首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
This study reports on trace metal uptake by the grass species Melinis repens, growing in roadside soils and sediments in tropical northeastern Australia. Median total Cu, Pb, Ni and Zn concentrations were significantly (P < 0.05) higher in road edge soils (Cu = 61.1 mg/kg, Pb = 97.3 mg/kg, Ni = 28.6 mg/kg, Zn = 729 mg/kg) than in background soils collected away from roads (Cu = 5.8 mg/kg, Pb = 11.2 mg/kg, Ni = 3.7 mg/kg, Zn = 21 mg/kg). Significantly (P < 0.05) elevated Zn values were recorded in the stems of the M. repens specimens growing on roadside soils (231.6 mg/kg dry weight of tissue) compared with those of grasses growing on background soils (40.8 mg/kg dry weight of tissue). Moreover, median Cu, Ni and Zn values in the roots of roadside grasses (Cu = 29.1 mg/kg, Ni = 2.73 mg/kg, Zn = 169 mg/kg) were significantly (P < 0.05) higher than their respective levels in the roots of background M. repens samples (Cu = 5.98 mg/kg, Ni = 0.70 mg/kg, Zn = 22 mg/kg). A greenhouse experiment showed that Cu and Zn in road sediments are labile and are available for uptake by M. repens. The studied roadside soils and sediments were leached with a diethylenetriaminepentaacetic acid–CaCl2–triethanolamine–HCl extraction solution, which proved to be a rudimentary indicator of Zn availability and uptake to the root tissue of M. repens. The results demonstrate that trace metals in roadside grasses have the potential to be directed up the food-chain as grasses are consumed by herbivores. In addition, bioavailable metal contaminants hosted by road sediments have the capacity to impact on ecosystems downstream of roads because these sediments are mobilised by road runoff waters from road surfaces into adjoining catchments.  相似文献   

2.
 Heavy metal and metalloid concentrations within stream-estuary sediments (<180-μm size fraction) in north-eastern New South Wales largely represent natural background values. However, element concentrations (Ag, As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Zn) of Hunter River sediments within the heavily industrialized and urbanized Newcastle region exceed upstream background values by up to one order of magnitude. High element concentrations have been found within sediments of the Newcastle Harbour and Throsby Creek which drains into urbanized and light industry areas. Observed Pb enrichments and low 208Pb/204Pb, 207Pb/204Pb and 206Pb/204Pb ratios are likely caused by atmospheric deposition of Pb additives from petrol and subsequent Pb transport by road run-off waters into the local drainage system. Sediments of the Richmond River and lower Manning, Macleay, Clarence, Brunswick and Tweed River generally display no evidence for anthropogenic heavy metal and metalloid contamination (Ag, As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Zn). However, the rivers and their tributaries possess localized sedimentary traps with elevated heavy metal concentrations (Cu, Pb, Zn). Lead isotope data indicate that anthropogenic Pb provides a detectable contribution to investigated sediments. Such contributions are evident at sample sites close to sewage outlets and in the vicinity of the Pacific Highway. In addition, As concentrations of Richmond River sediments gradually increase downstream. This geochemical trend may be the result of As mobilization from numerous cattle-dip sites within the region into the drainage system and subsequent accumulation of As in downstream river and estuary sediments. Received: 5 September 1997 · Accepted: 4 November 1997  相似文献   

3.
Sediments of the Lagoa Vermelha (Red Lake), situated in the Ribeira Valley, southeastern Brazil, are made of a homogeneous, organic-rich, black clay with no visible sedimentary structures. The inorganic geochemical record (Al, As, Ba, Br, Co,Cs, Cr, Fe, Mn, Ni, Rb, Sc, Sb, V, Zn, Hg and Pb) of the lake sediments was analyzed in a core spanning 2430 years. The largest temporal changes in trace metal contents occurred approximately within the last 180 years. Recent sediments were found to be enriched in Pb, Zn, Hg, Ni, Mn, Br and Sb (more than 2-fold increase with respect to the “natural background level”). The enhanced accumulation of Br, Sb, and Mn was attributed to biogeochemical processes and diagenesis. On the other hand, the anomalous concentrations of Pb, Zn, Hg and Ni were attributed to pollution. As Lagoa Vermelha is located in a relatively pristine area, far removed from direct contamination sources, the increased metal contents of surface sediments most likely resulted from atmospheric fallout. Stable Pb isotopes provided additional evidence for anthropogenic contamination. The shift of 206Pb/207Pb ratios toward decreasing values in the increasingly younger sediments is consistent with an increasing contribution of airborne anthropogenic lead. In the uppermost sediments (0-10 cm), the lowest values of the 206Pb/207Pb ratios may reflect the influence of the less radiogenic Pb from the Ribeira Valley District ores (206Pb/207Pb between 1.04 and 1.10), emitted during the last 50 years.  相似文献   

4.
The mobility, bioaccessibility and transfer pathways of metals and metalloids in estuarine sediments have been the focus of much detailed research. However, to date, few studies have examined the mineralogical siting of metals and metalloids in such sediments. This is despite the fact the mineralogy of sediments is an important factor that controls which and how much of a particular metal is released to pore waters and overlying water columns. This study reports on the mineralogical siting of metals in contaminated estuarine sediments, Hobart, Australia, and aims to evaluate the mobility of metals in the contaminated substrates. Mineralogical, mineral chemical and bulk chemical analyses demonstrate that the sediments contain very high levels of several metals and metalloids. The contaminated sediments have concentrations of zinc (Zn), lead (Pb), copper (Cu) and cadmium (Cd) ranging from 0.55 to 4.23 wt%, 0.16 to 0.70 wt%, 415 to 951 mg/kg and 23 to 300 mg/kg, respectively. Franklinite and lesser sphalerite are the main repositories of Zn, whereas much of the Pb and Cu is hosted by sulfides, organic matter and undetermined iron (Fe) oxides. While the release of contaminant loads from franklinite through dissolution is likely to be insignificant, even small releases of metals from the highly contaminated sediments can still cause the deterioration of local water quality. The contaminated sediments represent long-term sources of metal pollutants, particularly Zn, to local waters. This study demonstrates that mineralogical analyses are a vital tool to recognise the potential mobility of trace metals in estuarine environments.  相似文献   

5.
Surface sediments collected at the Tirumalairajan river estuary and their surrounding coastal areas were analyzed for the bulk metal concentration. The sediments were collected from post- and premonsoon seasons. Dominances of heavy metals are in the following order: Fe > Mn > Zn > Pb > Cu in both seasons from estuary and coastal area. The results reveal that Fe, Mn, Cu, Pb, and Zn demonstrated an increased pattern from the estuary when compared to the coastal area. The heavy metal pattern of the sediments of the Tirumalairajan river estuary and its surrounding coastal area offered strong evidence that the coastal area was a major source of heavy metals to the estuarine region. For various metals, the contamination factor and geoaccumulation index (I geo) have been calculated to assess the degree of pollution in sediments. The contamination factor and geoaccumulation index show that Zn, Pb, and Cu unpolluted to moderately pollute the sediments in estuarine part. This study shows the major sources of metal contamination in catchment and anthropogenic ones, such as agriculture runoff, discharge of industrial wastewater, and municipal sewage through the estuary and adjoining coastal area.  相似文献   

6.
Urbanisation and industrial development lead to contamination of estuaries and streams with dispersed loadings of heavy metals and metalloids. Contributions of these elements also occur from natural sources. This study provides baseline geochemical data on the respective natural and anthropogenic inputs of Cu, Pb, Zn, Cd, As, Sb, Cr, Ni, Mn and S to estuarine, fluvial and wetland sediments, and adjacent soils, in the Kooloonbung Creek catchment that drains the Port Macquarie urban area in north coastal New South Wales. There have been anthropogenic additions of Cu, Pb, Zn and As from dispersed urban sources at Port Macquarie, but they are restricted to the local catchment and do not impact on the adjacent Hastings River estuary. The most contaminated sediments display enrichment factors up to 20 × for Cu and Pb, 9 × for Zn and 5 × for As relative to local background values. However, only one value (for Pb) exceeds National Water Quality Management Strategy interim sediment quality guideline (high) values. On the other hand, sediments and local soils are commonly strongly enriched in Cr, Ni and Mn, reflecting adjacent ultramafic and mafic rock substrate and lateritic regolith. Concentrations of Cr and Ni are commonly well above interim sediment quality guideline (high) values for sediments, but are in mineralogical forms that are not readily bioavailable. Sediment and soil quality guideline values consequently need to recognise natural enrichments and the mineralogical siting of heavy metals. Although dissolved concentrations of heavy metals in stream waters are commonly low, there is evidence for mobility of Cu, Zn, Fe and Al. Parts of the Kooloonbung Creek wetland area lie on sulfidic estuarine sediments (potential acid sulfate soils). Experimental oxidation of uncontaminated and contaminated sulfidic sediments leads to substantial dissolution of heavy metals under acid conditions, with subsequent aquatic mobility. The results warn about disturbance and oxidation of potential acid sulfate soils that have been contaminated by urban and natural heavy-metal sources.  相似文献   

7.
滦河流域沉积物中重金属分布特征及风险评价   总被引:3,自引:0,他引:3  
郝红  高博  王健康  周怀东  陆瑾  殷淑华  朱成 《岩矿测试》2012,31(6):1000-1005
沉积物作为重金属污染物的源和汇,对水环境有着至关重要的影响.为了全面了解滦河沉积物中重金属污染现状,采用电感耦合等离子体质谱法对滦河干支流沉积物中重金属含量进行了测定,分析了其空间分布,并采用潜在生态危害指数法对滦河沉积物进行了评价.结果表明:滦河沉积物中Cr、Ni、Cu、Zn、Cd 和Pb的平均含量分别为60.40、26.15、48.07、76.42、0.30、25.55 mg/kg,其中Cu和Cd含量高于中国水系沉积物背景值.滦河干流的重金属含量空间分布自上游往下游呈逐渐增加趋势.潜在生态危害指数评价结果表明:不同重金属污染对滦河流域生态风险构成的危害由强至弱依次为:Cd>Cu >Pb>Cr> Zn,其中Cu、Pb、Cr和Zn为低生态危害等级,Cd以中等生态危害等级为主.总体上,滦河沉积物重金属处于中等生态危害等级,干流大黑汀水库和支流瀑河宽域处于强生态危害等级.  相似文献   

8.
黄勇  高博  王健康  李强  郭太君 《岩矿测试》2013,32(4):632-637
城市道路尘土中重金属污染已成为当前重大的环境问题之一.本文对我国西部石河子市城区道路尘土的重金属污染进行评价,利用电感耦合等离子体质谱法测定铅的含量及铅同位素组成,采用地积累指数法评价铅的污染程度.结果显示,石河子市城区道路尘土中重金属铅的含量范围为19.36 ~ 84.63 mg/kg,平均含量为37.85 mg/kg,高于当地土壤背景值,但明显低于我国其他大中型城市,表明当前石河子市的环境质量已经受到人为活动的干扰;尘土中铅的地积累指数在-0.59~1.54之间,平均值为0.30,属于轻度污染水平.利用铅同位素示踪法识别铅污染的来源,206pb/207Pb比值的范围是1.159 ~ 1.182,208 pb/207 Pb比值的范围是2.391 ~2.457,均接近于煤炭和建筑材料的铅同位素比值,初步判断石河子道路尘土的铅污染主要受到煤炭燃烧和城市建设的影响.  相似文献   

9.
为探讨渤海西部在多重环境因素变化下沉积物中重金属的环境地球化学行为,分析了渤海西部44个站位表层沉积物样品中8种重金属元素含量,研究了重金属元素的分布特征、环境影响因素及其生态风险。结果表明,渤海西部表层沉积物中As、Cu、Cd、Cr、Hg、Ni、Pb、Zn的平均含量分别为117 mg/kg、255 mg/kg、014 mg/kg、689 mg/kg、0037 mg/kg、303 mg/kg、223 mg/kg、757 mg/kg;Cu、Cr、Ni、Zn含量与有机碳含量、小于63 μm细粒沉积物呈显著正相关,其在表层沉积物中的分布明显受到有机质含量和沉积物粒径的控制,而As、Hg分布没有明显受到有机质含量的影响。富集系数显示,Cr、Ni、Pb和Zn为无富集,Cu、As为轻度富集,Cd和Hg为中度富集。与多种背景值和一致性沉积物质量基准相比较,渤海西部表层沉积物Pb、Cd的含量超出背景值,而Cu、Zn、Ni、Cr、As、Hg含量也存在一定的异常,但其含量水平引发有害生物效应的可能性不大,尽管重金属元素含量偏高,但生态风险较小。  相似文献   

10.
The tsunami sediments deposited after the December 2004 tsunami were sampled immediately in the coastal environment of Tamil Nadu State on the southeast coast of India. Fifty-four sediment samples were collected and 14 representative samples were selected to identify the level of metal contamination in tsunami sediments. The results indicate that the sediments are mainly of fine to medium-grained sand and contain significantly high contents of dissolved salts in sediments (Na+, K+, Ca+2, Mg+2, Cl) in water-soluble fraction due to seawater deposition and evaporation. Correlation of acid leachable trace metals (Cr, Cu, Ni, Co, Pb, Zn) indicate that Fe-Mn oxyhydroxides might play an important role in controlling their association between them. Enrichment of trace metals is observed in all the locations with reference to the background samples. High values of trace metals in the southern part of the study area are due to the large-scale industries along the coast, and they are probably anthropogenic in nature and of marine origin, which could cause serious environmental problems.  相似文献   

11.
The levels of lead, cadmium, copper, nickel and zinc were determined in the roadside topsoil in Osogbo, Nigeria, with the view to determining the effect of traffic density and vehicular contribution to the soil heavy metal burden. The levels of the metals at the high density roads were significantly higher than the corresponding levels at the medium and low traffic density roads. The average levels of Pb, Cd, Cu, Ni, and Zn in all road locations at a distance of 5 m from the roads were 68.74ᆶ.82, 0.60ǂ.31, 21.19ᆟ.34, 8.38DŽ.40, and 42.45ᆥ.68 mg/kg, respectively. Pb, Cd, and Cu were of average levels of 92.07ᆩ.25, 0.76ǂ.35 and 27.69 mg/kg, respectively at a distance of 5 m from the road at high traffic density roads, while the levels of Ni and Zn averaged 9.65DŽ.61 and 56.27ᆟ.58 mg/kg, respectively. There was a rapid decrease in the level of the metals with distance, with the metal levels at a distance of 50 m from the road almost reaching the natural background levels of the metals at the control sites. The levels of the metals were also determined at the four major motor parks and at the seven mechanic workshop settlements. The levels of the metals at the motor parks and mechanic workshops were far above the levels at the control sites. The levels of Pb, Cd, Cu, Ni, and Zn at the motor parks were 519ᇝ.0, 3.6ǂ.8, 37.9ᆠ.5, 17.3dž.6 and 71.9ᆟ.3 mg/kg, respectively, with the levels of Pb, Cd, Cu, Ni, and Zn at the mechanic workshops averaging 729.57뀶.93, 4.59ǃ.01, 116.6ᆮ.8, 30.21Nj.40, and 88.74ᆰ.11 mg/kg, respectively.  相似文献   

12.
Anomalous Pb isotope ratios measured by Inductively Coupled Plasma Mass Spectrometry in terrigenous marine sediments (<63 μm fraction) from the Gulf of Carpentaria originated from depositional mixing of clay/silt with average modern crustal Pb isotope ratios and detrital monazite with high 208Pb/206Pb and low 207Pb/206Pb. This interpretation is supported by strong correlations between Pb isotope ratio and Th, U and light rare‐earth element concentrations in the sediments as well as by monazite compositional data. A likely source of the detrital monazite is the western portion of the Georgetown Inlier of mainly Proterozoic S‐type granitic rocks. A clear distinction between Pb isotope ratios in sediments deposited from the Norman and Bynoe Rivers in the southeast Gulf of Carpentaria and the persistence of catchment‐specific Pb isotope ratios 45 km offshore suggest that Pb isotope data are useful in tracing the provenance of terrigenous offshore sediments when the source rocks of catchments show sufficient chemical and/or mineralogical variation.  相似文献   

13.
Lead concentrations were determined in samples of soil B-horizon (N = 258), forest-floor humus (O-horizon, N = 259), grass (Avenella flexuosa, N = 251) and spruce (Picea abies, N = 253) needles (2nd year) collected at the same locations evenly spread over the territory of the Czech Republic at an average density of 1 site/300 km2. Median Pb concentrations differ widely in the four materials: soil B-horizon: 27 mg/kg (3.3-220 mg/kg), humus: 78 mg/kg (19-1863 mg/kg), grass: 0.37 mg/kg (0.08-8 mg/kg) and spruce needles: 0.23 mg/kg (0.07-3 mg/kg). In the Pb distribution maps for humus, grass and spruce a number of well-known Pb-contamination sources are indicated by unusually high concentrations (e.g., the Pb smelter at Pribram, the metallurgical industry in the NE of the Czech Republic and along the Polish border, as well as the metallurgical industry in Upper Silesia and Europe’s largest coal-fired power plant at Bogatynia, Poland). The ratio 206Pb/207Pb was determined in all four materials. The median value of the 206Pb/207Pb isotope ratio in the soil B-horizon is 1.184 (variation: 1.145-1.337). In both humus and grass the median value for the 206Pb/207Pb isotope ratio is 1.162 (variation: 1.130-1.182), in spruce needles the median ratio is 1.159 (variation: 1.116-1.186). In humus, grass and spruce needles the known contamination sources are all marked by higher 206Pb/207Pb isotope ratios in the maps. Furthermore, the soil B-horizon, humus, grass and spruce needles show distinctly different spatial distribution patterns of the 206Pb/207Pb isotope ratios. The B-horizon does not provide a viable background value for metal concentrations in the O-horizon or plant materials. None of the maps provides evidence for the importance of traffic-related emissions for the observed isotope ratios at the scale of the Czech Republic.  相似文献   

14.
This study was conducted to assess the anthropogenic impact on metal concentrations in the bottom sediments of the Juam reservoir, Korea, and in stream sediments in its catchment, and to estimate the potential mobility of selected metals (Fe, Mn, Cu, Ni, Pb and Zn) using sequential extraction. A comparison of the metal concentrations in the stream sediments with mean background values in sediments collected from first- or second-order creeks shows that Pb, Cu and Ni are the most affected by anthropogenic inputs. The 206Pb/207Pb ratios of the bottom and core sediments (means: 1.2320 ± 0.0502 and 1.2212 ± 0.0040, respectively) suggest that Pb contamination is mainly due to the waste discharge of abandoned coal and metal mines rather than industrial and airborne sources. Considering the proportion of metals bound to the exchangeable, carbonate and reducible fractions, the comparative mobility of metals is suggested to decrease in the order Mn > Pb > Zn > Ni > Fe  Cu.  相似文献   

15.
The distribution of trace metals in active stream sediments from the mineralized Lom Basin has been evaluated. Fifty-five bottom sediments were collected and the mineralogical composition of six pulverized samples determined by XRD. The fine fraction (<?150 µm) was subjected to total digestion (HClO4?+?HF?+?HCl) and analyzed for trace metals using a combination of ICP-MS and AAS analytical methods. Results show that the mineralogy of stream sediments is dominated by quartz (39–86%), phyllosilicates (0–45%) and feldspars (0–27%). Mean concentrations of the analyzed metals are low (e.g. As?=?99.40 µg/kg, Zn?=?573.24 µg/kg, V?=?963.14 µg/kg and Cr?=?763.93 µg/kg). Iron and Mn have significant average concentrations of 28.325 and 442 mg/kg, respectively. Background and threshold values of the trace metals were computed statistically to determine geochemical anomalies of geologic or anthropogenic origin, particularly mining activity. Factor analysis, applied on normalized data, identified three associations: Ni–Cr–V–Co–As–Se–pH, Cu–Zn–Hg–Pb–Cd–Sc and Fe–Mn. The first association is controlled by source geology and the neutral pH, the second by sulphide mineralization and the last by chemical weathering of ferromagnesian minerals. Spatial analysis reveals similar distribution trends for Co–Cr–V–Ni and Cu–Zn–Pb–Sc reflecting the lithology and sulphide mineralization in the basin. Relatively high levels of As were concordant with reported gold occurrences in the area while Fe and Mn distribution are consistent with their source from the Fe-bearing metamorphic rocks. These findings provide baseline geochemical values for common and parallel geological domains in the eastern region of Cameroon. Although this study shows that the stream sediments are not polluted, the evaluation of metal composition in environmental samples from abandoned and active mine sites for comparison and environmental health risk assessment is highly recommended.  相似文献   

16.
Environmental geochemical studies were carried out to find out the extent of contamination in sediments due to heavy metals in Balanagar industrial area, Hyderabad, Andhra Pradesh, India. The industrial area consisting of 350 small and large industries manufacturing battery, steel planting, pharmaceutical chemicals, metal plating, etc. The present study was undertaken on sediment contamination in Balanagar industrial area, to determine extent and distribution of heavy metals (Cu, Cr, Ni, Pb, Zn, As) and to delineate the source. There is no treatment plant in the industrial area, and many industries release the effluents into nearby nalas and lakes. Solid waste from the industries is also being dumped along the roads and near the open grounds due to which heavy metals migrate from solid waste to the groundwater. The sediments samples were collected from the study area in clean polythene covers and were analyzed for their heavy metals by X-ray fluorescence spectrometry. The concentration ranges of different heavy metals were Cr, 96.2–439.6 mg/kg; Cu, 95.7–810 mg/kg; Ni, 32.3–13,068.2 mg/kg; Pb, 59.2–512 mg/kg; Zn, 157.1–4,630.5 mg/kg; Co, 1.8–48.3 mg/kg; and V, 35.2–308.5 mg/kg. High concentration of heavy metals in sediments can be attributed to some pharmaceutical and metal industries in the study area. Based on the results obtained, suitable remedial measures can be adopted such as phytoremediation and bio-remediation for reduction of heavy metals in sediments.  相似文献   

17.
Concentration and mass loadings of heavy metals adsorbed on sediment from an urban road surface in Beijing were investigated. The buildup and washoff processes are discussed. Results showed that masses of sediments smaller than 500 μm in diameter varied from 11.2 to 25.5 g/m2. On average, sediments smaller than 125 μm accounted for 42.9% of sediments smaller than 500 μm in mass. Cd, Cr, Cu, and Ni were more likely to attach to smaller sediments than bigger ones, compared to Pb and Zn. Mass loading of the sediments generally increased with antecedent dry periods, but the linear relationship was better for smaller sediments than for bigger ones. Heavy metal concentrations adsorbed on sediments with diameter less than 40 μm generally decreased more obviously than those adsorbed on bigger ones after rainfall events.  相似文献   

18.
This study investigates the geochemical characteristics of the acid mine drainage discharged from the abandoned mine adits and tailing piles in the vicinity of the Lousal mine and evaluates the extent of pollution on water and on the stream sediments of the Corona stream. Atmospheric precipitation interacting with sulphide minerals in exposed tailings produces runoff water with pH values as low as 1.9–2.9 and high concentrations of (9,249–20,700 mg l−1), Fe (959–4,830 mg l−1) and Al (136–624 mg l−1). The acidic effluents and mixed stream water carry elevated Cu, Pb, Zn, Cd and As concentrations that exceed the water quality standards. However, the severity of contamination generally decreases 4 km downstream of the source due to mixing with fresh waters, which causes the dilution of dissolved toxic metals and neutralization of acidity. Some natural attenuation of the contaminants also occurs due to the general reduced solubility of most trace metals, which may be removed from solution, by either co-precipitation or adsorption to the iron and aluminium precipitates.  相似文献   

19.
《Applied Geochemistry》1999,14(5):621-633
Forms of Pb, Zn and Cd in the different size fractions (<2 μm, 2–53 μm and >53 μm) of waste dumps, stream sediments and surrounding soils from a former Au mine in Korea, were investigated chemically by sequential extraction analysis and mineralogically by XRD and analytical SEM, so as to clarify the relationships between chemical and mineralogical forms. Total concentrations for the waste dumps and the stream sediments range from 655 to 2920 mg/kg for Pb, 565 to 1191 mg/kg for Zn, and 24.4 to 71.4 mg/kg for Cd, while those for the surrounding soils do not exceed the natural background levels. Direct observations on the heavy mineral fractions of the waste dumps and the stream sediments indicates that the primary sphalerite is still the main pool of the Zn and Cd, while a large part of the primary galena has been changed into a carbonate-bound form. This is in a good agreement with the partitioning of chemical forms in the coarse fractions, in which most of the Zn (75.3 to 79.4% for the waste dumps) and Cd (54.8 to 60.1% for the waste dumps) are associated with the oxidizable form, while most of the Pb (68.8 to 71.0% for the waste dumps) is in the acid (NaOAc)-extractable form. On the other hand, the partitioning of metal forms in the clay fraction is characterised by the highest proportion of the reducible form for all metals (56.6 to 73.8% for Pb, 60.2 to 68.4% for Zn, and 27.1 to 36.8% for Cd in the waste dumps), suggesting precipitation of easily to moderately reducible oxides and hydroxides from the other forms during weathering. With the increase of pH, the dramatic changes of the acid-extractable Pb, the oxidizable Zn and Cd in the coarse fractions, and the exchangeable form, especially for Cd in the clay fraction indicate that pH is the prime factor controlling the partitioning of heavy metals.  相似文献   

20.
Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii   总被引:78,自引:0,他引:78  
 Of the 117 stream and lake systems sampled nationwide, fish from Manoa Stream on Oahu, Hawaii, have consistently shown the highest Pb concentrations. Therefore a detailed study was conducted to examine total metal contents in bed sediments from a 5.8-km stretch of Manoa Stream. A total of 123 samples (<63 μm) were examined for 18 elements and 14 samples for 21 elements. Selected samples were also examined using different leach solutions to examine metal phase associations. All trace metal data, computations of enrichment ratios and the modified index of geoaccumulation point to mineralogical control for Cr and Ni; minor anthropogenic contamination for Ba, Cd, Cu, Hg and Zn; and a very strong contamination signal for Pb. Maximum Pb contents (up to 1080 mg kg−1) were associated with anthropogenic material dumping in minor tributaries, storm sewer sediments and sediments in the “lower” section of the basin. Proportionally Pb had the highest non-residual component of elements examined; dominantly in the reducible phase associated with Mn and amorphous Fe oxyhydroxides. The contamination signal was typically lowest in the “undisturbed” headwater reach of the basin (above 5.1 km) with significant increases throughout the “residential” and “commercial-institutional” zones of the mid-basin. The spatial pattern of bed sediment contamination and evidence from storm sewer-outlet sediments strongly indicates that Pb, and to a lesser degree some other metals, is still being transported to the stream and the primary agent is soil erosion and transport of metals sorbed to sediments. The primary source of sediment-associated metals is considered to be the automobile, though other minor sources can not be ruled out. Received: 3 November 1998 · Accepted: 26 January 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号