首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cross polarization (CP) magic angle spinning (MAS) 13C NMR spectroscopy is a solid state NMR technique widely applied to study the chemical composition of natural organic matter. In high magnetic fields (>7 T), fast sample spinning is required in order to reduce the influence of spinning sidebands underlying other chemical shift regions. As the spinning speed increases, the Hartmann-Hahn matching profiles break down into a series of narrow matching bands. In order to account for this instability variable amplitude cross polarization techniques (e.g. VACP, ramp-CP) have been developed. In the present study, we experimentally verified the stability of the Hartmann-Hahn condition under two MAS speeds for different samples with known structure and two different humic acids. For a complete restoration of flat matching profiles, large ramp sizes were needed. The matching profiles of the humic acids showed that both samples needed different ramp sizes to restore flat profiles. A set up based on the matching profiles of the commonly used glycine would have led to an insufficient ramp size for one of the humic acids. For the characterization of natural organic matter, we hence recommend to roughly set the matching conditions with a standard and subsequently optimize the matching conditions on a more complex, preferably representative, sample such as a humic acid. We would suggest to either run an array of different ramp sizes until maximum signal intensity is reached for all chemical shift regions or, in the case of unavailable measurement time, to use a ramp size twice the spinning speed.  相似文献   

2.
Dissolved organic matter (DOM) is a very important environmental constituent due to its role in controlling factors for soil formation, mineral weathering and pollutant transport in the environment. Prediction of DOM physical-chemical properties is achieved by studying its chemical structure and spatial conformation. In the present study, dissolved organic matter extracted from compost obtained from the organic fraction of urban wastes (DOM-P) has been analysed by FT-IR, CPMAS 13C NMR spectroscopy and 1H T1 NMR relaxometry with fast field cycling (FFC) setup. While the first two spectroscopic techniques revealed the chemical changes of dissolved organic matter after adsorption either on kaolinite (DOM-K) or montmorillonite (DOM-S), the latter permitted the evaluation of the conformational variations as assessed by longitudinal relaxation time (T1) distribution at the fixed magnetic field of 500 mT. Alterations of T1 distributions from DOM-P to DOM-K and DOM-S were attributed to a decreasing molecular complexity following DOM-P adsorption on the clay minerals. This study applied for the first time solid state 1H T1 NMR relaxometry to dissolved organic matter from compost obtained from the organic fraction of urban wastes and revealed that this technique is very promising for studying environmentally relevant natural organic systems.  相似文献   

3.
Sinking particles are the major transporter of organic carbon from surface to the deep ocean, and their chemical composition changes dramatically with depth. However, the exact mechanism controlling the chemical transformation as particles sink is not well understood, and little detail is known about the structural changes. This is mainly due to the paucity of techniques available to analyze the major macromolecular components of sinking particles. Here we applied advanced solid-state NMR techniques, including cross polarization/magic angle spinning (CPMAS), direct polarization/magic angle spinning (DPMAS), two-dimensional 1H-13C heteronuclear correlation (2D HETCOR) and 1H T1 inversion recovery, on sinking particles collected in the northwest Mediterranean Sea. The CPMAS 13C NMR spectrum of the 200-m particles is significantly different from that of the DPMAS 13C NMR spectrum: CPMAS overestimates the NCH and CHO groups, but underestimates the aliphatic components, which is attributed to the high mobility of polymethylene units. Thus DPMAS is more suitable for quantifying organic composition of sinking particles. Using 2D HETCOR with 1H spin diffusion, we estimated that the size of domains (similar structural entities either physically or chemically grouped together) in the 200-m sinking particles can be as large as tens of nanometers. The results of CPMAS 13C NMR and 1H inversion recovery on sinking particles from 200, 520 and 920 m indicate that the macromolecular heterogeneity observed in surface particles virtually disappears as particles sink into the deep ocean. This suggests that the macromolecular components at depth are different in structural composition than those in surface waters, and may be compositionally homogenized as particles sink.  相似文献   

4.
The aim of this work is to study the structural changes involved in humification processes. Total humic extracts (THE) obtained from five composted materials of diverse origin (solid wastes of wineries, solid mill olive wastes, domestic wastes, ovine manures plus straw, and a mixture of animal manures), and their corresponding initial raw fresh organic mixtures were studied using 13C nuclear magnetic resonance (NMR) using the cross-polarization magic angle spinning technique (CPMAS), 1H NMR, Fourier transform infrared spectroscopy (FTIR) and high pressure size exclusion chromatography (HPSEC). One group of three humic acids extracted from soils, and a second group consisting of two reference humic acids and two reference fulvic acids (1S104H, 1R103H, 1R101F and 1R107F) obtained from the International Humic Substances Society were also characterized using these techniques, in order to compare the features of reference humic and fulvic acids with those of composted materials. Likewise, the results were compared with those obtained in previous studies, in which UV–Visible and fluorescence spectroscopies were employed to characterize the humification degree of the molecular systems.The results obtained by 13C CPMAS NMR, 1H NMR and FTIR indicate that, in general, humification seems to be associated with an increase in the aromatic character of the systems, with the presence of phenol groups as principal substituents and a reduction in oxygen containing functional groups, principally carboxylic or carbonylic groups, as well as the development of molecular fractions with larger size. These results also support the suitability of UV–Visible and fluorescence spectroscopies in the assessment of the humification course of humic extracts in composting processes.  相似文献   

5.
Molecular level characterization of complex biopolymers in nature is a key element to understanding the composition of natural organic matter (NOM) and fossil organic matter formation, such as kerogen and coal. Characterization of such geopolymers is difficult due to their heterogeneity and insolubility in common aqueous or organic solvents. Here, a strategy for extracting a representative sample is presented using the combined techniques of nuclear magnetic resonance (NMR) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) for chemical analysis and characterization of NOM. A variety of NOM samples (wood, kerogen, bitumen, whole sediments) are shown as examples for implementing the strategy, which include solvent extractions using pyridine. For most samples, the extracts are confirmed to be chemically representative of the insoluble solid, by comparing the liquids NMR spectrum of the extract to that of the whole, unfractionated NOM utilizing high resolution magic angle spinning (HRMAS) NMR. To assist in unambiguous peak assignment, a technique for post acquisition spectral denoising, using wavelet transformation (WT), is also employed on the 1D and 2D NMR spectra. The findings from the NMR data lay a foundation for the subsequent electrospray ionization FTICR-MS analysis of the pyridine extracts, since this instrument has the limitation of only analyzing liquid samples. The FTICR-MS analyses can, therefore, be used to molecularly represent the structural components of the NOM. Various compositional insights have been obtained on these samples, indicating the efficacy of the analytical techniques used.  相似文献   

6.
Both the concentrations and the stocks of soil organic carbon vary across the landscape. Do the amounts of recalcitrant components of soil organic matter (SOM) vary with landscape position? To address this question, we studied four Mollisols in central Iowa, two developed in till and two developed in loess. Two of the soils were well drained and two were poorly drained. We collected surface-horizon samples and studied organic matter in the particulate organic matter (POM) fraction, the clay fractions, and the whole, unfractionated samples. We treated the soil samples with 5 M HF at ambient temperature or at 60 °C for 30 min to concentrate the SOM. To assess the composition of the SOM, we used solid-state nuclear magnetic resonance (NMR) spectroscopy, in particular, quantitative 13C DP/MAS (direct-polarization/magic-angle spinning), with and without recoupled dipolar dephasing. Spin counting by correlation of the integral NMR intensity with the C concentration by elemental analysis showed that NMR was ?85% quantitative for the majority of the samples studied. For untreated whole-soil samples with <2.5 wt.% C, which is considerably less than in most previous quantitative NMR analyses of SOM, useful spectra that reflected ?65% of all C were obtained. The NMR analyses allowed us to conclude (1) that the HF treatment (with or without heat) had low impact on the organic C composition in the samples, except for protonating carboxylate anions to carboxylic acids, (2) that most organic C was observable by NMR even in untreated soil materials, (3) that esters were likely to compose only a minor fraction of SOM in these Mollisols, and (4) that the aromatic components of SOM were enriched to ∼53% in the poorly drained soils, compared with ∼48% in the well drained soils; in plant tissue and particulate organic matter (POM) the aromaticities were ∼18% and ∼32%, respectively. Nonpolar, nonprotonated aromatic C, interpreted as a proxy for charcoal C, dominated the aromatic C in all soil samples, composing 69-78% of aromatic C and 27-36% of total organic C in the whole-soil and clay-fraction samples.  相似文献   

7.
Humic substances were isolated from ocean, estuarine water and fresh water using a two column array of XAD-8 and XAD-4 resins in series. The extracted fulvic acids and XAD-4 fraction from different origins were characterized using UV–vis., molecular fluorescence, Fourier transform infrared (FTIR) spectroscopy and cross polarization magic angle spinning (CPMAS)-13C nuclear magnetic resonance (NMR) spectroscopy. The isolation procedure allowed us to obtain the necessary amount of sample for characterization, even in the case of open ocean water, which has a very low amount of dissolved organic carbon (DOC). Humic substances from the open ocean showed the lowest chromophore and fluorophore contents and showed relatively greater fluorescence at lower wavelengths than those from fresh water. FTIR and 13C NMR spectra highlighted the idea that humic substances from a marine environment have a more branched aliphatic structure and less aromatic structure than those highly influenced by terrestrial sources. The spectra also suggest that the open ocean humic substances have a higher content of olefinic carbons than aromatic- or alkyl-substituted carbons.  相似文献   

8.
A three-dimensional (3D) nuclear magnetic resonance (NMR) spectrum can simultaneously provide distributions of longitudinal relaxation time (T1), transverse relaxation time (T2), and diffusivity (D); thus, it greatly improves the capacity of fluid identification, typing, and quantitative evaluations. However, several challenges that significantly hinder the widespread application of this technique remain. The primary challenges are the high time and memory costs associated with the current 3D NMR inversion algorithms. In addition, an activation sequence optimization method for 3D NMR inversions has not been developed. In this paper, a novel inversion method for 3D NMR spectra and a detailed optimization method for activation sequences and acquisition parameters were proposed. The novel method, namely randomized singular value decomposition (RSVD) inversion algorithm, can reduce memory requirements and ensure computational efficiency and accuracy. Window averaging (WA) technique was also adopted in this study to further increase computational speed. The optimized method for pulse sequences is mainly based on projections of the 3D NMR spectra in the two-dimensional (2D) and one-dimensional (1D) domains. These projections can identify missing NMR properties of different fluids. Because of the efficiency and stability of this novel algorithm and the optimized strategy, the proposed methods presented in this paper could further promote the widespread application of 3D NMR.  相似文献   

9.
Complementary, double- and single-resonance solid-state (1H and 13C) nuclear magnetic resonance (NMR) experiments were performed on a solvent extracted and demineralized sample of Murchison meteorite organic macromolecule. These NMR data provide a consistent picture of a complex organic solid composed of a wide range of organic (aromatic and aliphatic) functional groups, including numerous oxygen-containing functional groups. The fraction of aromatic carbon within the Murchison organic residue (constrained by three independent experiments) lies between 0.61 and 0.66. The close similarity in cross-polarized and single-pulse spectra suggests that both methods detect the same distribution of carbon. With the exception of interstellar diamond (readily detected in slow magic angle spinning single-pulse NMR experiments), there is no evidence in the solid-state NMR data for a significant abundance of large laterally condensed aromatic molecules in the Murchison organic insoluble residue. Given the most optimistic estimation, such carbon would not exceed 10% and more likely is a fraction of this maximum estimate. The fraction of aromatic carbon directly bonded to hydrogen is low (∼30%), indicating that the aromatic molecules in the Murchison organic residue are highly substituted. The bulk hydrogen content, H/C, derived from NMR data, ranges from a low of 0.53 ± 0.06 and a high of 0.63 ± 0.06. The hydrogen content (H/C) determined via elemental analysis is 0.53. The range of oxygen-containing organic functionality in the Murchison is substantial. Depending on whether various oxygen-containing organic functional groups exist as free acids and hydroxyls or are linked as esters and ethers results in a wide range in O/C (0.22 to 0.37). The lowest values are more consistent with elemental analyses, requiring that oxygen-containing functional groups in the Murchison macromolecule are highly linked. The combined 1H and 13C NMR data reveal a high proportion of methine carbon, which requires that carbon chains within the Murchison organic macromolecule are highly branched.  相似文献   

10.
Relaxation of 13C nuclei in a peat, a soil, and three soil fractions have been investigated in order to improve structural resolution and to investigate quantification of various carbon types. Rotating frame spin lattice relaxation times (T1?'s) and transverse relaxation times (T2′'s) are similar to those observed for coals. T2′'s of carbons in different magnetic environments differ sufficiently that spectra can be obtained containing only nonprotonated carbon and methyl substituents if a 40 μsec delay without decoupling is inserted into the pulse programme before data acquisition (dipolar dephasing). Provided quantitative data is obtained in simple cross polarization experiments and allowance is made for loss in signal intensity of nonprotonated carbon during dipolar dephasing, then the fraction of aromatic carbon which is protonated in the samples can be determined.  相似文献   

11.
This work presents geochemical characterization of isolated kerogen out of clay fraction using petrography studies, infrared absorption and solid state 13C nuclear magnetic resonance (NMR) spectroscopy, with N‐alkane distributions of saturated hydrocarbon. Mineralogical study of clay mineral associations was carried out using X‐ray diffraction (XRD), on Ypresian phosphatic series from Gafsa‐Metlaoui basin, Tunisia. The XRD data indicate that smectite, palygorskite and sepiolite are the prevalent clay minerals in the selected samples. In this clay mineral association, the N‐alkane (m/z = 57) distribution indicates that the marine organic matter is plankton and bacterial in origin. The kerogens observed on transmitted light microscopy, however, appear to be totally amorphous organic matter, without any appearance of biological form. The orange gel‐like amorphous organic matter with distinct edges and homogenous texture is consistent with a high degree of aliphaticity. This material has relatively intense CH2 and CH3 infrared bands in 13C NMR peaks. This aliphatic character is related to bacterial origin. Brown amorphous organic matter with diffuse edges has a lower aliphatic character than the previous kerogen, deduced from relatively low CH2 and CH3 infrared and 13C NMR band intensities.  相似文献   

12.
杨慧  张连凯  曹建华  于奭 《中国岩溶》2011,30(4):410-416
应用土壤培养法,比较分析了桂林毛村岩溶区不同土地利用方式(农田、灌丛和林地)土壤在25℃、黑暗条件下培养90d有机碳矿化速率的差异(以90d累计释放的CO2-C计)。农田土壤矿化释放的CO2-C含量分别比灌丛和林地少62.9%和56.6%。利用6mol/L的HCl酸解法得到惰性碳含量,并利用三库一级动力学方程在SAS8.2软件中通过非线性拟合得到三种土地利用方式的活性碳库、缓效性碳库的大小及其分解速率,计算得出各库驻留时间。结果表明各土地利用方式均为活性碳库含量最少,占总有机碳的比例在1.82%~2.71%之间,平均驻留时间在8.4~16.3d之间;缓效性碳库次之,占总有机碳的比例在33.91%~45.47%之间,平均驻留时间为4.8~7.7a之间;惰性碳库所占比例最大,在51.82%~64.01%之间,平均驻留时间为假定的1000a。通过固态13C交叉极化魔角自旋核磁共振(13CCPMASNMR)方法对土壤碳结构进行分析,结果表明:与灌丛和林地相比,受人类活动干扰较多的农田烷基C和芳香C的比例增加,烷氧C和羰基C的比例降低;烷基C/烷氧C和疏水C/亲水C的大小顺序均为农田>林地>灌丛,而脂族C/芳香C的大小顺序则相反,即灌丛>林地>农田。这说明农田土壤有机碳分解程度较高,难分解程度增加,难分解有机碳比例增加。   相似文献   

13.
N has a controlling effect on litter biodegradation in the forest floor, while stabilization of organic matter in the mineral soil may be influenced by physical parameters related to soil texture. In this study, in order to understand the processes involved in soil organic matter (SOM) formation, the chemical composition of SOM was followed and evaluated with regards to N contents and soil texture. Samples were taken on sites covered with Norway spruce and displaying contrasting values of C/N ratios in the forest floor. The chemical structure of OM was characterized using solid-state CPMAS 13C and 15N nuclear magnetic resonance (NMR) spectroscopy, along with Proton Spin Relaxation Editing (PSRE) sequences. Four groups of sampling sites were defined based on the NMR spectra of Oh and A horizons. In each group displaying similar NMR characteristics, N content and soil texture could be highly different among sites. Some Oh horizons with similar NMR spectra had very different N contents. Highly humified OM in Oh horizons were observed mainly on sites with low N contents. Some A horizons with different soil texture displayed similar OM chemical structure. High contents of O-alkyl C in some A horizons could originate from higher fresh root material input.  相似文献   

14.
Cross-linking of humic substances with organic bridging groups is thought to contribute to the humification of soil organic matter. Model cross-linked humic substances were prepared by cross-linking Amherst soil humic acid by a diepoxide and a polycarboxylic acid, applying procedures established for cross-linking of polymers and textile fabrics. Products of the cross-linking reactions were analyzed by FTIR and 13C CPMAS NMR. Physicochemical properties of the products were determined by solubility experiments and thermal analysis. The incorporation of the cross-linker into the matrix of the humic acid by covalent linkages was confirmed by both the disappearance of bands of the reactive functional groups of the cross-linker in the FTIR spectrum and the increase of signals related to the incorporation of the cross-linker into the matrix of the humic acid in the FTIR and 13C CPMAS NMR spectra. The formation of covalent ester and ether linkages by the cross-linking reaction was indicated. Water solubilities at pH 6.2 of the cross-linked samples as determined by UV/Vis spectrometry were reduced compared to controls. Fewer water molecule bridges were formed in the cross-linked samples, which was attributed to a lower number of available functional groups and increased distances between humic acid strands caused by the cross-linking molecules. Reduced reactivities of humic acid strands in the cross-linked samples further indicated successful cross-linking. The reactions investigated in this study can be regarded as models for reactions occurring in natural soils to test the significance of cross-linking reactions in the humification process of soil organic matter and the physico-chemical properties and ecological function of organic matter in geosolids.  相似文献   

15.
西秦岭铅锌矿区域地球化学成矿预测模式   总被引:3,自引:0,他引:3  
以成矿系列理论为指导,将区域内的铅锌矿按地球化学特征划分为贫铁型和富铁型2个亚系列,进而用逻辑信息法建立了西秦岭铅锌矿床区域地球化学场预测模式,验证结果较为理想。模式表明,贫铁型矿床的成矿环境为相对封闭还原的构造空间;富铁型矿床完整地反映了该类型铅锌矿床沉积成矿特点显著,而断裂等构造对成矿的直接影响相对不显著。与白银铜矿区域地球化学预测模式相比较,富铁型铅锌矿床中除铁族元素指示基性—超基性岩侵入事件外,其他元素均大致相似,两大类矿床形成的初始热动力条件不同。  相似文献   

16.
Solid-state 1H and 13C Nuclear Magnetic Resonance (NMR) spectroscopic experiments have been performed on isolated meteoritic Insoluble Organic Matter (IOM) spanning four different carbonaceous chondrite meteorite groups; a CR2 (EET92042), a CI1 (Orgueil), a CM2 (Murchison), and the unique C2 meteorite, Tagish Lake. These solid state NMR experiments reveal considerable variation in bulk organic composition across the different meteorite group’s IOM. The fraction of aromatic carbon increases as CR2 < CI1 < CM2 < Tagish Lake. The increases in aromatic carbon are offset by reductions in aliphatic (sp3) carbon moieties, e.g., “CHx,” and “CHx(O,N).” Oxidized sp2 bonded carbon, e.g., carboxyls and ketones grouped as “CO,” are largely conservative across these meteorite groups. Single pulse (SP) 13C magic angle spinning (MAS) NMR experiments reveal the presence of nanodiamonds with an apparent concentration ranking in the IOM of CR2 < CI1 < CM2 < Tagish Lake. A pair of independent NMR experiments reveals that, on average, the aromatic moieties in the IOM of all four meteoritic IOM fractions are highly substituted. Fast spinning SP 1H MAS NMR spectral data combined with other NMR experimental data reveal that the average hydrogen content of sp3 bonded carbon functional groups is low, requiring a high degree of aliphatic chain branching in each IOM fraction. The variation in chemistry across the meteorite groups is consistent with alteration by low temperature chemical oxidation. It is concluded that such chemistry principally affected the aliphatic moieties whereas the aromatic moieties and nanodiamonds may have been largely unaffected.  相似文献   

17.
The chemical structure of the resin from an Australian soft brown coal (Yallourn) has been investigated by cross-polarization nuclear magnetic resonance spectroscopy with magic angle spinning (13C CP MAS NMR). Some additional solution 1H and 13C data were also obtained. Solid-state experiments were performed with and without a delay period before data acquisition. The resulting free induction decays were Fourier transformed with respect to acquisition time and delay period to produce two-dimensional solid-state spectra. Assignments made from the spectra clearly demonstrate that the gross chemical structure of the Yallourn resin is best described as a polymerized diterpenoid with one axial carboxylic group and two double bonds. One double bond is trisubstituted, the other is monosubstituted. After consideration of various mechanisms for polymerization of diterpenoid units during biogenesis and coalification, it was concluded that polymerization occurs at the C15 carbon atoms in the diterpenoids without cyclization of the methylene units at C8.  相似文献   

18.
Alteration phenomena affecting organic matter during diagenesis frequently lead to the formation of residues almost insoluble. Data from 13C CP/MAS nuclear magnetic resonance analyses (NMR) of these residues have been compared to those obtained by other techniques such as elemental analysis, infrared spectroscopy, Rock-Eval pyrolysis or gas chromatography. Three examples of alteration phenomena have been chosen: the artificial and natural oxidation of coals, the biodegradation of oils and solid bitumens, and the radiolytic degradation of organic matter. NMR results and those obtained by other techniques converge on similar general conclusions. Additional information can be extracted from 13C NMR data: e.g. definition of the phenol/carbonyl ratio, transformation of the aromatic network and aromatic ring substitution. These comparisons are good evidence for the reliability of non-destructive analysis of the insoluble fraction of altered organic material by 13C CP/MAS NMR.  相似文献   

19.
In the upper Amazon Basin, aluminum previously accumulated in lateritic formations is massively remobilised in soils by podzolization and exported in waters. We have investigated the speciation of aluminum in the clay-size fractions of eight horizons of waterlogged podzols lying in a depression of a plateau. The horizons illustrate the main steps involved in the podzolization of laterites. They belong to eluviated topsoil A horizons and illuviated subsoil Bhs, Bh and 2BCs horizons of weakly and better-expressed podzols located at the margin and centre of the depression. For the first time, aluminum speciation is quantitatively assessed in soils by spectroscopic methods, namely FTIR, 27Al magic angle spinning (MAS) and multiple-quantum magic angle spinning (MQMAS), nuclear magnetic resonance (NMR). The results thus obtained are compared to chemical extraction data.Solid-state 27Al MAS NMR spectra enable to distinguish Al bound to organic compounds from that incorporated in secondary mineral phases detected by FTIR. MQMAS experiments additionally show that both chemical shifts and quadrupolar constants are distributed for Al nuclei linked with organic compounds. Similar amounts of chelated Al are obtained from NMR spectra and chemical extractions. The study enables to highlight three major steps in the fate of aluminum. (i) Aluminum is first released by mineral weathering, feeds complexing sites of organic matter and accumulates in subsurface Bhs horizons of weakly expressed podzols (acidocomplexolysis). (ii) Complexes of aluminum with organic matter (Al-OM) then migrate downwards in sandy horizons of better-expressed podzols and accumulate at depth in less permeable 2BCs horizons. (iii) The minor amounts of aluminum present in the 2BCs horizon of the downslope podzol show that aluminum is eventually exported towards the river network, either complexed with organic matter or as Al3+ ions after desorption from organic compounds, due to decreasing pH or biodegradation of organic ligands. The direct spectroscopic determination of Al-speciation during the formation of podzolic soils opens new perspectives to trace metal loads in the rivers of the upper Amazon Basin.  相似文献   

20.
Wetland soils from a Mediterranean semiarid wetland (Las Tablas de Daimiel, Central Spain) were studied to characterize the organic matter (OM) and determine its origin and transformation. Cross polarization magic angle spinning (CPMAS) 13C nuclear magnetic resonance (NMR) spectroscopy and mathematical molecular mixing allowed analysis of the organic fraction in terms of six generic components (carbohydrate, protein, lignin, lipid, char and “carbonyl”). Las Tablas is an active carbon sink, with total organic carbon (TOC) content independent of soil OM quality; the TOC content of the upper sediment is 10.0 ± 7.8%. The inorganic carbon content is also high (5.4 ± 3.3%) and is associated mainly with OM of aliphatic character. The OM composition is variable; samples predominantly aliphatic (carbohydrate, lipid and protein) are characteristic of the northern sector, whereas predominantly aromatic samples are typical of the southern Tablas. A strong negative relationship between protein content and lignin content was found, interpreted as a consequence of different proportions of vascular vs. non-vascular (mostly charophyte) litter input. The effect of perturbation is apparent in the extended presence of char, particularly abundant in fire-prone areas. OM quantity and quality do not seem to depend on hydrology (although seasonal flooding is associated with lower TOC wetland soils) or soil characteristics. Dominant vegetation and fire are the main drivers of OM content and composition. Structural carbohydrate, protein and lipid (>60% of total organic fraction) dominate. Widespread anaerobic conditions and the recent character of the sediments could explain the preservation of different fractions of the original detritus composition (due to different vegetation and presence of microbes).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号