首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we summarize results of studies on ophiolitic mélanges of the Bangong–Nujiang suture zone (BNSZ) and the Shiquanhe–Yongzhu–Jiali ophiolitic mélange belt (SYJMB) in central Tibet, and use these insights to constrain the nature and evolution of the Neo-Tethys oceanic basin in this region. The BNSZ is characterized by late Permian–Early Cretaceous ophiolitic fragments associated with thick sequences of Middle Triassic–Middle Jurassic flysch sediments. The BNSZ peridotites are similar to residual mantle related to mid-ocean-ridge basalts (MORBs) where the mantle was subsequently modified by interactions with the melt. The mafic rocks exhibit the mixing of various components, and the end-members range from MORB-types to island-arc tholeiites and ocean island basalts. The BNSZ ophiolites probably represent the main oceanic basin of the Neo-Tethys in central Tibet. The SYJMB ophiolitic sequences date from the Late Triassic to the Early Cretaceous, and they are dismembered and in fault contact with pre-Ordovician, Permian, and Jurassic–Early Cretaceous blocks. Geochemical and stratigraphic data are consistent with an origin in a short-lived intra-oceanic back-arc basin. The Neo-Tethys Ocean in central Tibet opened in the late Permian and widened during the Triassic. Southwards subduction started in the Late Triassic in the east and propagated westwards during the Jurassic. A short-lived back-arc basin developed in the middle and western parts of the oceanic basin from the Middle Jurassic to the Early Cretaceous. After the late Early Jurassic, the middle and western parts of the oceanic basin were subducted beneath the Southern Qiangtang terrane, separating the Nierong microcontinent from the Southern Qiangtang terrane. The closing of the Neo-Tethys Basin began in the east during the Early Jurassic and ended in the west during the early Late Cretaceous.  相似文献   

2.
The Jinshajiang orogenic belt (JOB) of southwestern China, located along the eastern margin of the Himalayan–Tibetan orogen, includes a collage of continental blocks joined by Paleozoic ophiolitic sutures and Permian volcanic arcs. Three major tectonic stages are recognized based on the volcanic–sedimentary sequence and geochemistry of volcanic rocks in the belt. Westward subduction of the Paleozoic Jinshajiang oceanic plate at the end of Permian resulted in the formation of the Chubarong–Dongzhulin intra-oceanic arc and Jamda–Weixi volcanic arc on the eastern margin of the Changdu continental block. Collision between the volcanic arcs and the Yangtze continent block during Early–Middle Triassic caused the closing of the Jinshajiang oceanic basin and the eruption of high-Si and -Al potassic rhyolitic rocks along the Permian volcanic arc. Slab breakoff or mountain-root delamination under this orogenic belt led to post-collisional crustal extension at the end of the Triassic, forming a series of rift basins on this continental margin arc. Significant potential for VHMS deposits occurs in the submarine volcanic districts of the JOB. Mesozoic VHMS deposits occur in the post-collisional extension environment and cluster in the Late Triassic rift basins.  相似文献   

3.
The results of study of the volcanic rocks of the Khabarovsk accretionary complex, a fragment of the Jurassic accretionary prism of the Sikhote Alin orogenic belt (the southern part of the Russian Far East), are presented. The volcanic rocks are associated with the Lower Permian limestones in the mélange blocks and Triassic layered cherts. The petrography, petrochemistry, and geochemistry of the rocks are characterized and their geodynamic formation conditions are deduced. The volcanic rocks include oceanic plume basalts of two types: (i) OIB-like intraplate basalts formed on the oceanic islands and guyots in the Permian and Triassic and (ii) T(transitional)-MORBs (the least enriched basalts of the E-MORB type) formed on the midoceanic ridge in the Permian. In addition to basalts, the mélange hosts suprasubduction dacitic tuff lavas.  相似文献   

4.
The Quebradagrande Complex of Western Colombia consists of volcanic and Albian–Aptian sedimentary rocks of oceanic affinity and outcrops in a highly deformed zone where spatial relationships are difficult to unravel. Berriasian–Aptian sediments that display continental to shallow marine sedimentary facies and mafic and ultramafic plutonic rocks are associated with the Quebradagrande Complex. Geochemically, the basalts and andesites of the Quebradagrande Complex mostly display calc-alkaline affinities, are enriched in large-ion lithophile elements relative to high field strength elements, and thus are typical of volcanic rocks generated in supra-subduction zone mantle wedges. The Quebradagrande Complex parallels the western margin of the Colombian Andes’ Central Cordillera, forming a narrow, discontinuous strip fault-bounded on both sides by metamorphic rocks. The age of the metamorphic rocks east of the Quebradagrande Complex is well established as Neoproterozoic. However, the age of the metamorphics to the west – the Arquía Complex – is poorly constrained; they may have formed during either the Neoproterozoic or Lower Cretaceous. A Neoproterozoic age for the Arquía Complex is favored by both its close proximity to sedimentary rocks mapped as Paleozoic and its intrusion by Triassic plutons. Thus, the Quebradagrande Complex could represent an intracratonic marginal basin produced by spreading-subsidence, where the progressive thinning of the lithosphere generated gradually deeper sedimentary environments, eventually resulting in the generation of oceanic crust. This phenomenon was common in the Peruvian and Chilean Andes during the Uppermost Jurassic and Lower Cretaceous. The marginal basin was trapped during the collision of the Caribbean–Colombian Cretaceous oceanic plateau, which accreted west of the Arquía Complex in the Early Eocene. Differences in the geochemical characteristics of basalts of the oceanic plateau and those of the Quebradagrande Complex indicate these units were generated in very different tectonic settings.  相似文献   

5.
It is proposed that the Bentong–Raub Suture Zone represents a segment of the main Devonian to Middle Triassic Palaeo-Tethys ocean, and forms the boundary between the Gondwana-derived Sibumasu and Indochina terranes. Palaeo-Tethyan oceanic ribbon-bedded cherts preserved in the suture zone range in age from Middle Devonian to Middle Permian, and mélange includes chert and limestone clasts that range in age from Lower Carboniferous to Lower Permian. This indicates that the Palaeo-Tethys opened in the Devonian, when Indochina and other Chinese blocks separated from Gondwana, and closed in the Late Triassic (Peninsular Malaysia segment). The suture zone is the result of northwards subduction of the Palaeo-Tethys ocean beneath Indochina in the Late Palaeozoic and the Triassic collision of the Sibumasu terrane with, and the underthrusting of, Indochina. Tectonostratigraphic, palaeobiogeographic and palaeomagnetic data indicate that the Sibumasu Terrane separated from Gondwana in the late Sakmarian, and then drifted rapidly northwards during the Permian–Triassic. During the Permian subduction phase, the East Malaya volcano-plutonic arc, with I-Type granitoids and intermediate to acidic volcanism, was developed on the margin of Indochina. The main structural discontinuity in Peninsular Malaysia occurs between Palaeozoic and Triassic rocks, and orogenic deformation appears to have been initiated in the Upper Permian to Lower Triassic, when Sibumasu began to collide with Indochina. During the Early to Middle Triassic, A-Type subduction and crustal thickening generated the Main Range syn- to post-orogenic granites, which were emplaced in the Late Triassic–Early Jurassic. A foredeep basin developed on the depressed margin of Sibumasu in front of the uplifted accretionary complex in which the Semanggol “Formation” rocks accumulated. The suture zone is covered by a latest Triassic, Jurassic and Cretaceous, mainly continental, red bed overlap sequence.  相似文献   

6.
The Jinshajiang Suture Zone is important for enhancing our understanding of the evolution of the Paleo-Tethys and its age, tectonic setting and relationship to the Ailaoshan Suture Zone have long been controversial. Based on integrated tectonic, biostratigraphic, chemostratigraphic and isotope geochronological studies, four tectono-stratigraphic units can be recognized in the Jinshajiang Suture Zone: the Eaqing Complex, the Jinshajiang Ophiolitic Melange, the Gajinxueshan “Group” and the Zhongxinrong “Group”. Isotope geochronology indicates that the redefined Eaqing Complex, composed of high-grade-metamorphic rocks, might represent the metamorphic basement of the Jinshajiang area or a remnant micro-continental fragment. Eaqing Complex protolith rocks are pre-Devonian and probably of Early–Middle Proterozoic age and are correlated with those of the Ailaoshan Complex. Two zircon U–Pb ages of 340±3 and 294±3 Ma, separately dated from the Shusong and Xuitui plagiogranites within the ophiolitic assemblage, indicate that the Jinshajiang oceanic lithosphere formed in latest Devonian to earliest Carboniferous times. The oceanic lithosphere was formed in association with the opening and spreading of the Jinshajiang oceanic basin, and was contiguous and equivalent to the Ailaoshan oceanic lithosphere preserved in the Shuanggou Ophiolitic Melange in the Ailaoshan Suture Zone; the latter yielded a U–Pb age of 362±41 Ma from plagiogranite. The re-defined Gajinxueshan and Zhongxinrong “groups” are dated as Carboniferous to Permian, and latest Permian to Middle Triassic respectively, on the basis of fossils and U–Pb dating of basic volcanic interbeds. The Gajinxueshan “Group” formed in bathyal slope to neritic shelf environments, and the Zhongxinrong “Group” as bathyal to abyssal turbidites in the Jinshajiang–Ailaoshan back-arc basin. Latest Permian–earliest Middle Triassic synorogenic granitoids, with ages of 238±18 and 227±5–255±8 Ma, respectively, and an Upper Triassic overlap molasse sequence, indicate a Middle Triassic age for the Jinshajiang–Ailaoshan Suture, formed by collision of the Changdu-Simao Block with South China.  相似文献   

7.
四川盆地是一个大型复合含气为主、含油为辅的叠合盆地。多旋回的沉积演化过程,孕育了多套海相、陆相烃源岩,且不同区域发育不同成因类型的烃源岩。目前下寒武统、志留系、下二叠统、上二叠统和上三叠统五套主要烃源岩均已进入高演化阶段,并以成气为主。由于多阶成烃、混源聚集和后期遭受TSR次生蚀变等成藏过程的复杂性使得天然气组分较干、碳同位素组成复杂,常规方法进行气源对比较困难。文中在对四川盆地沉积演化背景分析的基础上,通过对有效烃源岩发育特征和分布规律的探讨,分区域进行了气藏的分析,特别是对天然气组分、非烃组成(H2S、CO2、N2等)和碳同位素等资料综合研究的基础上,基本确定了各区块各含气层系的主力源岩。认为川东主力产层石炭系、三叠系和二叠系的气源分别为志留系、上二叠统龙潭组和下二叠统;川南气区震旦系灯影组、寒武系、二叠系和三叠系产层的气源分别主要来自下寒武统,上、下二叠系源岩;川西气区侏罗系和三叠系须家河组主产层的气源主要来自三叠系须家河组煤系烃源岩,下二叠统和嘉陵江组产层气源则可能主要来自二叠系;川中主要为产油区,下侏罗统自流井群原油应来自侏罗系源岩,浅部层系气源为上三叠统须家河组的陆相烃源岩,深部气藏则为寒武系烃源岩。由于川东北部烃源岩发育层数最多,且质量都较好,因此川东北部是烃类最富集的地区,也是勘探潜力最大的地区。  相似文献   

8.
We present zircon U–Pb dating, whole-rock geochemistry, and Sr–Nd isotope results for the Upper Permian–Upper Triassic volcanic rocks to constrain the timing of the final closure of the eastern segment of the Palaeo-Asian Ocean. The volcanic rocks were mainly collected from the Yanbian area in eastern Jilin Province, northeastern China. The zircon U–Pb dating results indicate that the samples can be classified as Upper Permian–Lower Triassic basalts (ca. 262–244 Ma) and Upper Triassic dacites (ca. 216 Ma). The whole-rock geochemical results indicate that the rocks predominately belong to the medium-K and high-K calc-alkaline series. The basalts are enriched in large ion lithophile elements (LILEs, e.g. Ba and K) and depleted in high field strength elements (HFSEs, e.g. Nb and Ta), with weak positive Eu anomalies. The dacites are enriched in LILEs (e.g. Rb, Ba, Th, and K) and light rare earth elements (LREEs) and marked depletion in some HFSEs (e.g. Nb, Ta, and Ti), with significant negative Sr, P, and Eu anomalies. Moreover, the Upper Permian–Lower Triassic basalts have low initial 87Sr/86Sr ratios (0.7037–0.7048) and high εNd values (4.4–5.4). In contrast, the Upper Triassic dacites possess relatively high initial 87Sr/86Sr ratios (0.7052) compared with their low εNd values (1.4). The basaltic magma likely originated from the partial melting of a depleted mantle wedge metasomatized by subduction-related fluids, and the felsic magmas likely originated from the partial melting of a dominantly juvenile source with a minor component of ancient crust. Taken together, the Upper Permian–Lower Triassic basalts (ca. 262–244 Ma) are arc basalts that formed in an active continental margin setting, and the Upper Triassic dacites (ca. 216 Ma) are A-type granitic rocks that formed in an extensional setting. Therefore, the final closure of the Palaeo-Asian Ocean occurred during the Middle–Late Triassic.  相似文献   

9.
A detailed study of a relatively well-exposed fragment of the Barabash Formation in the southern part of the Voznesenka terrane is carried out to specify the geodynamic settings of the Permian volcanogenic and volcanogenic-sedimentary complexes in South Primorye. It is established that the basaltic flows juxtaposed in the studied sequence originated from sharply different sources. The geochemical characteristics indicate that the basalts from the sequence base were presumably derived by melting of oceanic lithospheric mantle or asthenosphere, while the source of the overlying basalts was lithospheric mantle reworked by a subduction process. The basalts are subsequently overlain by tuffaceous–terrigenous and terrigenous rocks and limestones with remains of Capitanian (Middle Permian) fauna. Accessory zircons extracted from the tuffaceous–terrigenous rocks yield an U–Pb concordant age of 233.3 ± 3.3 Ma (Middle Triassic Ladinian Stage) for the youngest zircon population. The obtained data lead us to conclude that the Barabash Formation is a tectonostratigraphic rather than stratigraphic unit and may be a fragment of the Triassic accretionary wedge. The obtained data cast doubt on the accepted assignment of this unit to the Voznesenka terrane. It is more logical to include it in the Laoelin–Grodekov terrane, which represents a fragment of the Late Paleozoic active continental margin. This suggests that the boundary between these blocks should be specified and the timing of the final stage of amalgamation of the Laoelin–Grodekov terrane with the terranes of the Bureya–Khanka orogenic belt should be revised.  相似文献   

10.
高出海平面的洋岛和低于海平面的海山是成熟大洋最重要的特征。笔者通过野外调查,于西藏自治区贡嘎县昌果乡普夏东侧的"原桑日群"中新识别出普夏洋岛。通对普夏洋岛的岩石学、地球化学研究及锆石U-Pb定年,认为普夏洋岛具有典型的"玄武岩+灰岩"岩石组合,其中的玄武岩为典型的洋岛玄武岩,形成于以成熟洋壳为基底的洋岛海山环境。普夏洋岛玄武岩的锆石U-Pb定年结果为203.9±1.6Ma和219.5±2.0Ma,表明其形成时代为晚三叠世。综合研究认为,普夏洋岛是雅鲁藏布江特提斯洋发现的较早的洋岛海山之一,证明雅鲁藏布江新特提斯洋在三叠纪已具有成熟的洋壳,普夏洋岛是雅鲁藏布江新特提斯洋向北俯冲形成的桑日群增生杂岩的重要组成部分。普夏洋岛的发现,丰富了新特提斯洋的研究内容,为反演研究区地质构造演化提供了新证据。  相似文献   

11.
新发现海相侏罗纪地层;在理塘蛇绿岩群硅质岩中发现放射虫以及厘定甘孜 理塘裂谷时代;厘定了岩浆岩石序列,总结了岩浆岩组合及时空演化序列;初步研究的花岗岩构造岩浆环境;并厘定了金沙江结合带、甘孜理塘结合带;确定了构造格架并进行了构造组合划分等。  相似文献   

12.
The Altai-Salair area in southern Siberia is a Caledonian folded area containing fragments of Vendian–Early Cambrian island arcs. In the Vendian–Early Cambrian, an extended system of island arcs existed near the Paleo-Asian Ocean/Siberian continent boundary and was located in an open ocean realm. In the present-day structural pattern of southern Siberia, the fragments of Vendian–Early Cambrian ophiolites, island arcs and paleo-oceanic islands occur in the accretion–collision zones. We recognized that the accretion–collision zones were mainly composed of the rock units, which were formed within an island-arc system or were incorporated in it during the subduction of the Paleo-Asian Ocean under the island arc or the Siberian continent. This system consists of accretionary wedge, fore-arc basin, primitive island arc and normal island arc. The accretionary wedges contain the oceanic island fragments which consist of OIB basalts and siliceous—carbonate cover including top and slope facies sediments. Oceanic islands submerged into the subduction zone and, later were incorporated into an accretionary wedge. Collision of oceanic islands and island arcs in subduction zones resulted in reverse currents in the accretionary wedge and exhumation of high-pressure rocks. Our studies of the Gorny Altai and Salair accretionary wedges showed that the remnants of oceanic crust are mainly oceanic islands and ophiolites. Therefore, it is important to recognize paleo-islands in folded areas. The study of paleo- islands is important for understanding the evolution of accretionary wedges and exhumation of subducted high-pressure rocks.  相似文献   

13.
王敏  刘爱民  戴传固  黄勇  陈厚国  牟世勇 《地质学报》2009,83(11):1601-1611
现代大陆边缘盆地研究结果显示,仅根据蛇绿岩分布划分大地构造单元、分析构造演化可能得出误导性结果.而详细的沉积建造分析、结合其他地质资料可以得到更可靠的结论.东昆仑南缘西段1∶25万区域地质调查显示,该区晚古生代地层为一套不含火山岩的碎屑岩-碳酸盐岩组合,从石炭系到三叠系,由北往南沉积建造由陆缘碎屑岩逐步转化为深海浊积岩,显示典型被动陆缘构造环境.这种特点表明,东昆仑南缘蛇绿岩并不代表成熟大洋地壳残片,而是发育于夭折裂谷环境的初始洋盆;其代表位于研究区以南地区的金沙江古特提斯洋盆的北部被动陆缘(现代地理方位).研究区内不整合覆盖在晚古生代地层之上的侏罗系磨拉石建造代表碰撞造山晚期的上叠前陆盆地,表明印支期造山旋回的结束.  相似文献   

14.
藏东南碧土带瓦浦组火山岩形成的大地构造环境   总被引:6,自引:3,他引:3  
首次对藏东南原称的瓦浦组进行系统的岩石化学研究 ,发现它包括了两套不同时代和大地构造环境下形成的火山岩。瓦浦组火山熔岩由下部的玄武岩夹玄武安山岩和上部的流纹岩组成 ,是古特提斯洋盆中的洋岛火山岩 ,其时代初定为早二叠世—晚二叠世早期。在觉马—巴格和扎西所见的岩层是以钙质浊积岩为主的火山 -沉积岩系 ,火山岩为岛弧拉斑玄武岩 ,属晚三叠世早期活动大陆边缘产物。上述发现为碧土带是复杂的造山带拼贴体、古特提斯主洋盆是开阔的多岛洋和晚三叠世活动大陆边缘可能属马里亚纳型提供了重要证据  相似文献   

15.
张能  李剑波  杨云松  那福超 《岩石学报》2012,28(4):1291-1304
弯岛湖蛇绿混杂岩带是金沙江缝合带西段的重要组成部分。蛇绿岩混杂于上三叠统变质碎屑岩夹变质火山岩中,成份主要为镁铁质-超镁铁质杂岩,岩石类型有变质橄榄岩、变质堆晶质辉长岩及其伴生的岛弧型花岗岩系。岩石化学及地球化学特征表明:蛇绿岩主要为低Ti(岛弧-弧后)型、富集型洋中脊(E-MORB)拉斑玄武岩;与之共(伴)生的基性喷出岩、辉绿岩脉属板内洋岛型裂谷型碱性玄武岩及其过渡类型系列。在变质辉长岩获得全岩Sm-Nd等时线年龄值为232±11Ma,代表了镁铁质-超镁铁质杂岩的形成年龄,可能为洋壳初始俯冲变质的时间。在蛇绿岩上覆的硅质岩中发现有中三叠世拉丁晚期至晚三叠世卡宁早期的放射虫化石,表明弯岛湖镁铁质-超镁铁质杂岩可能形成于中三叠世多岛洋盆或弧后盆地构造环境。  相似文献   

16.
Analyses of Lower Permian or older basalts and associated dykes of the Juchatengo sequence indicate that they are rift tholeiites that formed in a continental rift or back-arc tectonic setting. Age constraints include a Middle Permian fossil recovered from the tectonically overlying sediments and a cross-cutting, post-tectonic pluton dated by K/Ar on hornblende at 282±6 Ma. A location adjacent to the Oaxacan Complex or other old continental crust is suggested by (1) an Ndi isotopic value of −8.95 and a TDM age of 1487 Ma in the overlying sediments, which are similar to the Oaxacan Complex; (2) enrichment of incompatible elements in the lavas, suggesting old crustal contamination; and (3) the presence of Permian–Triassic calc-alkaline plutons that stitch the Juchatengo–Oaxaca boundary. The possible tectonic models depend on the age of the Juchatengo basalts, which requires future geochronological work. If the Juchatengo basalts are Permo-Carboniferous, they could have formed near the eastern edge of a back-arc basin: the contemporaneous arc would have rifted away to the west. Eastward migration of the arc magmatism indicated by the Permian–Triassic calc-alkaline plutonism may reflect shallowing of the dip of the subduction zone, which probably also produced the deformation of the Juchatengo sequence.  相似文献   

17.
The eastern part of the Tasman Orogenic Zone (or Fold Belt System) comprises the Hodgkinson—Broken River Orogen (or Fold Belt) in the north and the New England Orogen (or Fold Belt) in the centre and south. The two orogens are separated by the northern part of the Thomson Orogen.The Hodgkinson—Broken River Orogen contains Ordovician to Early Carboniferous sequences of volcaniclastic flysch with subordinate shelf carbonate facies sediments. Two provinces are recognized, the Hodgkinson Province in the north and the Broken River Province in the south. Unlike the New England Orogen where no Precambrian is known, rocks of the Hodgkinson—Broken River Orogen were deposited immediately east of and in part on, Precambrian crust.The evolution of the New England Orogen spans the time range Silurian to Triassic. The orogen is orientated at an acute angle to the mainly older Thomson and Lachlan Orogens to the west, but the relationships between all three orogens are obscured by the Permian—Triassic Bowen and Sydney Basins and younger Mesozoic cover. Three provinces are recognized, the Yarrol Province in the north, the Gympie Province in the east and the New England Province in the south.Both the Yarrol and New England Provinces are divisible into two zones, western and eastern, that are now separated by major Alpine-type ultramafic belts. The western zones developed at least in part on early Palaeozoic continental crust. They comprise Late Silurian to Early Permian volcanic-arc deposits (both island-arc and terrestrial Andean types) and volcaniclastic sediments laid down on unstable continental shelves. The eastern zones probably developed on oceanic crust and comprise pelagic sediments, thick flysch sequences and ophiolite suite rocks of Silurian (or older?) to Early Permian age. The Gympie Province comprises Permian to Early Triassic volcanics and shallow marine and minor paralic sediments which are now separated from the Yarrol Province by a discontinuous serpentinite belt.In morphotectonic terms, a Pacific-type continental margin with a three-part arrangement of calcalkaline volcanic arc in the west, unstable volcaniclastic continental shelf in the centre and continental slope and oceanic basin in the east, appears to have existed in the New England Orogen and probably in the Hodgkinson—Broken River Orogen as well, through much of mid- to late Palaeozoic time. However, the easternmost part of the New England Orogen, the Gympie Province, does not fit this pattern since it lies east of deepwater flysch deposits of the Yarrol Province.  相似文献   

18.
The basement beneath the Junggar basin has been interpreted either as a micro-continent of Precambrian age or as a fragment of Paleozoic oceanic crust. Elemental and Sr–Nd–Pb isotopic compositions and zircon Pb–Pb ages of volcanic rocks from drill cores through the paleo-weathered crust show that the basement is composed mainly of late Paleozoic volcanic rock with minor shale and tuff. The volcanic rocks are mostly subalkaline with some minor low-K rocks in the western Kexia area. Some alkaline lavas occur in the central Luliang uplift and northeastern Wulungu depression. The lavas range in composition from basalts to rhyolites and fractional crystallization played an important role in magma evolution. Except for a few samples from Kexia, the basalts have low La/Nb (<1.4), typical for oceanic crust derived from asthenospheric melts. Zircon Pb–Pb ages indicate that the Kexia andesite, with a volcanic arc affinity, formed in the early Carboniferous (345 Ma), whereas the Luliang rhyolite and the Wucaiwan dacite, with syn-collisional to within-plate affinities, formed in the early Devonian (395 and 405 Ma, respectively). Positive εNd(t) values (up to +7.4) and low initial 87Sr/86Sr isotopic ratios of the intermediate-silicic rocks suggest that the entire Junggar terrain may be underlain by oceanic crust, an interpretation consistent with the juvenile isotopic signatures of many granitoid plutons in other parts of the Central Asia Orogenic Belt. Variation in zircon ages for the silicic rocks, different Ba, P, Ti, Nb or Th anomalies in the mafic rocks, and variable Nb/Y and La/Nb ratios across the basin, suggest that the basement is compositionally heterogeneous. The heterogeneity is believed to reflect amalgamation of different oceanic blocks representing either different evolution stages within a single terrane or possibly derivation from different terranes.  相似文献   

19.
滇桂交界处古特提斯的洋岛和岛弧火山岩   总被引:22,自引:2,他引:20  
基于详细的野外调查和系统的岩石化学工作 ,探讨了滇桂交界处二叠纪—中三叠世火山岩的大地构造背景。洋岛玄武岩以弄槐枕状熔岩为代表性火山岩 ,原为古特提斯洋盆中的夏威夷型洋岛 ,现保存在印支期前陆褶皱冲断带的一个外来岩席中。采自鱼塘—那塘、羊加山和甫听河的安山岩—玄武岩指示洋盆从二叠纪至中三叠世一直处于消减中 ,反映了与滇西南古特提斯演化不同的地球动力学背景。以上认识为中、越交界地区构造上属古特提斯造山带提供了新证据 ,为重塑该地的古特提斯演化提供了重要资料。  相似文献   

20.
The least-altered, Permian mafic volcanic rocks from the Pang Mayao area, Phrao District, Chiang Mai Province, part of Chiang Rai–Chiang Mai volcanic belt, have been analyzed and are found to be mid-ocean ridge and ocean–island basalts. The mid-ocean ridge basalts occur as lava flows or dike rocks. They are equigranular, fine- to medium-grained and consist largely of plagioclase, clinopyroxene and olivine. These basalt samples are tholeiitic, and have compositions very similar to T-MORB from the region where the Du Toit Fracture Zone intersects the Southwest Indian Ridge. The ocean–island basalt occurs as pillow breccia, and lava flows or dike rocks. They are slightly to moderately porphyritic, with phenocrysts/microphenocrysts of clinopyroxene, olivine, plagioclase and/or Fe–Ti oxide. The groundmass is very fine-grained, and made up largely of felty plagioclase laths with subordinate clinopyroxene. These basalt samples are alkalic, and chemically analogous to those from Haleakala Volcano, Maui, Hawaiian Chain. These mafic volcanic rocks may have been formed in a major ocean basin rather than in a mature back-arc basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号