing and contain trace amounts of sapphire (<1 mm). The heterogeneous block and ash flow deposits also contain sapphire and are permissively correlated with the intrusions based on chemical, mineralogical, and isotopic data. Magma mixing calculations suggest about 10% of the monzonitic/latitic ore-related magma may have been derived from mafic alkaline magma similar to the melanephelinite. If the original S content of the mafic magma was about 2,000-4,000 ppm, comparable with similar magmas, then the mafic magma may have been responsible for contributing more than half of the S and a significant portion of the Cu, Au, and PGE in the Bingham deposit.  相似文献   

15.
Granular xenoliths (ejecta) from pyroclastic deposits emplaced during the latest stages of activity of the Alban Hills volcano range from ultramafic to salic. Ultramafic types consist of various proportions of olivine, spinel, clinopyroxene and phlogopite. They show low SiO2, alkalies and incompatible element abundances and very high MgO. However, Cr, Co and Sc are anomalously low, at a few ppm level. Olivine is highly magnesian (up to Fo%=96) and has rather high CaO (1% Ca) and very low Ni (around a few tens ppm) contents. These characteristics indicate a genesis of ultramafic ejecta by thermal metamorphism of a siliceous dolomitic limestone, probably with input of chemical components from potassic magma. The other xenoliths have textures and compositional characteristics which indicate that they represent either intrusive equivalents of lavas or cumulates crystallized from variably evolved ultrapotassic magmas. One sample of the former group has major element composition resembling ultrapotassic rocks with kamafugitic affinity. Some cumulitic rocks have exceedingly high abundances of Th (81–84 ppm) and light rare-earth elements (LREE) (La+Ce=421–498 ppm) and extreme REE fractionation (La/Yb=288–1393), not justified by their modal mineralogy which is dominated by sanidine, leucite and nepheline. Finegrained phases are dispersed through the fractures and within the interstices of the main minerals. Semiquantitative EDS analyses show that Th and LREE occur at concentration levels of several tens of percent in these phases, indicating that their presence is responsible for the high concentration of incompatible trace elements in the whole rocks. The interstitial position of these phases and their association with fluorite support a secondary origin by deposition from fluorine-rich fluids separated from a highly evolved potassic liquid. The Nd isotopic ratios of the cjecta range from 0.51182 to 0.51217. 87Sr/86Sr ratios range from 0.70900 to 0.71036. With the exception of one sample, these values are lower than those of the outcropping lavas, which cluster around 0.7105±3. This indicates either the occurrence of several isotopically distinct potassic magmas or a variable interaction between magmas and wall rocks. However, this latter hypothesis requires selective assimilation of host rocks in order to explain isotopic and geochemical characteristics of lavas and xenoliths. The new data indicate that the evolutionary processes in the potassic magmas of the Alban Hills were much more complex than envisaged by previous studies. Interaction of magmas with wall rocks may be an important process during magmatic evolution. Element migration by gaseous transfer, often invoked but rarely constrained by sound data, is shown to have occurred during the latest stages of magmatic evolution. Such a process was able to produce selective enrichment of Th, U, LREE and, to a minor degree, Ta and Hf in the wall rocks of potassic magma chamber. Finally, the occurrence of xenoliths with kamafugitic composition points to the existence of this type of ultrapotassic magma at the Alban Hills.  相似文献   

16.
Melilite and wollastonite from the Colle Fabbri stock contain silicate melt and silicate-carbonate inclusions. The homogenization temperatures of silicate inclusions are within the magmatic temperature range of mantle ultrabasic melts: about 1,320?±?15 °С. Their composition is melilititic and evolves to the composition of leucite tephrite and phonolite. The composition of silicate-carbonate inclusions are high SiO2, Ca-rich, enriched in alkalies and are similar to that of inclusions of carbonatite melts in the minerals of melilitolites of other intrusive ultramafic complexes. They are also similar to the compositions of metasomatized travertine covering the melilitolite stock. The presence of primary silicate and silicate-carbonate inclusions evidences that the melilitite magma from which melilitolites of Colle Fabbri crystallized was associated with carbonatite liquid. This liquid was highly fluidized, mobile and aggressive. Actively interacting with overlying travertine, the liquid enriched them with alkalies, aluminosilicates and incompatible elements, which resulted in the equalization of their compositions. Heterogeneous compositional dominions were formed at the contact between melilitolite and wall pelites. In the minerals of these contact facies high-Si melt inclusions of varying composition have been observed. Their occurrence is related to the local assimilation by the high-temperature melilitite magma of pelitic country rocks. The content of incompatible elements in melilitite melts and melilitolites is higher than the mantle norm and they have peculiar indicator ratios, spectra, Eu/Eu* ratio, which suggest a peculiar mantle source.  相似文献   

17.
Vico volcano has erupted potassic and ultrapotassic magmas,ranging from silica-saturated to silica-undersaturated types,in three distinct volcanic periods over the past 0·5Myr. During Period I magma compositions changed from latiteto trachyte and rhyolite, with minor phono-tephrite; duringPeriods II and III the erupted magmas were primarly phono-tephriteto tephri-phonolite and phonolite; however, magmatic episodesinvolving leucite-free eruptives with latitic, trachytic andolivine latitic compositions also occurred. In Period II, leucite-bearingmagmas (87Sr/86Srinitial = 0·71037–0·71115)were derived from a primitive tephrite parental magma. Modellingof phonolites with different modal plagioclase and Sr contentsindicates that low-Sr phonolitic lavas differentiated from tephri-phonoliteby fractional crystallization of 7% olivine + 27% clinopyroxene+ 54% plagioclase + 10% Fe–Ti oxides + 4% apatite at lowpressure, whereas high-Sr phonolitic lavas were generated byfractional crystallization at higher pressure. More differentiatedphonolites were generated from the parental magma of the high-Srphonolitic tephra by fractional crystallization of 10–29%clinopyroxene + 12–15% plagioclase + 44–67% sanidine+ 2–4% phlogopite + 1–3% apatite + 7–10% Fe–Tioxides. In contrast, leucite-bearing rocks of Period III (87Sr/86Srinitial= 0·70812–0·70948) were derived from a potassictrachybasalt by assimilation–fractional crystallizationwith 20–40% of solid removed and r = 0·4–0·5(where r is assimilation rate/crystallization rate) at differentpressures. Silica-saturated magmas of Period II (87Sr/86Srinitial= 0·71044–0·71052) appear to have been generatedfrom an olivine latite similar to some of the youngest eruptedproducts. A primitive tephrite, a potassic trachybasalt andan olivine latite are inferred to be the parental magmas atVico. These magmas were generated by partial melting of a veinedlithospheric mantle sources with different vein–peridotite/wall-rockproportions, amount of residual apatite and distinct isolationtimes for the veins. KEY WORDS: isotope and trace element geochemistry; polybaric differentiation; veined mantle; potassic and ultrapotassic rocks; Vico volcano; central Italy  相似文献   

18.
Summary A suite of lithics (ejecta) collected from the latest erupted pyroclastic products of the Alban Hills volcano (Central Italy) has been studied to determine their mineralogical composition and to investigate their genesis. The ejecta commonly have granular texture and consist of coarse-grained crystals often associated with a fine- to medium-grained matrix. The mineralogical composition is variable and consists of both typical igneous minerals and contact metamorphic phases. Garnet, clinopyroxene K-feldspar are almost ubiquitous, whereas leucite, wollastonite, sodalite-group minerals, phlogopite, nepheline and phillipsite are present in most of the ejecta; minor and accessory phases include cuspidine, amphibole, pyrrhotite, magnetite, apatite, uranpyrochlore, sphene, kalsilite, and melilite; anorthite, zircon and fluorine-bearing Ca, Zr silicate phases, larnite, and baryte are found sporadically. Ca, REE, Th silicophosphates occur in many samples generally disseminated along interstices and fractures of main minerals. Calcite is present as discrete crystals sometimes enclosed in other minerals, as granules in the fine-grained matrix and as late microcrystalline veins. It shows high oxygen and low carbon isotope ratios with δ18O = + 17.96 to + 27.19, and δ13C = −4.74 to −19.57. Clinopyroxene ranges from diopside to compositions strongly enriched with both Ca-Tschermak’s and esseneite components. Feldspars are generally potassic even though Ba and Sr are found in significant concentrations in some samples. K-feldspars from wollastonite-bearing ejecta are often rimmed with elongated felty crystals identified by X-ray diffraction analysis as leucite. These feldspars show a depletion in Si, and enrichment in Al and K from core to rim. Significant compositional variations are also shown by various other phases such as nepheline, apatite, Ca, REE, Th silicophosphate. The occurrence of igneous and contact metamorphic minerals, as well as the chemical variations of clinopyroxenes and feldspars in the investigated ejecta reveal complex genetic processes related to the interaction between potassic magma and wall rocks. The Ca-rich composition of most phases points to a carbonate nature for the wall rocks. Textural evidence suggests that coarse-grained rocks formed at the margin of the magma chamber were invaded by a late, volatile rich potassic liquid which crystallized as a fine-grained matrix and produced disaggregation and reaction of early formed minerals. Fluid phases percolating through the rocks generated infiltration metasomatism and deposited some uncommon phases rich in Ca, REE, Th, U, which are found along cracks and at the margins of early crystallized minerals. Overall, the all spectrum of the minerals found in this study are also typical of carbonatitic rocks. Their presence in the Alban Hills ejecta demonstrates that their genesis can be related to interaction between ultrapotassic melts and carbonate wall rocks, in addition to precipitation from carbonatitic melts. Received February 20, 2001; revised version accepted September 23, 2001  相似文献   

19.
北淮阳燕山期断陷盆地中岩浆岩广泛分布。晚侏罗世火山岩以安山岩、粗面质火山碎屑岩为主,岩浆由中性向碱性方向演化。可划分出南北2个火山岩带,南带以中性岩为主,北带粗面质火山岩增多。与火山岩同源的侵入体由辉长岩—闪长岩—花岗岩—碱性花岗岩组成,带有明显的I型花岗岩特征。北淮阳燕山期岩浆岩带是扬子地块与华北地块大规模陆内俯冲的产物。  相似文献   

20.
藏北戈木错渐新世碱性钾质火山岩中单斜辉石斑晶普遍出现正环带、反环带和韵律环带结构,多具有"绿核辉石"的结构特征。通过矿物电子探针测得"绿核辉石"的核部有高Mg#和低Mg#两种不同成分,两者都不同程度发育有筛孔状熔蚀结构,环带结构主要发育在辉石的幔部到边部,与绿色核部存在明显的成分间断,幔部环带结构的成分变化范围相对较窄。"绿核辉石"的成分和结构特征反映了同源碱性钾质岩浆在壳内岩浆房中发生了岩浆补给-混合作用,复杂的环带结构记录了混合岩浆的结晶过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号