首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

This study proposes an innovative precast shear wall system, called an EVE precast hollow shear wall structure (EVE-PHSW). Precast panels in EVE-PHSW are simultaneously precast with vertical and horizontal holes. Noncontact lap splices of rebars are used in vertical joints connecting adjacent precast panels for automated prefabrication and easy in situ erection. The seismic behavior of EVE walls was examined through a series of tests on six wall specimens with aspect ratios of 1.0∼1.3. Test results showed that EVE wall specimens with inside cast-in situ concrete achieved the desired “strong bending and weak shear” and failed in shear mode. Common main diagonal cracks and brittle shear failure in squat cast-in situ walls were prevented. Inside cast-in situ concrete could significantly improve the shear strength and stiffness of EVE walls. The details of boundary elements (cast-in situ or prefabricated) and vertical joints (contiguous or spaced) had little effect on the global behavior of EVE walls. Noncontact lap splices in vertical joints could enable EVE walls to exhibit stable load-carrying capacity through extensive deformations. Evaluation on design codes revealed that both JGJ 3-2010 and ACI 318-14 provide conservative estimation of shear strength of EVE walls, and EVE walls achieved shear strength reserves comparative to cast-in situ walls. The recommended effective stiffness for cast-in situ walls in ASCE 41–17 appeared to be appropriate for EVE walls.

  相似文献   

2.
Past seismic events, including the 2009 L’Aquila earthquake and the 2012 Emilia earthquake, clearly demonstrated the inadequacy of the current design approach for the connection system of the cladding wall panels of precast buildings. To clarify this problem the present paper investigates the seismic behaviour of a traditional precast structural frame for industrial buildings with a new type of connection system of cladding panels. This system consists of a statically determined pendulum arrangement of panels, each supported with two hinges to the structure, one at the top and one at the bottom, so to have under seismic action a pure frame behaviour where the wall panels are masses without stiffness. Adding mutual connections between the panels, the wall cladding panels become part of the resisting structure, leading to a dual frame/wall system or to a wall system depending on the stiffness of the connections. The seismic behaviour of this structural assembly is investigated for different degrees of interaction between frame and panels, as well as for an enhanced solution with dissipative connections. The results of nonlinear static (pushover) analyses and nonlinear dynamic analyses under recorded and artificial earthquakes highlight the role of the wall panel connections on the seismic behaviour of the structural assembly and show the effectiveness of the dual frame/wall system with dissipative connections between panels.  相似文献   

3.
The paper investigates the in-plane performance of horizontal precast reinforced concrete cladding panels, typically adopted in one-storey precast industrial and commercial buildings. Starting from in-field observations of cladding panels failures in recent earthquakes, the seismic performance of typical connections is evaluated by means of experimental tests on full-scale panels under quasi-static cyclic loading. The failure mechanisms highlight the vulnerability of such connections to relative displacements and, therefore, the need to accurately evaluate the connections displacement demand and capacity. An analytical model is developed to describe the force–displacement relationship of the considered connections and compared to the experimental results. In order to determine the seismic vulnerability of such connections and provide design recommendations, linear and nonlinear analyses are conducted taking as reference a precast concrete structure resembling an industrial precast building. The results of the analyses show the importance of a correct estimation of the column’s lateral stiffness in the design process and how an improper erection procedure leads to a premature failure of such connections.  相似文献   

4.
This paper presents the evaluation of the loss-of-support conditions in frictional beam-to-column connections of industrial precast concrete buildings under seismic actions. This type of connection is widespread throughout Southern Europe in non-seismically designed industrial precast buildings. First, geometric properties of industrial precast buildings and of the frictional beam-to-column connections, together with reference values for the friction coefficient, are reviewed. Then, earthquake time histories taken from the European Strong-Motion sets and recordings of the two major shocks of the 2012 Emilia-Romagna events are presented and discussed showing the importance of the vertical component. Two dynamic models of increasing complexity are used to ascertain loss-of-support conditions under seismic action. The first model is an elastic one, representing a single frame of the industrial buildings. Results are obtained according to: (1) 2D analyses, disregarding the time correlation between the response peaks along the horizontal and vertical directions, (2) 2D analyses taking into account time correlation, and (3) 3D analyses to evaluate also directionality effects. The second model is a 2D non-linear planar frame developed within the OpenSees framework. Results show that simplified (linear) models are a good proxy to more refined (non-linear) ones. However, one must resort to non-linear models if differential displacements between beam and column are of interest. The non-linear numerical investigations show that friction coefficient, horizontal and vertical periods and damping, and column reinforcement ratio are the key variables in estimating the loss-of-support conditions.  相似文献   

5.
The structural behaviour of precast shear wall-diaphragm connection was compared with the monolithic connection under seismic loading. The monolithic connection was made by using U-bars connecting shear wall and slab, and the precast connection was made by using dowel bars in two steps. Firstly, U-shaped dowel bars from the precast shear wall lower panel and precast slab were connected by the longitudinal reinforcement, and screed concreting was done above the precast slab. Secondly, the shear wall upper panel was connected using the dowel bar protruding from the shear wall lower panel. The gap between the dowel bars and the duct was filled with non-shrink grout. The specimens were subjected to reverse cyclic loading at the ends of the slab. This study also aimed to develop a 3-D numerical model using ABAQUS software. The non-linear properties of concrete were defined by using the concrete damaged plasticity(CDP) model to analyse the response of the structure. The precast dowel connection between the shear wall and slab showed superior performance concerning ductility, strength, stiffness and energy dissipation. The developed finite element model exactly predicted the behaviour of connections as similar to that of experimental testing in the laboratory. The average difference between the results from finite element analysis and experimental testing was less than 20%. The results point to the conclusion that the shear resistance is provided by the dowel bars and the stiffness of the precast specimen is due to the diaphragm action of the precast slab. The damage parameter and the interaction between structural members play a crucial role in the modelling of precast connections.  相似文献   

6.
The macroelement technique for modelling the nonlinear response of masonry panels is particularly efficient and suitable for the analysis of the seismic behaviour of complex walls and buildings. The paper presents a macroelement model specifically developed for simulating the cyclic in‐plane response of masonry walls, with possible applications in nonlinear static and dynamic analysis of masonry structures. The model, starting from a previously developed macroelement model, has been refined in the representation of flexural–rocking and shear damage modes, and it is capable of fairly simulating the experimental response of cyclic tests performed on masonry piers. By means of two internal degrees of freedom, the two‐node macroelement permits to represent the coupling of axial and flexural response as well as the interaction of shear and flexural damage. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
底部开缝预应力剪力墙结构力学性能的有限元分析   总被引:3,自引:0,他引:3  
根据现浇混凝土结构与装配混凝土结构的耗能特点,建立了底部开缝后张拉预应力摇摆剪力墙结构模型,并采用数值模拟方法研究其抗震耗能性能,分析分布钢筋、预应力水平、轴压力等参数对其力学性能的影响,并与同类型整体现浇剪力墙进行了对比分析。结果表明:底部开缝后张拉预应力摇摆剪力墙结构具有一定的耗能能力,虽然相对于现浇剪力墙结构,其承载力较低,但变形能力较强,墙体损伤和残余变形较小,并且具有较好的自复位能力。  相似文献   

8.
A new floor connecting system developed for low‐damage seismic‐resistant building structures is described herein. The system, termed Inertial Force‐Limiting Floor Anchorage System (IFAS), is intended to limit the lateral forces in buildings during an earthquake. This objective is accomplished by providing limited‐strength deformable connections between the floor system and the primary elements of the lateral force‐resisting system. The connections transform the seismic demands from inertial forces into relative displacements between the floors and lateral force‐resisting system. This paper presents the IFAS performance in a shake‐table testing program that provides a direct comparison with an equivalent conventional rigidly anchored‐floor structure. The test structure is a half‐scale, 4‐story reinforced concrete flat‐plate shear wall structure. Precast hybrid rocking walls and special precast columns were used for test repeatability in a 22‐input strong ground‐motion sequence. The structure was purposely designed with an eccentric wall layout to examine the performance of the system in coupled translational‐torsional response. The test results indicated a seismic demand reduction in the lateral force‐resisting system of the IFAS structure relative to the conventional structure, including reduced shear wall base rotation, shear wall and column inter‐story drift, and, in some cases, floor accelerations. These results indicate the potential for the IFAS to minimize damage to the primary structural and non‐structural components during earthquakes.  相似文献   

9.
The Industrialized Building System (IBS) was recently introduced to minimize the time and cost of project construction. Accordingly, ensuring the integration of the connection of precast components in IBS structures is an important factor that ensures stability of buildings subjected to dynamic loads from earthquakes, vehicles, and machineries. However, structural engineers still lack knowledge on the proper connection and detailed joints of IBS structure construction. Therefore, this study proposes a special precast concrete wall-to-wall connection system for dynamic loads that resists multidirectional imposed loads and reduces vibration effects (PI2014701723). This system is designed to connect two adjacent precast wall panels by using two steel U-shaped channels (i.e., male and female joints). During casting, each joint is adapted for incorporation into a respective wall panel after considering the following conditions: one side of the steel channel opens into the thickness face of the panel; a U-shaped rubber is implemented between the two channels to dissipate the vibration effect; and bolts and nuts are used to create an extension between the two U-shaped male and female steel channels. The developed finite element model of the precast wall is subjected to cyclic loads to evaluate the performance of the proposed connection during an imposed dynamic load. Connection performance is then compared with conventional connections based on the energy dissipation, stress, deformation, and concrete damage in the plastic range. The proposed precast connection is capable of exceeding the energy absorption of precast walls subjected to dynamic load, thereby improving its resistance behavior in all principal directions.  相似文献   

10.
The evaluation of the out‐of‐plane behaviour of unreinforced walls is one of the most debated topics in the seismic assessment of existing masonry buildings. The discontinuous nature of masonry and its interaction with the remainder of the building make the dynamic modelling of out‐of‐plane response troublesome. In this paper, the results of a shaking table laboratory campaign on a tuff masonry, natural scale, U‐shaped assemblage (façade adjacent to transverse walls) are presented. The tests, excited by scaled natural accelerograms, replicate the behaviour of external walls in existing masonry buildings, from the beginning of rocking motion to overturning. Two approaches have been developed for modelling the out‐of‐plane seismic behaviour: the discrete element method and an SDOF analytic model. Both approaches are shown to be capable of reproducing the experimental behaviour in terms of maximum rotation and time history dynamic response. Finally, test results and numerical time history simulations have been compared with the Italian seismic code assessment procedures. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A simplified numerical model was used to investigate the out‐of‐plane seismic response of vertically spanning unreinforced masonry (URM) wall strips. The URM wall strips were assumed to span between two flexible diaphragms and to develop a horizontal crack above the wall mid‐height. Three degrees of freedom were used to accommodate the wall displacement at the crack height and at the diaphragm connections, and the wall dynamic stability was studied. The equations of dynamic motion were obtained using principles of rocking mechanics of rigid bodies, and the formulae were modified to include semi‐rigid wall behaviour. Parametric studies were conducted that included calculation of the wall response for different values of diaphragm stiffness, wall properties, applied overburden, wall geometry and earthquake ground motions. The results of the study suggest that stiffening the horizontal diaphragms of typical low‐rise URM buildings will amplify the out‐of‐plane acceleration demand imposed on the wall and especially on the wall–diaphragm connections. It was found that upper‐storey walls connected to two flexible diaphragms had reduced stability for applied earthquake accelerograms having dominant frequency content that was comparable with the frequency of the diaphragms. It was also found that the applied overburden reduced wall stability by reducing the allowable wall rotations. The results of this study suggest that the existing American Society of Civil Engineers recommendations for assessment of vertically spanning walls overestimate the stability of top‐storey walls in multi‐storey buildings in high‐seismic regions or for walls connected to larger period (less stiff) diaphragms. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The seismic performance of a self-centering precast reinforced concrete (RC) frame with shear walls was investigated in this paper. The lateral force resistance was provided by self-centering precast RC shear walls (SPCW), which utilize a combination of unbonded prestressed post-tensioned (PT) tendons and mild steel reinforcing bars for flexural resistance across base joints. The structures concentrated deformations at the bottom joints and the unbonded PT tendons provided the self-centering restoring force. A 1/3-scale model of a five-story self-centering RC frame with shear walls was designed and tested on a shake-table under a series of bi-directional earthquake excitations with increasing intensity. The acceleration response, roof displacement, inter-story drifts, residual drifts, shear force ratios, hysteresis curves, and local behaviour of the test specimen were analysed and evaluated. The results demonstrated that seismic performance of the test specimen was satisfactory in the plane of the shear wall; however, the structure sustained inter-story drift levels up to 2.45%. Negligible residual drifts were recorded after all applied earthquake excitations. Based on the shake-table test results, it is feasible to apply and popularize a self-centering precast RC frame with shear walls as a structural system in seismic regions.  相似文献   

13.
The earthquake resistance of stacked precast concrete simple shear walls found typically in Large Panel buildings of the cross-wall type is studied. Physical model testing on a small shaking table facility and analytical techniques are compared. Results of the testing of four models to failure portrayed the non-linear effects of rocking and shear slip that were assumed in several analytical studies but were never before measured experimentally. The physical model studies are supplemented with an independent mathematical analysis using a modified version of the dynamic, non-linear computer code Drain 2–D. Correlation of the analytical and experimental results show that the computer study can be used to predict the overall shear wall response. Results of the small scale model and the mathematical model studies indicate that the simple shear wall behaves in a non-linear manner, even for low magnitudes of base acceleration. Non-linear effects, usually concentrated in only one or two joints, reduced force levels and increased displacements. The four small scale models that were tested withstood high magnitudes of base acceleration without collapse.  相似文献   

14.
Precast concrete panels form attractive facades for steel frame buildings and are generally regarded as non-structural by structural engineers. However, panels have been found to add lateral stiffness until their capacity or that of their connections is exceeded. Consequently, the computed dynamic response based on a model of the structural framing alone may be quite different from that experienced by the actual structure. As a case study, the influence of precast concrete panels on lateral and torsional stiffness of a 25-storey building was investigated. The effect of cladding on dynamic properties and linear seismic response was explored by varying panel stiffness. Cladding stiffness was added to the bare frame model until analytical frequency values matched vibration test results. Then, using the cladding stiffness values obtained, an accidental eccentricity between centres of mass and rigidity at each floor level was imposed and linear seismic response computed. Torsional response effects were increased substantially. Finally, a modified cladding panel connection was developed based on previously-reported studies for panelized construction. The influence of the proposed connection on overall structural response was determined for different ground motion inputs.  相似文献   

15.
Seismic behaviour of masonry buildings, built of low compressive strength units, is discussed. Although such materials have already been tested and approved for use from mechanical and thermal insulation point of view, the knowledge regarding their structural behaviour is still lacking. In order to investigate the resistance and deformation capacity of this particular type of masonry construction in seismic conditions, a series of eight walls and model of a two-storey full scale confined masonry building have been tested by subjecting the specimens to cyclic shear loads. All tests were conducted under a combination of constant vertical load and quasi static, cyclically imposed horizontal load. The behaviour of tested specimens was of typical shear type. Compared with the behaviour of plain masonry walls, the presence of tie-columns resulted into higher resistance and displacement capacity, as well as smaller lateral resistance degradation. The response of the model was determined by storey mechanism with predominant shear behaviour of the walls and failure mechanism of the same type as in the case of individual confined masonry walls. Adequate seismic behaviour of this particular masonry structural type can be expected under the condition that the buildings are built as confined masonry system with limited number of stories.  相似文献   

16.
As a result of rapid economic growth and urbanization in the past two decades,many tall buildings have been constructed in China Mainland,offering researchers and practitioners an excellent opportunity for research and practice in the field of structural engineering. This paper reviews progress by researchers throughout China Mainland on the seismic research of tall buildings,focusing on three major topics that impact the seismic performance of tall buildings. These are:(1) new types of steel-concrete composite structural members such as steel-concrete composite shear walls and columns,(2) earthquake resilient shear wall structures such as shear walls with replaceable structural components,self-centering shear walls and rocking walls,and(3) performance-based seismic design,including seismic performance index,performance level and design method. The paper concludes by presenting future research needs and directions in this field.  相似文献   

17.
本文根据普通粘土砖墙体配置水平钢筋的研究成果,在空心多孔砖、粉煤灰砌块、火山渣混凝土砌块墙体中配置少量水平钢筋,研究它们在水平往复荷载及竖向荷载共同作用下的宏观破坏模式、抗剪强度、变形能力、钢筋效应等,为砌块承重房屋的抗震设计提供科学依据。  相似文献   

18.
为了研究低层装配式钢筋混凝土水平坐浆墙体的抗震性能,对3个不同剪跨比的低层装配式钢筋混凝土水平坐浆墙体进行了低周反复荷载试验。根据试验结果,分析了剪跨比对墙体的破坏形态、承载力、变形能力、刚度退化和耗能能力的影响。结果表明:随着剪跨比的减小,墙体的破坏形态由弯曲破坏转为剪切破坏;试件SW2和试件SW3的承载力相对于试件SW1分别提高68%和110%,延性分别降低21.8%和37.5%;试件SW1的耗能能力最好,刚度退化速度最缓慢;预制钢筋混凝土墙板与现浇边缘构件协同合作,连接处无竖向裂缝,墙体整体性较好,具有良好的抗震性能,可用于我国城镇建设中的低层住宅结构。  相似文献   

19.
In the seismic retrofit of existing masonry constructions, global interventions are often needed to inhibit the onset of local mechanisms and to engage the whole building box-like structural behaviour. Such interventions are represented by perimeter ties and roof and floor diaphragms. This paper considers the roof diaphragm strengthening solution and investigates the use of stud connections securing the roof thin-folded shell to the perimeter walls. Stud connections serve the dual purpose of collecting and transferring the out-of-plane inertia forces of the masonry walls to the roof diaphragm, as well as transferring the diaphragm reaction forces to the shear walls. Specific detailing of the stud connection and the adoption of an improved lime-mortar overlay on the top of the masonry walls are proposed to improve the connection strength; without such improvements, the connection capacity would be jeopardised by the reduced shear resistance of the masonry wall due to the absence of significant vertical confining action at the roof level. The intervention entirely changes the behaviour of the connection and significantly reduces shear stresses on the masonry wall. The structural behaviour of the connection is analysed and discussed. Emphasis is made on the conceptual design of laboratory and in-field test procedures and testing frames in order to replicate the boundary conditions in real applications. In-situ tests may help during the design of the roof thin-folded shell system and allow for the efficiency assessment of the connections prior to the final intervention, thereby proving the actual feasibility of the retrofit solution.  相似文献   

20.
In high seismic zone regions, slender reinforced concrete structural walls are commonly used in high-rise buildings as a main lateral load resisting element. These walls are very effective in limiting the lateral drift of the building due to their large in-plane stiffness. However, the presence of floor slabs influences the behavior of the shear wall. Also, the current design requirements do not account for the presence of floor slabs. To understand the behavior of wall-slab junctions and address the shortcomings of the current design requirements, the influence of two parameters, namely(a) aspect ratio and(b) longitudinal reinforcement ratio on the behavior is studied numerically. It is observed that the presence of floor slabs at different levels tends to partition the wall into squat wall panels between two consecutive floors. The wall-slab junctions show large stress concentrations arising from the strut action in the squat panels. It is also observed that the floor slabs can get significantly damaged near the wall-slab junction for lower vertical reinforcement ratios in the wall. Thus, the current codeprescribed minimum reinforcement in shear walls is not sufficient and needs to be revisited at for improved performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号