首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
This paper aims to assess the seismic fragility of vehicle-bridge-interaction (VBI) systems considering the effects of vehicle types, traffic conditions, and road surface qualities. A stochastic nonlinear mechanical model for the earthquake-VBI system is developed, and the fragility functions for the proposed VBI model are derived by considering the relevant probabilistic seismic demand parameters. On the basis of a typical four-span continuous prestressed concrete highway bridge in China, a complete numerical model for the VBI system is built considering multiple uncertainties from bridge and vehicle parameters, as well as the road surface qualities. A total of 120 real ground motion records with different combinations of magnitude-source-to-site distance (M-R) and earthquake intensity characteristics are selected. Meanwhile, 80 scenarios in terms of different combinations of vehicle types, vehicle speeds, and road surface irregularities are defined. In this context, 96,000 nonlinear time-history analyses are performed, and the developed fragility models are applied to the VBI system at both component and system levels. Results indicate that the fragilities of pier drift, bearing shear strain, and the overall VBI system increase with the increase of the vehicle weight or the decrease of the vehicle speed, while the vertical deck displacement is dominated by the vehicle weight. It is also found that the road surface quality has a negligible effect on both component and system fragilities.  相似文献   

2.
This paper presents a method of analysis for the dynamic response of a simply supported beam and slab bridge under the action of a moving vehicle. The bridge is idealized as an orthotropic plate and, in the analysis, is subdivided into a number of finite strips. The vehicle is idealized as a moving sprung mass. Viscous damping is taken into account for both bridge and vehicle. The results show that there is significant variation of response across transverse sections of the bridge. Furthermore the dynamic magnification is considerably greater than that predicted by a more approximate method in which the bridge is idealized as a simple prismatic beam.  相似文献   

3.
The objective of this study is to investigate the effects of earthquakes on road vehicle-bridge coupling vibration systems. A two-axle highway freight vehicle is treated as a 13 degree-of-freedom system composed of several rigid bodies, which are connected by a series of springs and dampers. The framework of the earthquake-vehicle-bridge dynamic analysis system is then established using an earthquake as the external excitation. The equivalent lateral contact force serves as the judgment criteria for sideslip accidents according to reliability theory. The entire process of the vehicle crossing the bridge is considered for a very high pier continuous rigid frame bridge. The response characteristics of the vehicle and the bridge are discussed in terms of various parameters such as earthquake ground motion, PGA value of the earthquake, incident angle, pier height, vehicle speed and mass. It is found that seismic excitation is the most influential factor in the responses of the vehicle-bridge system and that the safety of vehicles crossing the bridge is seriously impacted by the dual excitations of earthquake and bridge vibration.  相似文献   

4.
This paper discusses the dynamic response of a curved bridge deck to a moving vehicle. The bridge deck is idealized as a set of annular sector plates and circular rings rigidly jointed together. On the basis of classical plate and ring theories a method has been developed to obtain the response to a moving vehicle idealized as a spring mass system. After obtaining the normal modes and frequencies and establishing the orthogonality conditions, the problem of the forced motion of the deck is solved by the method of spectral representation. Numerical results have been presented to illustrate the effect of several vehicle and bridge parameters on the response.  相似文献   

5.
A method for the calculation of dynamic response and loading of single span multigirder bridges due to vehicle loads is described. The analysis takes account of vehicle acceleration or braking, road surface roughness and eccentric placement of the vehicle on the bridge. The analysis is presented for a three-axle tractor-trailer vehicle and the bridge is modelled as an orthotropic plate using higher order finite strips. As an example application, the loadings produced with braking of the three-axle vehicle and a nominally equivalent two-axle vehicle on a bridge were computed. Previous theoretical studies of bridge loading with vehicle braking had employed a two-axle idealization of a three-axle vehicle. The results of the present study show that this approximation is not valid for braking studies as the behaviour of the two vehicle models is significantly different. The loadings produced by a three-axle vehicle are generally less severe than those due to an ‘equivalent’ two-axle vehicle.  相似文献   

6.
Interaction of bridge structures with the adjacent embankment fills and pile foundations is generally responsible for response modification of the system to strong ground excitations, to a degree that depends on soil compliance, support conditions, and soil mass mobilized in dynamic response. This paper presents a general modeling and assessment procedure specifically targeted for simulation of the dynamic response of short bridges such as highway overcrossings, where the embankment soil–structure interaction is the most prevalent. From previous studies it has been shown that in this type of interaction, seismic displacement demands are magnified in the critical bridge components such as the central piers. This issue is of particular relevance not only in new design but also in the assessment of the existing infrastructure. Among a wide range of issues relevant to soil–structure interaction, typical highway overcrossings that have flexible abutments supported on earth embankments were investigated extensively in the paper. Simulation procedures are proposed for consideration of bridge‐embankment interaction effects in practical analysis of these structures for estimation of their seismic performance. Results are extrapolated after extensive parametric studies and are used to extract ready‐to‐use, general, and parameterized capacity curves for a wide range of possible material properties and geometric characteristics of the bridge‐embankment assembly. Using two instrumented highway overpasses as benchmark examples, the capacity curves estimated using the proposed practical procedures are correlated successfully with the results of explicit incremental dynamic analysis, verifying the applicability of the simple tools developed herein, in seismic assessment of existing short bridges. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
汶川大地震绵竹市回澜立交桥震害调查   总被引:11,自引:1,他引:10  
绵竹市回澜立交桥跨越绵竹货运火车站,包括主桥及4个平面为圆形的曲线匝道桥,匝道桥为连续箱梁结构.5.12汶川大地震中,回澜立交桥遭到严重破坏,通过对震害的现场调查及分析发现,圆形匝道桥破坏严重,每个匝道桥破坏集中于1-2个抗弯刚度较大的低矮桥墩并引起上部箱梁横向断裂,其余桥墩发生轻度或中度破坏,主要为桥墩混凝土保护层脱落、混凝土开裂及墩顶橡胶支座的滑移,且总体来看,匝道桥破坏沿切向更为明显.主桥破坏相对较轻,主要包括桥墩顶部的支座滑移及主桥与匝道桥间的碰撞破坏.  相似文献   

8.
Based on the theory of dynamic wheel–rail interactions, a dynamic model of coupled train–bridge system subjected to earthquakes is established, in which the non‐uniform characteristics of the seismic wave input from different foundations are considered. The bridge model is based on the modal comprehension analysis technique. Each vehicle is modelled with 31 degrees of freedom. The seismic loads are imposed on the bridge by using the influence matrix and exerted on the vehicles through the dynamic wheel–rail interaction relationships. The normal wheel–rail interaction is tackled by using the Hertzian contact theory, and the tangent wheel–rail interaction by the Kalker linear theory and the Shen–Hedrick–Elkins theory. A computer code is developed. A case study is performed to a continuous bridge on the planned Beijing–Shanghai high‐speed railway in China. Through input of typical seismic waves with different propagation velocities to the train–bridge system, the histories of the train running through the bridge are simulated and the dynamic responses of the bridge and the vehicles are calculated. The influences of train speed and seismic wave propagation velocity on the dynamic responses of the bridge–vehicle system are studied. The critical train speeds are proposed for running safety on high‐speed railway bridges under earthquakes of various intensities. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
The principal co-ordinates of non-proportionally damped systems are coupled by non-zero off-diagonal elements in the transformed damping matrix. The effects of this damping coupling are investigated, and it is found that significant errors may occur if the dynamic analysis of such systems is based on a truncated set of the overall system modes, even when the damping coupling between these modes is included in the solution. This effect is illustrated by computed results for an idealized soil-structure system.  相似文献   

10.
不同约束方式对匝道桥动力特性的影响研究   总被引:1,自引:0,他引:1  
近年来,地震作用下的匝道桥表现出较高的地震易损性。为建立匝道桥的有效约束方式,以减小其地震损伤,本文基于汶川地震中连续梁桥约束方式的调研结果,建立了4种不同匝道桥支座约束方式,并以石家庄石环线某匝道桥为例,对比分析了不同约束方式下匝道桥的自振特性及地震响应。结果表明:板式橡胶支座具有一定的剪切变形能力,可降低桥墩与支座组成的体系刚度,有效分散了上部结构的地震惯性力,保护了下部结构,但应注意其引起的较大主梁位移;固定支座或墩梁固结形式会放大桥墩受力,增加下部结构的损坏,不宜设置在高度较矮、刚度较大的桥墩上;双层挡块和垫石凹槽分级限位支座具有较好的限位能力,并可耗散部分地震能量。  相似文献   

11.
王德俊 《华南地震》2019,39(3):89-94
快速评估不规则公路桥梁的地震动参数为桥梁地震响应分析、桥梁安全性设计提供科学依据。研究一种快速、有效的不规则公路桥梁地震动参数评估技术,以C形不规则公路桥梁为原型设计振动台与公路桥梁模型,选取Imperial Valley波作为地震动输入,采用加速度传感器、位移传感器采集桥梁加速度与位移数据;结合已知地震动数据计算地震动持续时长参数,优化衰减模型获取精确的地表峰值加速度参数。分析地表峰值加速度与其他地震动参数关系可知,地表峰值加速度与损坏概率成正比,桥梁结构发生损坏的概率在50%以下;震级越大、震中距越小、地表峰值加速度越大。  相似文献   

12.
This paper establishes a scheme for the seismic analysis of interacting vehicle–bridge systems. The focus is on (horizontally) curved continuous railway bridges and frequent earthquakes. Main features of the proposed scheme are (i) the treatment of the dynamics in all three dimensions (3D), employing an additional rotating system of reference to describe the dynamics of the vehicles and a realistic 3D bridge model; (ii) the simulation of the creep interaction forces generated by the rolling contact between the wheel and the rail; and (iii) the integration of the proposed scheme with powerful commercial finite element software, during the pre‐processing and post‐processing phases of the analysis. The study brings forward the dynamics of a realistic vehicle–bridge (interacting) system during seismic shaking. For the (vehicle–bridge) case examined, the results verify the favorable damping effect the running vehicles have on the vibration of the deck. By contrast, the study stresses the adverse influence of the earthquake‐induced bridge vibration on the riding comfort but, more importantly, on the safety of the running vehicles. In this context, the paper unveils also a vehicle–bridge–earthquake timing problem, behind the most critical vehicle response, and underlines the need for a probabilistic treatment. Among the 20 sets of historic records examined, the most crucial for the safety of the vehicles are near‐fault ground motions. Finally, the study shows that even frequent earthquakes, of moderate intensity, can threaten the safety of vehicles running on bridges during the ground motion excitation, in accordance with recorded accidents. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
This paper explores dynamic soil–bridge interaction in high speed railway lines. The analysis was conducted using a general and fully three-dimensional multi-body finite element–boundary element model formulated in the time domain to predict vibrations caused by trains passing over the bridge. The vehicle was modelled as a multi-body system, the track and the bridge were modelled using finite elements and the soil was considered as a half-space by the boundary element method. The dynamic response of bridges to vehicle passage is usually studied using moving force and moving mass models. However, the multi-body system allows to consider the quasi-static and dynamic excitation mechanisms. Soil–structure interaction was taken into account by coupling finite elements and boundary elements. The paper presents the results obtained for a simply supported short span bridge in a resonant regime under different soil stiffness conditions.  相似文献   

14.
The influence of vertical ground motions on the seismic response of highway bridges is not very well understood. Recent studies suggest that vertical ground motions can substantially increase force and moment demands on bridge columns and girders and cannot be overlooked in seismic design of bridge structures. For an evaluation of vertical ground motion effects on the response of single‐bent two‐span highway bridges, a systematic study combining the critical engineering demand parameters (EDPs) and ground motion intensity measures (IMs) is required. Results of a parametric study examining a range of highway bridge configurations subjected to selected sets of horizontal and vertical ground motions are used to determine the structural parameters that are significantly amplified by the vertical excitations. The amplification in these parameters is modeled using simple equations that are functions of horizontal and vertical spectral accelerations at the corresponding horizontal and vertical fundamental periods of the bridge. This paper describes the derivation of seismic demand models developed for typical highway overcrossings by incorporating critical EDPs and combined effects of horizontal and vertical ground motion IMs depending on the type of the parameter and the period of the structure. These models may be used individually as risk‐based design tools to determine the probability of exceeding the critical levels of EDP for pre‐determined levels of ground shaking or may be included explicitly in probabilistic seismic risk assessments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, a wavelet-fi ltered genetic-neuro-fuzzy(WGNF) control system design framework for response control of a highway bridge under various earthquake loads is discussed. The WGNF controller is developed by combining fuzzy logic, discrete wavelet transform, genetic algorithms, and neural networks for use as a control algorithm. To evaluate the performance of the WGNF algorithm, it is tested on a highway bridge equipped with hydraulic actuators. It controls the actuators installed on the abutments of the highway bridge structure. Various earthquakes used as input signals include an artifi cial earthquake, the El-Centro, Kobe, North Palm Springs, Turkey Bolu, Chi-Chi, and Northridge earthquakes. It is proved that the WGNF control system is effective in mitigating the vibration of the highway bridge under a variety of seismic excitation.  相似文献   

16.
This paper presents an experimental study to investigate the performance of shape memory alloy(SMA) restrainers for mitigating the pounding and unseating of highway bridges when subjected to seismic excitations.Mechanical property tests of the SMA wire used in the restrainers are conducted first to understand the pseudo-elastic characteristics of the material.Then,a series of shaking table tests are carried out on a highway bridge model.The structural responses of the highway bridge model equipped with SMA restrainers,installed in the form of deck-deck and deck-pile connections,are analyzed and compared with the uncontrolled structures.The test results of this study indicate that the SMA restrainers are not only effective in preventing unseating but also in suppressing the seismic-induced pounding of the highway bridge model used in this study.  相似文献   

17.
This paper deals with the numerical modelling of free field traffic-induced vibrations during the passage of a vehicle on an uneven road. The road unevenness subjects the vehicle to vertical oscillations that cause dynamic axle loads. The latter are calculated from the vehicle transfer functions and the frequency content of the road profile as experienced by the vehicle axles. A transfer function between the source and the receiver that accounts for the dynamic interaction between the road and the soil is used to calculate the free field response. Its calculation is based on a dynamic substructure method, using a boundary element method for the soil and an analytical beam model for the road. The methodology is validated with analytical results and is finally illustrated by a numerical example where the free field vibrations during the passage of a vehicle on a traffic plateau are considered.  相似文献   

18.
Cyclic tests on two large‐scale models of existing bridge piers with rectangular hollow cross‐section were performed in the ELSA laboratory. The prototype structure is an existing reinforced concrete highway bridge constructed in Austria in 1975. The piers presented several seismic deficiencies and consequently they showed poor hysteretic behaviour and limited deformation capacity as well as undesirable failure modes that do not comply with the requirements of modern codes for seismic‐resistant structures. Experimental data are compared to numerical and empirical predictions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
A method has been developed for the study of the dynamic response of curved bridge decks on the basis of plate equations in polar co-ordinates. A general solution for the forced motion of annular sector plates has been obtained by the method of spectral representation. The specific problem of a moving force on the bridge deck is discussed in detail. A method for obtaining the static response from dynamic analysis is suggested. Numerical results are presented to illustrate the influence of the speed of travel of the force and of the physical parameters of the bridge decks on the deformation. A detailed discussion on the numerical results is also included.  相似文献   

20.
Bridges are crucial to the transportation network in a region struck by an earthquake. Collapse of a bridge determines if a road is passable. Ability of a bridge to carry traffic load after an earthquake determines the weight and speed of vehicles that can cross it. Extent of system and component structural damage in bridges determines the cost and time required for repair. Today, post‐earthquake bridge evaluation is qualitative rather than quantitative. The research presented in this paper aims to provide a quantitative engineering basis for quick and reliable evaluation of the ability of a typical highway overpass bridge to function after an earthquake. The Pacific Earthquake Engineering Research (PEER) Center's probabilistic performance‐based evaluation approach provides the framework for post‐earthquake bridge evaluation. An analytical study was performed that linked engineering demand parameters to earthquake intensity measures. The PEER structural performance database and reliability analysis tools were then used to link demand parameters to damage measures. Finally, decision variables were developed to describe three limit states, repair cost, traffic function, and collapse, in terms of induced damage. This paper presents the analytical models used to evaluate post‐earthquake bridge function, decision variables and their correlation to the considered limit states, and fragility curves that represent the probability of exceeding a bridge function limit state given an earthquake intensity. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号