首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Filter samples from the oxic zone and suboxic zone of the physically stratified water column and sediment samples of the Gotland Deep, Baltic Sea, were analyzed for bacteriohopanepolyol (BHP) and phospholipid fatty acid (PLFA) concentrations. In total, eight BHPs were identified, with the greatest diversity in the suboxic zone. There, 35-aminobacteriohopane-31,32,33,34-tetrol (aminotetrol) and 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol), whose concentrations decreased concurrently from the lower to the upper suboxic zone, indicated type I methanotrophic bacteria and thus aerobic oxidation of methane. The presence and activity of type I aerobic methanotrophic bacteria was further supported by the presence of 13C-depleted PLFAs, specifically 16:1ω8c and 16:1ω5c (δ13C as low as −41.2‰). However, the relative amount of methanotroph-specific compounds was low (aminopentol, <0.2% of total BHPs; 16:1ω8c, ca. 0.5% of total PLFAs), suggesting a minor contribution of aerobic methanotrophic bacteria to the particulate organic matter. The distinctive BHP pattern in the suboxic zone, including aerobic methanotroph biomarkers and a tentative marker for a pelagic redoxcline [putative 22S isomer of the ubiquitous 22R-bacteriohopanetetrol (BHT)], was mirrored in the sediment samples. Our data indicate that a major portion of the sedimentary hopanoids of the Gotland Deep is sourced from the suboxic part of the water column via an effective but unknown transport mechanism.  相似文献   

2.
The nature of Re-platinum-group element (PGE; Pt, Pd, Ir, Os, Ru) transport in the marine environment was investigated by means of marine sediments at and across the Cretaceous-Tertiary boundary (KTB) at two hemipelagic sites in Europe and two pelagic sites in the North and South Pacific. A traverse across the KTB in the South Pacific pelagic clay core found elevated levels of Re, Pt, Ir, Os, and Ru, each of which is approximately symmetrically distributed over a distance of ∼1.8 m across the KTB. The Re-PGE abundance patterns are fractionated from chondritic relative abundances: Ru, Pt, Pd, and Re contents are slightly subchondritic relative to Ir, and Os is depleted by ∼95% relative to chondritic Ir proportions. A similar depletion in Os (∼90%) was found in a sample of the pelagic KTB in the North Pacific, but it is enriched in Ru, Pt, Pd, and Re relative to Ir. The two hemipelagic KTB clays have near-chondritic abundance patterns. The ∼1.8-m-wide Re-PGE peak in the pelagic South Pacific section cannot be reconciled with the fallout of a single impactor, indicating that postdepositional redistribution has occurred. The elemental profiles appear to fit diffusion profiles, although bioturbation could have also played a role. If diffusion had occurred over ∼65 Ma, the effective diffusivities are ∼10−13 cm2/s, much smaller than that of soluble cations in pore waters (∼10−6 cm2/s). The coupling of Re and the PGEs during redistribution indicates that postdepositional processes did not significantly fractionate their relative abundances. If redistribution was caused by diffusion, then the effective diffusivities are the same. Fractionation of Os from Ir during the KTB interval must therefore have occurred during aqueous transport in the marine environment. Distinctly subchondritic Os/Ir ratios throughout the Cenozoic in the South Pacific core further suggest that fractionation of Os from Ir in the marine environment is a general process throughout geologic time because most of the inputs of Os and Ir into the ocean have Os/Ir ratios ≥1. Mass balance calculations show that Os and Re burial fluxes in pelagic sediments account for only a small fraction of the riverine Os (<10%) and Re (<0.1%) inputs into the oceans. In contrast, burial of Ir in pelagic sediments is similar to the riverine Ir input, indicating that pelagic sediments are a much larger repository for Ir than for Os and Re. If all of the missing Os and Re is assumed to reside in anoxic sediments in oceanic margins, the calculated burial fluxes in anoxic sediments are similar to observed burial fluxes. However, putting all of the missing Os and Re into estuarine sediments would require high concentrations to balance the riverine input and would also fail to explain the depletion of Os at pelagic KTB sites, where at most ∼25% of the K-T impactor’s Os could have passed through estuaries. If Os is preferentially sequestered in anoxic marine environments, it follows that the Os/Ir ratio of pelagic sediments should be sensitive to changes in the rates of anoxic sediment deposition. There is thus a clear fractionation of Os and Re from Ir in precipitation out of sea water in pelagic sections. Accordingly, it is inferred here that Re and Os are removed from sea water in anoxic marine depositional regimes.  相似文献   

3.
The concentration and structural diversity of a suite of bacteriohopanepolyols (BHPs) was measured in suspended particulate matter (SPM) from six stations along a river-ocean transect off the Pacific coast of Panama. Riverine SPM contained BHPs diagnostic of soil input consistent with a terrigenous source. The concentration of BHPs was 10 times greater in riverine SPM than marine SPM demonstrating that terrigenous OM exported to marine sediments could provide a significant contribution to the marine sedimentary hopanoid inventory. Given the rich structural diversity of BHPs in terrigenous SPM, interpretations of the sedimentary record of hopanoids in coastal marine settings must resolve inputs from marine pelagic and terrigenous sources.  相似文献   

4.
Bacteriohopanepolyols (BHPs) are lipid constituents of many bacterial groups. Geohopanoids, the diagenetic products, are therefore ubiquitous in organic matter of the geosphere. To examine the potential of BHPs as environmental markers in marine sediments, we investigated a Holocene sediment core from the Black Sea. The concentrations of BHPs mirror the environmental shift from a well-mixed lake to a stratified marine environment by a strong and gradual increase from low values (∼30 μg g−1 TOC) in the oldest sediments to ∼170 μg g−1 TOC in sediments representing the onset of a permanently anoxic water body at about 7500 years before present (BP). This increase in BHP concentrations was most likely caused by a strong increase in bacterioplanktonic paleoproductivity brought about by several ingressions of Mediterranean Sea waters at the end of the lacustrine stage (∼9500 years BP). δ15N values coevally decreasing with increasing BHP concentrations may indicate a shift from a phosphorus- to a nitrogen-limited setting supporting growth of N2-fixing, BHP-producing bacteria. In sediments of the last ∼3000 years BHP concentrations have remained relatively stable at about 50 μg g−1 TOC.The distributions of major BHPs did not change significantly during the shift from lacustrine (or oligohaline) to marine conditions. Tetrafunctionalized BHPs prevailed throughout the entire sediment core, with the common bacteriohopanetetrol and 35-aminobacteriohopanetriol and the rare 35-aminobacteriohopenetriol, so far only known from a purple non-sulfur α-proteobacterium, being the main components. Other BHPs specific to cyanobacteria and pelagic methanotrophic bacteria were also found but only in much smaller amounts.Our results demonstrate that BHPs from microorganisms living in deeper biogeochemical zones of marine water columns are underrepresented or even absent in the sediment compared to the BHPs of bacteria present in the euphotic zone. Obviously, the assemblage of molecular fossils in the sediments does not represent an integrated image of the entire community living in the water column. Remnants of organisms living in zones where effective transport mechanisms - such as the fecal pellet express - exist are accumulated while those of others are underrepresented. Our work shows a high stability of BHPs over geological time scales. Largely uniform distributions and only minor changes in structures like an increasing prevalence of saturated over unsaturated BHPs with time were observed. Consequently, sedimentary BHP distributions are less suitable as markers for in situ living bacteria but are useful for paleoreconstructions of bacterioplanktonic communities and productivity changes.  相似文献   

5.
唐瞻文  韦恒叶 《现代地质》2020,34(1):166-176
二叠纪瓜德鲁普世是古海洋条件发生重大变化的转折期。瓜德鲁普世古海洋、古环境的演化对古生代底栖无脊椎动物灭绝的影响仍然是个谜。利用元素地球化学,分析瓜德鲁普统孤峰组的陆源碎屑供应、海洋表层水体的初级生产力以及底部水体的氧化还原条件。结果表明:瓜德鲁普世早期和晚期分别发生了一次陆源碎屑输入的高峰期。瓜德鲁普世早期海洋初级生产力最高,中期海水初级生产力较低,而晚期稍有升高。瓜德鲁普世古海水主要为缺氧至硫化环境。瓜德鲁普世早期以贫氧至缺氧环境为主,间歇性出现硫化环境;中晚期则以硫化环境为主,间歇性出现缺氧环境。这些氧化还原环境的演化主要受到水动力条件的影响。瓜德鲁普世深水环境水体的持续缺氧硫化引发浅水台地底部水体的持续贫氧甚至缺氧,造成海洋生态系统变得脆弱,引发生物危机事件。  相似文献   

6.
Suboxic trace metal geochemistry in the Eastern Tropical North Pacific   总被引:3,自引:0,他引:3  
We analyzed Al, Ti, Fe, Mn, Cu, Ba, Cd, U, Mo, V, and Re in water column, settling particulate, and sediment (0 to 22 cm) samples from the intense oxygen minimum zone (OMZ) of the eastern tropical North Pacific near Mazatlán, Mexico. The goal was to determine how the geochemistry of these elements was influenced by suboxic water column conditions and whether the sediments have a unique “suboxic” geochemical signature.The water column was characterized by a Mn maximum, reaching ∼8 nmol kg−1 at 400 m. Concentrations of Cu, Ba, Cd, Mo, Re, U, and V were unaffected by the low O2 conditions and were comparable to those of the open ocean. Sinking particles were composed of lithogenic particles of detrital origin and nonlithogenic particles of biogenic origin. Al, Ti, and Fe were mostly (at least 79%) lithogenic. About 75% of the Mn was nonlithogenic. Significant amounts (at least 58%) of Cu, Ba, Cd, and Mo were nonlithogenic.Sediment geochemistry varied across the continental shelf and slope. Cadmium, U, and Re have prominent maxima centered at 310 m, with 12.3 ppm, 10.9 ppm, and 68.3 ppb, respectively, at the core top. High values of Mo (averaging 6.8 ppm) and V (averaging 90 ppm) are seen in OMZ surface sediment. Additional down-core enrichment occurs for all redox-sensitive elements in the top 10 cm. For U, Mo, V, and Re, surface sediments are a poor indicator of metal enrichment. Comparison of the nonlithogenic composition of sediments with sinking particles suggests that direct input of plankton material enriched in metals makes a significant contribution to the total composition, especially for Cd, U, and Mo.We evaluated Re/Mo and Cd/U ratios as tracers for redox environments. Rhenium and Mo concentrations and Re/Mo ratios do not lead to consistent conclusions. Concurrent enrichments of Re and Mo are an indicator of an anoxic depositional environment. In contrast, high Re/Mo ratios are an indicator of suboxic conditions. Cadmium is enriched in surface sediments, while U has considerable down-core enrichment. The concentrations of Cd and U and the Cd/U ratio do not follow patterns predicted from thermodynamics. Though the water column is suboxic, these four redox-sensitive elements indicate that the sediments are anoxic. The implication for paleostudies is that a trace metal sediment signature that indicates anoxic conditions is not necessarily attributable to an anoxic water column.  相似文献   

7.
Tracing the inputs of bacterial organic carbon to marine systems has been constrained by the lack of distinguishing geochemical tracers and limited contribution in sediments compared to other sources of organic matter. Bacteriohopanepolyols (BHPs) provide a direct means to identify bacterial inputs which also reflect potential bacterial groups and their activities in aquatic systems. We applied recent analytical approaches to identify and quantify bacterial derived carbon contributions to surface sediments from the western Arctic Ocean using BHPs. The abundance and distribution of BHPs resemble trends of water column primary production and suggest active heterotrophic recycling of in situ production with some component of long term preservation. BHPs proposed as terrestrial derived signatures (i.e. adenosylhopanes) were also abundant in western Arctic sediments and reflect offshore trends of other terrigenous lipid signatures with a fraction representing their degradative products. Analysis of BHPs in organic rich peat and surface sediments from two Arctic rivers showed the highest inputs of adenosylhopanes, implying active bacterial recycling of recalcitrant terrigenous material. BHPs observed in western Arctic surface sediments reveal significant contributions of bacteria associated with organic carbon from multiple sources.  相似文献   

8.
Mn(II) oxidation in the suboxic zone of the water column was studied at four stations in the western Black Sea. We measured Mn(II) oxidation rates using 54Mn tracer and tested the hypothesis of alternative oxidants for Mn(II) other than dissolved oxygen. In anoxic incubation experiments with water from different depths of the chemocline, Mn(II) was not oxidized by nitrite, nitrate, or iodate. In the presence of light, Mn(II) also was not oxidized under anoxic conditions as well. Anaerobic Mn(II) oxidizing microorganisms could not be enriched. In oxic incubation experiments, the addition of alternative oxidants did not significantly increase the Mn(II) oxidation rate. The lack of an anaerobic Mn(II) oxidation in our experiments does not unambiguously prove the absence of anaerobic Mn(II) oxidation in the Black Sea but suggests that dissolved oxygen is the only oxidant for biologically catalyzed Mn(II) oxidation. Lateral intrusions of modified Bosphorus water were shown to be the main mechanism providing dissolved oxygen in the suboxic and the upper anoxic zones and explaining observed Mn(II) oxidation rates. Maximum in situ Mn(II) oxidation rates in the suboxic zone were 1.1 nM Mn(II) per h in the central Black Sea, 25 nM Mn(II) per h on the Romanian continental slope and 60 nM Mn(II) per h on the Anatolian continental slope. These rates correlate with the amount of particulate Mn and the number of Mn-oxide particles and are in agreement with rates measured 13 yr before. Our study highlights the importance of lateral intrusions of oxygen for the ventilation of the suboxic zone and the anoxic interior and for the regulation of different oxidation-reduction processes in the chemocline, including Mn(II) oxidation, which may be significant for other anoxic basins as well.  相似文献   

9.
We studied the distribution of glycerol dialkyl glycerol tetraethers (GDGTs) in suspended particulate matter from the water column of Lake Tanganyika (East Africa), where sediment studies had shown the applicability of the TEX86 proxy for reconstructing surface lake water temperature. GDGTs, in particular crenarchaeol, showed maximum abundance within the suboxic zone (100–180 m), suggesting that this is the preferred niche of ammonia-oxidizing Thaumarchaeota. Despite evidence for anaerobic methane oxidation in deep anoxic water (300–1200 m) no unambiguous evidence for an imprint of methanotrophic archaea on GDGT distribution was found. Comparison of TEX86 and BIT indices with those of surface sediments suggests that the sedimentary GDGTs are derived predominantly from the oxic zone and suboxic zone of the lake.  相似文献   

10.
中下扬子地区二叠纪缺氧环境研究   总被引:20,自引:4,他引:16  
在中下扬子地区二叠纪尤其是孤峰期和大隆期,缺氧环境十分发育,形成了"黑色页岩-薄层硅岩-纹层状石灰岩"的缺氧沉积组合?本区二叠纪缺氧环境的形成与当时的气候?水温?水体能量?海底地形和上升洋流有着密切的关系?根据放射虫生态?相序?沉积特征及与现代缺氧环境的对比分析,探讨了本区二叠纪缺氧环境的古水深?缺氧沉积可成为有利的生油气源岩,而不同的缺氧沉积类型可形成不同类别的生油气源岩;研究表明,本区二叠系具有良好的生油气条件?  相似文献   

11.
Preservation of particulate non-lithogenic uranium in marine sediments   总被引:1,自引:0,他引:1  
Particulate non-lithogenic uranium (PNU), excess U above detrital background levels found in marine particulate matter, is formed in surface waters throughout the ocean. Previous studies have shown that PNU is regenerated completely prior to burial of particles in sediments within well-oxygenated open-ocean regions. However, the fate of PNU has never been examined in ocean margin regions or in anoxic basins. Here we evaluate the preservation of PNU in ocean margin sediments and within semi-enclosed basins using samples from sediment traps deployed at multiple depths and surface sediments. Organic carbon fluxes at the sediment trap locations ranged from 0.1 to 4.3 g/cm2 kyr, while the dissolved oxygen concentration in the water column ranged from <3 μM to ∼ 270 μM. Preservation of PNU increases with decreasing dissolved oxygen concentration, approaching 100% preservation at oxygen concentration < 25 μM. PNU contributes as much as 40 to 70% of the total authigenic U in sediments in the Santa Barbara Basin and seasonally anoxic Saanich Inlet, and some 10% to 50% of the total authigenic U in sediments off the central California Margin.  相似文献   

12.
通过对南海北部的ODP 1148站岩芯600 mcd以上(约30 Ma以来)的沉积物中自生富集Mn、Cd和Mo等过渡金属元素的含量变化的研究,并结合相关的化学组成结果,探讨了岩芯内部氧化-还原条件的变化以及相关元素的活动特征,反演了相应沉积时期的环境演变.结果显示,岩芯387 mcd以上,自生Mn富集明显,代表氧化的环境;387~485 mcd之间,自生Cd含量明显富集,Mn含量显著降低,代表少氧的环境;485 mcd以下,Mn和Cd含量极低,自生Mo明显富集,代表缺氧的环境.随氧化-还原条件的变化,Mo存在明显的向下迁移并在缺氧界面的缺氧一方达到最大值的趋势,而Cd在少氧环境形成的固相态则可能在缺氧环境下不稳定,溶解态的Cd有向上迁移的趋势,并且在少氧/缺氧界面的少氧一方富集.这些过渡金属元素记录的氧化-还原条件的变化,反映出ODP 1148站所在海区的沉积环境变化:早期有较丰富的陆源输入,表层海水生产力较高,随着南海不断扩张以及全球海平面上升,该海区表层海水生产力逐渐降低.  相似文献   

13.
Bacteriohopanepolyols (BHPs) are a diverse group of membrane lipids produced by a wide variety of bacteria and can be used as molecular biomarkers for bacterial processes and populations in both modern and ancient environments. A group of BHPs, including adenosylhopane and structurally related compounds, have been identified as being specific to soils, enabling the transport of terrestrial organic matter (terrOM) to the marine realm to be monitored. Estuary surface sediment samples were obtained from the five Great Russian Arctic Rivers (GRARs; Ob, Yenisey, Lena, Indigirka and Kolyma) and river sediments were obtained from two North American Rivers (Yukon and Mackenzie). Analysis of the BHP signatures, using high performance liquid chromatography–tandem mass spectrometry (HPLC–MSn), indicated the presence of 15 different BHPs originating from a variety of different bacteria, as well as a significant presence of terrestrially derived OM. Total BHP abundance and the contribution of the “soil-marker” BHPs to the total BHP pool increased eastwards among the GRAR sediments. This suggests increasing terrestrial OM or increased preservation of OM as a result of shorter periods of permafrost thawing. The North American rivers showed greatly differing BHP levels between the Yukon and Mackenzie rivers, with a greater BHP input and thus a relatively higher soil OM contribution from the Yukon. The Indigirka River basin in the eastern Siberian Arctic appeared to be the epicentre in the pan-Arctic BHP distribution trend, with the highest “soil-marker” BHPs but the lowest tetrafunctionalised BHPs. Aminobacteriohopanepentol, an indicator of aerobic methane oxidation, was observed in all the sediments, with the source being either the marine environment or methane producing terrestrial environments.  相似文献   

14.
INTRODUCTIONThe L ower Yangtze sedimentary basin in South Chinawas a typical carbonate ram p slightly inclining northwestwardduring the Early Triassic. The rhythmic L ower TriassicGriesbachian is m ainly composed of thin- bedded mudrock andmarl (or lim estone) alternations,which can be observed overthe region.Due to the wide distribution and well- comparativestructures of these cyclic sedim ents,it was proposed that thesedim ents originated from som e periodic regional environmen-tal e…  相似文献   

15.
Two shallow water late Cenomanian to early Turonian sequences of NE Egypt have been investigated to evaluate the response to OAE2. Age control based on calcareous nannoplankton, planktic foraminifera and ammonite biostratigraphies integrated with δ13C stratigraphy is relatively good despite low diversity and sporadic occurrences. Planktic and benthic foraminiferal faunas are characterized by dysoxic, brackish and mesotrophic conditions, as indicated by low species diversity, low oxygen and low salinity tolerant planktic and benthic species, along with oyster-rich limestone layers. In these subtidal to inner neritic environments the OAE2 δ13C excursion appears comparable and coeval to that of open marine environments. However, in contrast to open marine environments where anoxic conditions begin after the first δ13C peak and end at or near the Cenomanian–Turonian boundary, in shallow coastal environments anoxic conditions do not appear until the early Turonian. This delay in anoxia appears to be related to the sea-level transgression that reached its maximum in the early Turonian, as observed in shallow water sections from Egypt to Morocco.  相似文献   

16.
The mineral barite (BaSO4) can precipitate in a variety of oceanic settings: in the water column, on the sea floor and within marine sediments. The geological setting where barite forms ultimately determines the geochemistry of the precipitated mineral and its usefulness for various applications. Specifically, the isotopic and elemental composition of major and trace elements in barite carry information about the solution(s) from which it precipitated. Barite precipitated in the water column (marine or pelagic barite) can be used as a recorder of changes in sea water chemistry through time. Barite formed within sediments or at the sea floor from pore water fluids (diagenetic or cold seeps barite) can aid in understanding fluid flow and sedimentary redox processes, and barite formed in association with hydrothermal activity (hydrothermal barite) provides information about conditions of crust alteration around hydrothermal vents. The accumulation rate of marine barite in oxic‐pelagic sediments can also be used to reconstruct past changes in ocean productivity. Some key areas for future work on the occurrence and origin of barite include: fully characterizing the mechanisms of precipitation of marine barite in the water column; understanding the role and potential significance of bacteria in barite precipitation; quantifying parameters controlling barite preservation in sediments; determining the influence of diagenesis on barite geochemistry; and investigating the utility of additional trace components in barite.  相似文献   

17.
Ammonoid diversity patterns show that the spreading of oceanic anoxia is not the initial and major kill mechanism for the Cenomanian/Turonian mass extinction as usually suggested. In the Anglo-Paris Basin and the Vocontian Basin, the drop of ammonoid species richness starts around the middle/late Cenomanian boundary, i.e. 0.75 myr before the occurrence of anoxic deepwater sediments. The stepwise extinction of first heteromorphs and then acanthoceratids is incompatible with the rise of the oxygen minimum zone. Moreover, shelf environments of these basins remained well oxygenated during the Cenomanian/Turonian boundary interval. Thus, we stress that other causative mechanisms initiated the ammonoid extinction even if anoxia subsequently participated in the demise of marine ecosystems. Editorial handling: M.J. Benton & J.-P. Billon-Bruyat  相似文献   

18.
《Cretaceous Research》2012,33(6):705-722
Two shallow water late Cenomanian to early Turonian sequences of NE Egypt have been investigated to evaluate the response to OAE2. Age control based on calcareous nannoplankton, planktic foraminifera and ammonite biostratigraphies integrated with δ13C stratigraphy is relatively good despite low diversity and sporadic occurrences. Planktic and benthic foraminiferal faunas are characterized by dysoxic, brackish and mesotrophic conditions, as indicated by low species diversity, low oxygen and low salinity tolerant planktic and benthic species, along with oyster-rich limestone layers. In these subtidal to inner neritic environments the OAE2 δ13C excursion appears comparable and coeval to that of open marine environments. However, in contrast to open marine environments where anoxic conditions begin after the first δ13C peak and end at or near the Cenomanian–Turonian boundary, in shallow coastal environments anoxic conditions do not appear until the early Turonian. This delay in anoxia appears to be related to the sea-level transgression that reached its maximum in the early Turonian, as observed in shallow water sections from Egypt to Morocco.  相似文献   

19.
白垩纪中期(约125~88Ma)海相富有机碳沉积广泛发育于全球各主要洋盆和沉降区,是许多大油田的重要烃源岩。文中从地球生物学的角度探讨了当时海相富有机碳沉积的地质背景和主控因素,认为在白垩纪中期全球事件频发的特殊背景下,保存条件(大洋缺氧)和生产力的提高共同控制了有机质的富集。大洋缺氧不但加快了海洋生物的灭绝和更替,使有机质大量堆积,而且促进了营养元素(P、N、Fe等)的再生和厌氧自养型海洋微生物(如蓝细菌、绿硫细菌和古菌类等)的极度繁盛,提高了生产力水平;而高的生产力又反过来加剧了海洋的缺氧。新的研究成果(Os同位素证据)表明,白垩纪大规模海底火山作用引发了持续的温室效应和海水循环的静滞、紊乱以及弱上升流发育,进而导致生产力的提高和大洋缺氧事件(OAE)的发生,最终造成有机质的广泛堆积和保存。  相似文献   

20.
Chlorophyll degradation products are preserved in marine sediments over timescales of thousands of years. The production of chlorophyll in the water column is related to biological productivity, so chlorophyll degradation products (chlorins) preserved in marine sediments can be used as indicators of paleoproductivity. A new, rapid, non-destructive method of determining chlorin concentrations in marine sediments is presented. Potential interferences associated with the solid-phase fluorescence (SPF) method are explored using reference materials, yet this method compares favorably with spectroscopic and high performance liquid chromatographic (HPLC) methods of analysis using marine sediments from Boston Harbor and the continental shelf off northwest Africa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号