首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Deep water circulation, residence time, and chemistry in a karst complex   总被引:4,自引:0,他引:4  
We investigated the hydrochemistry of a complex karst hydrosystem made of two carbonate units along a coastal lagoon. Ground water emerges on the lagoon floor from a submarine spring. In addition, thermal waters circulate through the limestone and mix with karst water near the lagoon shore. A distinction between the water from the two carbonate units is related to marine influences and human activities. In one of the massifs, the data show an incongruent dissolution of dolomite with time. In the other system, a slight contamination by saline fluids from the thermal reservoir has led to high calcium and magnesium concentrations. 36Cl, 14C, and 3H data constrain the residence time of the water, and allow for the distinguishing of four circulation types: (1) shallow surface circulation (primarily above sea level) in the karstic units with short residence times (<20 years); (2) shallow subsurface circulation (approximately 0 to -50 m) below the karstic units with residence time in the order of 50 years; (3) deep circulation at depth of 700 to 1500 m in the Jurassic limestones below thick sedimentary cover, with residence time of several thousand years for a part of the water; and (4) deep circulation at a depth of approximately 2500 m, which represents the thermal reservoir in the Jurassic units with residence time of approximately 100,000 years. An interpretative hydrogeological framework is based on the constraints of the geochemical analyses of the deep thermal system, and by water flow from the surface to the deep parts of the carbonate formations.  相似文献   

2.
Groundwater from boreholes and shallow wells is a major source of drinking water in most rural areas of Zimbabwe. The quality of groundwater has been taken for granted and the status and the potential threats to groundwater quality have not been investigated on a large scale in Zimbabwe. A borehole and shallow well water quality survey was undertaken between January, 2009 and February, 2010 to determine the chemical and microbial aspects of drinking water in three catchment areas. Groundwater quality physico-chemical indicators used in this study were nitrates, chloride, water hardness, conductivity, alkalinity, total dissolved solids, iron, magnesium, manganese, potassium, calcium, fluoride, sulphates, sodium and pH. The microbiological indicators were total coliforms, faecal coliforms and heterotrophs. Principal component analysis (PCA) showed that most of the variation in ground water quality in all catchment areas is accounted for by Total Dissolved Solids (TDS), electrical conductivity (EC), sodium, bicarbonate and magnesium. The principal dissolved constituents in ground water are in the form of electrically charged ions. Nitrate is a significant problem as the World Health Organization recommended levels were exceeded in 36%, 37% and 22% of the boreholes in the Manyame, Mazowe and Gwayi catchment areas respectively. The nitrate levels were particularly high in commercial farming areas. Iron and manganese also exceeded the recommended levels. The probable source of high iron levels is the underlying geology of the area which is dominated by dolerites. Dolerites weather to give soils rich in iron and other mafic minerals. The high level of manganese is probably due to the lithology of the rock as well as mining activity in some areas. Water hardness is a problem in all catchment areas, particularly in the Gwayi catchment area where a value of 2550 mg/l was recorded in one borehole. The problems with hard water use are discussed. Chloride levels exceeded the recommended levels in a few areas under irrigation. Most of the chloride is probably from agricultural activity particularly the application of potassium chloride. Fluoride levels were particularly elevated in the Gwayi catchment area and this is because of the geology of the area. There was no evidence of microbial contamination in all the boreholes sampled as the total coliform, faecal coliforms, heterotrophs count was nil. However, severe microbial contamination was found in the wells especially those in clay areas.  相似文献   

3.
Transport time scales are key parameters for understanding the hydrodynamic and biochemical processes within estuaries. In this study, the flushing and residence times within the Arvand River estuary have been estimated using a two‐dimensional hydrodynamic model called CE‐QUAL‐W2. The model has been calibrated and verified by two different sets of field data and using the k‐ε vertical eddy diffusivity scheme. Flushing time has been estimated using different methods such as the tidal prism and fraction of freshwater methods. Moreover, residence times have been investigated using pulse residence time, estuarine residence time and remnant function approaches. The results have shown that different methods yield different time scales, and freshwater inflow has the greatest impact upon estimation of residence time, whereas tidal circulation hardly contributes to residence time at all. It has also been shown that the neap‐spring circulation and start phase of simulations have negligible effects on the Arvand's time scales. The investigation of bathymetry showed that two sills of the estuary tend to significantly increase residence time. Understanding the applicability of these time scales and their estimation approaches helps us to evaluate the water quality management of estuaries. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A multivariate assessment has been adapted to the classification of a large, irregular dataset of approximately 34,000 surface water samples accumulated over more than 30 years. A two-stage K-means clustering method was designed to analyse chemical data in the form of percentages of major ions (Na, Mg, Ca, Cl, HCO3 and SO4); the first stage of clustering produced 347 groups, which were then re-clustered to generate the final nine water types. The analysis enabled the definition of provinces of water composition and highlighted natural processes influencing the surface water chemistry. On a statewide basis, sodium is the dominant cation and around 50% at all stream flows, while proportions of calcium and magnesium are about equal. Chloride and bicarbonate constitute the bulk of anions present, while sulfate occurs occasionally and tends to be localised. On a global basis, Queensland surface waters are relatively high in sodium, chloride and magnesium, and low in calcium and sulfate. It was also found that the geographical location has a greater impact on major ion ratios than does the stage of stream flow.

The regional chemical trends are consistent with geology and climate. Streams in northeast Queensland, with short, steep catchments and high rainfall, yield low salinity, sodium-dominated water; this is also the case for sandy southern coastal catchments. Both also reflect an oceanic influence. The proportions of sodium and chloride decrease westward; streams draining the western side of the Great Dividing Range or flowing into the Gulf of Carpentaria have low salinity but relatively hard water. Streams in western Queensland are higher in calcium and bicarbonate. In the large catchments flowing from Queensland into central Australia, the water composition is highly variable, commonly with elevated sulfate. Also in Queensland, there are several other clearly definable water provinces such as the high magnesium waters of basaltic areas.

The findings of this study confirm that the application of such analytical methods can provide a useful assessment of controls over water composition and support management at regional level; the approach used is shown and are applicable to large, disparate datasets.  相似文献   


5.
Lagoons interspersed within wetlands are expected to increase the residence time of the flow in the system which, in turn, will lead to enhanced pollutant removal thus ensuring a good ecological status of the ecosystem. In this study, lagoons interspersed in vegetated wetlands have been mimicked in the laboratory to develop a theoretical model to establish the impact three major driving parameters (the vegetation density surrounding a lagoon, the depth aspect ratio [length vs. depth] of the lagoon and the circulating flow – through the Reynolds number) have on determining the residence time of the flow in the lagoon. The results indicate that, according to the maximum free available area of the flow, the presence of vegetation (Juncus maritimus) decreases the residence time. In addition, an increase in the Reynolds number of the circulating flow in the wetlands also resulted in a decrease in the lagoon residence time. Nevertheless, lagoon residence times were found to depend on the depth of the lagoon, with deeper lagoons having higher residence times. The length of the lagoon, however, was found not to affect the residence time. High lagoon residence times in either natural or constructed wetlands are desirable because they enhance pollutant removal from the water. Although, if the residence times are too long, this may lead to anoxic water conditions that could in fact threaten the wetland's ecosystem.  相似文献   

6.
在复杂湖泊水动力环境作用下,换水周期和传输时间变化直接影响着污染物的迁移和转化.本文运用数值模拟方法,定量研究了季节水情动态下鄱阳湖换水周期和示踪剂传输时间的空间分布.结果表明,不同季节下鄱阳湖换水周期均具有较高的空间异质性,贯穿整个湖区的主河道换水周期约10 d,大多湖湾区的换水周期则长达300多天.尽管不同季节下换水周期空间分布格局几乎相似,但受鄱阳湖水动力场的季节变化影响,夏、秋季的换水周期要明显大于春、冬季.基于换水周期频率分布曲线的统计表明,80%的鄱阳湖区的换水周期约30 d,其余湖区换水周期为几十天至几百天,表明鄱阳湖应该更加确切地描述为一个快速换水和慢速换水同时共存的湖泊系统.鄱阳湖示踪剂传输时间介于4~32 d,夏、秋季的传输时间(11~32 d)约为春、冬季(4~8 d)的4倍,主要与鄱阳湖季节性水情特征及示踪剂的迁移路径有关.本文所获取的换水周期和示踪剂传输时间的时空分布信息可为今后鄱阳湖水质、水环境和生态系统管理和维护等方面提供重要科学参考.  相似文献   

7.
Over the past 60 years, road deicers (i.e. road salt) have been applied to roadways in high latitudes to improve road conditions in winter weather. However, the dissolution of road deicers in highway runoff creates waters with high concentrations of sodium, which can mobilize soil metals via soil cation‐exchange reactions. While several studies have detailed the interactions of road salt‐rich solutions and surface and ground waters, less attention has been given to how local hydrologic flowpaths can impact the delivery of these solutions to near‐road soils. Between 2013 and 2014, soil water samples were collected from a roadside transect of lysimeter nests in Pittsburgh, Pennsylvania (USA). Soil water samples were analysed for metal concentrations and resulting data used to examine cation dynamics. While patterns in soil water calcium and magnesium concentrations follow patterns in soil water sodium concentrations, additional processes influence patterns in soil water potassium concentrations. Specifically, we observe the highest calcium and magnesium concentrations in the deepest lysimeters, suggesting divalent cations are mobilized to, and potentially accumulate in, deeper soil horizons. In contrast, soil water potassium concentrations do not follow this pattern. Additionally, in all examined elements (Ca, Mg, K, Na, and Cl), the timing of concentration peaks appears be influenced by a combination of both distance from the roadside and sampling depth. These relationships not only suggest that multiple soil water flowpaths interact with our study transect but also confirm that road salt plumes persist and migrate following the road salting season. Characterizing the interactions of sodium‐rich solutions and roadside soil cation pools clarifies our understanding of metal dynamics in the roadside environment. A deeper understanding of these processes is necessary to effectively restore and manage watersheds as high total dissolved solid solutions (e.g. road deicing melt, unconventional natural gas brines, and marginal irrigation water) continue to influence hydrological systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The uranium-series isotope signatures of the suspended and dissolved load of rivers have emerged as an important tool for understanding the processes of erosion and chemical weathering at the scale of a watershed. These signatures are a function of both time and weathering-induced fractionation between the different nuclides. Provided appropriate models can be developed, they can be used to constrain the residence time of river sediment. This chronometer is triggered as the bedrock starts weathering and the inferred timescale encompasses the residence time in the weathering profile, storage in temporary sediment deposits (e.g. floodplain) and transport in the river. This approach has been applied to various catchments over the past five years showing that river sediments can reside in a watershed for timescales ranging from a few hundreds of years (Iceland) to several hundreds of thousands of years (lowlands of the Amazon). Various factors control how long sediment resides in the watershed: the longest residence times are observed on stable cratons unaffected by glacial cycles (or more generally, climate variability) and human disturbance. Shorter residence times are observed in active orogens (Andes) or fast-eroding, recently glaciated catchments (Iceland). In several cases, the residence time of suspended sediments also corresponds to the time since the last major climate change. The U-series isotope composition of rivers can also be used to predict the river sediment yield assuming steady-state erosion is reached. By comparing this estimate with the modern sediment yield obtained by multi-year sediment gauging, it is clear that steady-state is seldom reached. This can be explained by climate variability and/or human disturbance. Steady-state is reached in those catchments where sediment transport is rapid (Iceland) or where the region has been unaffected by climate change and/or human disturbance. U-series are thus becoming an important tool to study the dynamics of erosion.  相似文献   

9.
10.
Streamwater discharge and chemistry of two small catchments on Catoctin Mountain in north-central Maryland have been monitored since 1982. Repetitive seasonal cycles in stream-water chemistry have been observed each year, along with seasonal cycles in the volume of stream discharge and in groundwater levels. The hypothesis that the observed streamwater chemical cycles are related to seasonal changes in the hydrological flow paths that contribute to streamflow is examined using a combination of data on groundwater levels, shallow and deep groundwater chemistry, streamwater discharge, streamwater chemistry, soil-water chemistry, and estimates of water residence times. The concentrations of constituents derived from rock weathering, particularly bicarbonate and silica, increase in streamwater during the summer when the water table is below the regolith-bedrock interface and stream discharge consists primarily of deep groundwater from the fractured-bedrock aquifer. Conversely, the concentrations in streamwater of atmospherically derived components, particularly sulfate, increase in winter when the water table is above the regolith-bedrock interface and stream discharge consists primarily of shallow groundwater from the regolith. Tritium and chlorofluorocarbon (CFC) measurements suggest that the groundwater in these systems is young, with a residence time of less than several years. The results of this study have implications for the design of large-scale water-quality monitoring programs.  相似文献   

11.
Kim K 《Ground water》2003,41(6):780-789
Ground water samples collected from a multilevel sampler shortly after its construction showed significantly higher alkalinity and concentrations of calcium and magnesium than those from nearby wells installed 10 years earlier. The sampler was drilled using a conventional hollow-stem power auger in a sandy, silicate aquifer lying beneath an isthmus between two lakes in northern Wisconsin. Ground water in the study area is of low ionic strength and its chemistry is dominated by silicate mineral weathering. Periodic sampling over two years following installation of the sampler showed that the higher solute concentrations had subsequently decreased. Oxygen isotope signature and other solute species, such as sulfate and chloride, were comparable to those of older wells and did not show any notable trends over time. Independent variation of other chemical species that cannot be derived from aquifer minerals, and the similarly high concentrations in older wells shortly after their installation, suggest that rapid dissolution of fresh mineral surfaces and hyperfine particles generated during drilling has induced the enhanced concentrations. This observation is consistent with the field equivalent of laboratory mineral dissolution experiments that show initially increased dissolution rates that decay over time. Well installations for geochemical sampling in dominantly silicate material may require longer times to reach an equilibrium state than has been previously thought.  相似文献   

12.
The ability of wetlands to improve the quality of water has long been recognized and has led to the proliferation of wetlands as a means to treat diffuse and point source pollutants from a range of land uses. However, much of the existing research has been undertaken in temperate climates with a paucity of information on the effectiveness of wetlands, particularly natural wetlands, in tropical regions. This paper contributes to addressing this issue by presenting a comprehensive measurement based assessment of the potential for a naturally occurring tropical riverine wetland to improve the quality of the water entering it. We found small net imports and exports of sediment to/from the wetland in individual years, but over the longer term this kind of wetland is neither a sink nor source of sediment. In contrast, phosphorus was continually removed by the wetland with an overall net reduction of 14%. However, it should be noted that there is no ‘permanent’ gaseous loss mechanism for phosphorus, and its removal from the water column is equal to its accumulation in the wetland soil. We found very little removal of nitrogen by this type of wetland from several analyses including: (i) Surface and groundwater fluxes, (ii) Estimation of water column and soil denitrification rates, (iii) Wetland residence times, and (iv) Hydraulic loading. We also found no clear evidence for transformation of nitrogen to more or less bio‐available forms. Hence, while the benefits of using wetlands to improve water quality in controlled environments have been demonstrated in the literature, these benefits may not always be directly translated to unmanaged natural wetland systems when there is strong seasonality in flows and short residence time during the periods of maximum sediment and nutrient load. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
The study is based on the underground fluid observation data in Lijiang area, northwest Yunnan Province. The data include the water level and temperature in Dangxiao well and Jinjia well, and the ion measurements in Ganze spring. Combining with the data of regional hydrogeology, rainfall, well structures, and the geothermal gradient, we analyzed the variations of each measurement item before the Ludian MS6.5 earthquake on August 3, 2014 and discussed the possible mechanism for the abnormal variations. The water levels of both Dangxiao well and Jinjia well are influenced by local rainfall, but the former shows hysteresis according to rainy seasons and is the long trend influence; while the latter shows synchronization between high water level and rainy season, indicating good connection between well water and shallow aquifer. The recharge water for Dangxiao well is in relatively low temperature, and the temperature sensor is located at the major connecting section between the well water and the aquifer; the water temperature variation is mainly affected by the discharge status and variation of water level. The Jinjia well is always in static level, and the temperature sensor is below the major connecting section between the well water and aquifer, so the water temperature is affected little by water level variations and in smooth fluctuation. The recharge source for Ganze spring can generally increase the contents of calcium and magnesium ions, so does the conductivity. The water level data of Dangxiao well since 2012 are decomposed with wavelet technique. The results, excluding such high-frequency components as the noise and the semidiurnal and daily wave components influenced by earth tide, are further processed with difference method in order to eliminate the trend effect. The results show that the relative change of water level is enhanced and in relatively rapid increase before the Ludian MS6.5 earthquake; the corresponding water temperature values are high. The tendency of water level in Jinjia well displays descending, while the corresponding water temperature shows ascending. The content of calcium ion, magnesium ion, bicarbonate ion, and conductivity of Ganze spring are descending, while the content of fluoride ion is ascending. The abnormal variations of underground fluid in Lijiang area appeared in turns and were accompanied with minor earthquakes before Ludian MS6.5 earthquake, which indicates enhancing of regional stress and increasing of fluid activity.  相似文献   

14.
Ground water quality assessment using multi-rectangular diagrams   总被引:2,自引:0,他引:2  
Ahmad N  Sen Z  Ahmad M 《Ground water》2003,41(6):828-832
A new graphical technique is proposed here for classifying chemical analyses of ground water. In this technique, a diagram is constructed using rectangular coordinates. The new diagram, called a multi-rectangular diagram (MRD), uses adjacent multi-rectangles in which each rectangle represents a specific ground water type. This new diagram has the capability to accommodate a large number of data sets. MRDs have been used to classify chemical analyses of ground water in the Chaj Doab area of Pakistan to illustrate this new approach. Using this graphical method, the differentiated ground water types are calcium bicarbonate, magnesium bicarbonate, sodium bicarbonate, and sodium sulfate. Sodium bicarbonate emerges as the most abundant ground water type. MRDs also offer a visual display of the Chebotarev sequence of ground water quality evolution.  相似文献   

15.
Studies of carbon sources in plankton communities are important because carbon content has become the main currency used in functional studies of aquatic ecosystems. We evaluated the contribution to the total organic carbon pool from different plankton communities (phytoplankton, bacterioplankton, and zooplankton – C-biota) and its drivers in eight tropical hydroelectric reservoirs with different trophic and hydrological status and different physical features. Our systems were separated into three groups based on trophic status and water residence time: (i) mesotrophic with low residence time (ML); (ii) mesotrophic with high residence time (MH); and (iii) eutrophic with low residence time (EL). Our hypothesis that reservoirs with low water residence times and low nutrient concentrations would show the lowest C-biota was supported. Phytoplankton carbon (C-phy) showed the highest concentrations in the EL, followed by MH and ML systems. The EL group also showed significantly higher zooplankton carbon (C-zoo). No significant difference was observed for bacteria carbon (C-bac) among the three system groups. In addition to trophic status and water residence time, regression analyses revealed that water temperature, light, pH, and dissolved organic carbon concentrations were the main drivers of plankton communities in these large tropical hydroelectric reservoirs.  相似文献   

16.
Stream–subsurface water interaction induced by natural riffles and constructed riffles/steps was examined in lowland streams in southern Ontario, Canada. The penetration of stream water into the subsurface was analysed using hydrometric data, and the zone of > 10% stream water was calculated from a chemical mixing equation using tracer injection of bromide and background chloride concentrations. The constructed riffles studied induced more extensive hyporheic exchange than the natural riffles because of their steeper longitudinal hydraulic head gradients and coarser streambed sediments. The depth of > 10% stream water zone in a small and a large constructed riffle extended to > 0·2 m and > 1·4 m depths respectively. Flux and residence time distribution of hyporheic exchange were simulated in constructed riffles using MODFLOW, a finite‐difference groundwater flow model. Hyporheic flux and residence time distribution varied along the riffles, and the exchange occurring upstream from the riffle crest was small in flux and had a long residence time. In contrast, hyporheic exchange occurring downstream from the riffle crest had a relatively short residence time and accounted for 83% and 70% of total hyporheic exchange flow in a small and large riffle respectively. Although stream restoration projects have not considered the hyporheic zone, our data indicate that constructed riffles and steps can promote vertical hydrologic exchange and increase the groundwater–surface water linkage in degraded lowland streams. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Lishan Ran  X. X. Lu 《水文研究》2012,26(8):1215-1229
Reservoirs are an integral component of water resources planning and management. Periodic and accurate assessment of the water storage change in reservoirs is an extraordinarily important aspect for better watershed management and water resources development. In view of the shortcomings of conventional approaches in locating reservoirs' spatial location and quantifying their storage, the remote sensing technique has several advantages, either for a single reservoir or for a group of reservoirs. The satellite‐based remote sensing data, encompassing spatial, spectral and temporal attributes, can provide high‐resolution synoptic and repetitive information with short time intervals on a large scale. Using remote sensing images in conjunction with Google Earth and field check of representative reservoirs, the spatial distribution of constructed reservoirs in the Yellow River basin was delineated, and their storage volume and the residence time of the stored water were estimated. The results showed that 2816 reservoirs were extracted from the images, accounting for 89·5% of the registered total. All large‐ and medium‐sized reservoirs were extracted while small reservoirs may not be extracted due to coarse resolution and cloud‐cover shadows. An empirical relationship between the extracted water surface area and the compiled storage capacity of representative reservoirs was developed. The water storage capacity was estimated to be 66·71 km3, about 92·7% of the total storage capacity reported by the authority. Furthermore, the basin was divided into 10 sub‐basins upon which the water's residence time was analysed. The water discharge in the basin has been greatly regulated. The residence time has surged to 3·97 years in recent years, ranking the Yellow River in the top three of the list in terms of residence time and flow regulation among large river systems in the world. It is expected that it will be further extended in future owing to decreasing water discharge and increasing reservoir storage capacity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Fundamental concepts of exchange and transport time scales in a coastal sea   总被引:1,自引:0,他引:1  
Concepts of age, residence time, transit time, and turn-over time are summarized which are useful for describing the exchange and transport of water or materials in a coastal sea. The age of a particle is defined as a time which has elapsed since it entered the reservoir, and the residence time is defined as a time which will be taken for a particle to reach the outlet. Time scales based on the age are simply related with those based on the residence time. It is shown that a suitable time scale for representing the exchange characteristics is the average residence time and not the turnover time, which has often been used as the exchange time scale. Further, the ‘remnant function’ which describes the phenomena of exchange or transport is introduced, and is related to the residence time. Exchange and transport time scales in a coastal sea are discussed on the basis of the residence time which can be applied to not only steady-state cases, but also the cases where material is injected instantaneously. The average residence time in a one-dimensional channel and bay is obtained from the solutions of the advection-diffusion equation. If we know a flow speed and diffusion coefficient in a channel or bay regarded as one-dimensional, we can translate them into the average residence time. As an example, the average residence time of the Seto Inland Sea is discussed.  相似文献   

19.
In modern hydrological practice large confidence is placed on modelling results that are used for planning and design. This is especially the case where the modelling results have been carefully verified against independent data. An underlying assumption of the calibration/verification process is that the whole data series is stationarity. Standard parametric and non-parametric tests are available for examining the stationary of hydrologic time series but it has been shown here that these may be inadequate for that purpose unless applied with care. Annual, seasonal, monthly and daily time series of precipitation and climate data were examined considering parts of the series formed using sequential windows. Seven standard parametric and non-parametric tests were applied to these relatively long series and while it was shown that some tests suggested that all series were stationary, most series were shown to be non-stationary in more than one of the tests, some of them at very high levels of significance. This apparently hidden non-stationarity could have very large effects on water resources modelling. These effects would have considerable influence in calibration and verification of models and in simulation of long series of water resources characteristics and could be especially important as the effects of climate change become more pervasive.  相似文献   

20.
The isotope hydrology of a set of nested sub-catchments in the north-east of Scotland has been studied to examine the mixing processes and residence times of water in the catchments. The measured δ18O in stream waters was found to be exceptionally uniform both temporally and spatially. Hydrochemical mixing analyses showed that groundwater contributes between 62 and 90% of the stream flow in all sub-catchments. Model analysis indicated that the δ18O in stream water is indicative of a highly mixed system in which near surface runoff appears to be mixed with groundwater, within the soil profile, before being released from the catchment. Small fluctuations in the stream water δ18O response are generated by a small proportion (<10%) of less-well mixed water in infiltration excess runoff during storm events. A comparative application of the model to a nearby catchment, which has a lower proportion of groundwater runoff, demonstrated contrasting behaviour, with significantly less mixing of waters occurring and a more distinct difference in the age of runoff generated by different flow paths. This highlighted that standard methods for characterization of mixing mechanisms are often insufficient and may not discriminate between systems that have retained quite distinct flow paths throughout catchment transit, and those which have been mixed at some stage. Model sensitivity analysis also indicated that the simulated mean residence time of water varies most strongly in response to different parameters compared with the δ18O response. This has implications for estimating water residence times from isotope data. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号