首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The tsunami generated by the December 2004 Sumatra-Andaman earthquake had a devastating effect on some parts of Kerala coast, which is a coast located in southwest India. Results of post-tsunami field surveys carried out to understand the changes in coastal morphology and sediment characteristics in the worst affected Kayamkulam region of Kerala coast are documented in this study. Analysis of offshore bathymetric data indicates the shifting of depth contours towards shore, indicating erosion of sediments and deepening of innershelf due to the tsunami. Depth measurement along the backwater (T-S canal) in the hinterland region indicates siltation due to the inundation of the canal.  相似文献   

2.
The Indian Ocean tsunami of December 26, 2004, not only affected the Bay of Bengal coast of India but also part of the Arabian Sea coast of India. In particular, the tsunami caused loss of life and heavy damage on some parts of the Kerala coast in southwest India. The tsunami traveled west, south of Sri Lanka, and some of the tsunami energy was diffracted around Sri Lanka and the southern tip of India and moved northward into the Arabian Sea. However, tsunami, being a long gravity wave with a wave length of a few hundred kilometers, has to take a wide turn. In that process, it missed the very southern part of the Kerala coast and did not achieve large amplitudes there. However, further north, the tsunami achieved amplitudes of upto 5 m and caused loss of life and significant damage. Here we identify the physical oceanographic processes that were responsible for selective amplification of the tsunami in certain locations.  相似文献   

3.
The Indian Ocean tsunami of December 26, 2004, not only affected the Bay of Bengal coast of India but also part of the Arabian Sea coast of India. In particular, the tsunami caused loss of life and heavy damage on some parts of the Kerala coast in southwest India. The tsunami traveled west, south of Sri Lanka, and some of the tsunami energy was diffracted around Sri Lanka and the southern tip of India and moved northward into the Arabian Sea. However, tsunami, being a long gravity wave with a wave length of a few hundred kilometers, has to take a wide turn. In that process, it missed the very southern part of the Kerala coast and did not achieve large amplitudes there. However, further north, the tsunami achieved amplitudes of upto 5 m and caused loss of life and significant damage. Here we identify the physical oceanographic processes that were responsible for selective amplification of the tsunami in certain locations.  相似文献   

4.
The disastrous tsunami of December 26, 2004, exposed the urgent need for implementing a tsunami warning system. One of the essential requirements of a tsunami warning system is the set up of tsunami inundation models which can predict inundation and run-up along a coastline for a given set of seismic parameters. The Tsunami Warning Centre and the State/District level Disaster Management Centres should have tsunami inundations maps for different scenarios of tsunami generation. In the event of a tsunamigenic earthquake, appropriate decisions on issue of warnings and/or evacuation of coastal population are made by referring to such maps. The nature of tsunami inundation and run-up along the Kerala coast for the 2004 Sumatra and 1945 Makran, and a hypothetical worst-case scenario are simulated using the TUNAMI N2 model and the results are presented in this paper. Further, scenarios of tsunami inundation arising out of possible rise in sea level as projected by the Intergovernmental Panel on Climate Change (IPCC 2001) are also simulated and analysed in the paper. For the study, three representative sectors of the Kerala coast including the Neendakara-Kayamkulam coast, which was the worst hit by the 2004 tsunami, are chosen. The results show that the southern locations and certain locations of central Kerala coast are more vulnerable for Sumatra when compared to Makran 1945 tsunami. From the results of numerical modelling for future scenarios it can be concluded that sea level rise can definitely make pronounced increase in inundation in some of the stretches where the backshore elevation is comparatively low.  相似文献   

5.
The Tsunami of December 26, 2004, in the Indian Ocean arrived on the coast of Kerala in southwest India some three hours after the tsunami was generated. The tsunami activity persisted throughout that day and, in some locations, even into the early morning of the next day. Based on interviews with eye witnesses, arrival times of tsunami waves are presented here followed by some preliminary analysis of the results.  相似文献   

6.
Numerical Simulation of Tsunamis on the Tamil Nadu Coast of India   总被引:1,自引:0,他引:1  
The State of Tamil Nadu was the most affected region in India during the tsunami of December 26, 2004, in the Indian Ocean, in terms of loss of life and damage. Numerical simulation was made for three tsunamis, the December 26, 2004, event, the Sumatra tsunami of 1833, and a hypothetical tsunami originating in the Andaman-Nicobar region. Since inundation is not included in these simulations, the tsunami amplitudes were deduced at the 10m depth contour in the ocean, off several locations on the coast of Tamil Nadu. The computed amplitudes appear reasonable as compared to known tsunami amplitudes from past events.  相似文献   

7.
We investigated the correlation between coastal and offshore tsunami heights by using data from the Dense Oceanfloor Network for Earthquakes and Tsunamis (DONET) observational array of ocean-bottom pressure gauges in the Nankai trough off the Kii Peninsula, Japan. For near-field earthquakes, hydrostatic pressure changes may not accurately indicate sea surface fluctuations, because ocean-bottom pressure gauges are simultaneously displaced by crustal deformation due to faulting. To avoid this problem, we focused on the average waveform of the absolute value of the hydrostatic pressure changes recorded at all the DONET stations during a tsunami. We conducted a Monte Carlo tsunami simulation that revealed a clear relationship between the average waveforms of DONET and tsunami heights at the coast. This result indicates the possibility of accurate real-time prediction of tsunamis by use of arrays of ocean-bottom pressure gauges.  相似文献   

8.
Abstract

Maximum tsunami amplitudes that will result from major earthquakes in the Pacific Northwest region of North America are considered. The modeled region encompasses the coastlines of British Columbia in Canada, and Washington and Oregon in the United States. Three separate models were developed for the outer coast and one model for the system consisting of the Strait of Georgia, Juan de Fuca Strait, and Puget Sound (GFP model) (Part 2). Three different source areas were considered for the outer coast models and the resulting tsunami was propagated to the entrance of Juan de Fuca Strait. Using the output from the other models, the GFP model was run. The results showed that large tsunami amplitudes can occur on the outer coast, whereas inside the GFP system, unless the earthquake occurs in the system itself, no major tsunami will result (Part 2).  相似文献   

9.
浙江沿海潜在区域地震海啸风险分析   总被引:3,自引:2,他引:1  
采用COMCOT海啸模型建立三重网格模型模拟了2011年3月11日日本东北部9.0级地震引发的海啸发生、发展以及在我国东南沿海传播过程。震源附近浮标站以及浙江沿海的潮位站实测资料验证结果显示,大部分监测站首波到达时间和海啸波的计算值相差在15%以内,表明模型可较好的模拟海啸在计算域内的传播过程。研究表明日本南海海槽、冲绳海槽以及琉球海沟南部是影响浙江沿海主要的区域潜在震源,通过情景计算分别模拟3个潜在震源9.1级、8.0级和8.7级地震引发的海啸对浙江沿海的海啸风险,计算结果表明,海啸波产生后可在3~8h内传至浙江省沿岸,海啸波达1~3m,最大可达4m,此时浙江沿岸面临Ⅲ~Ⅳ级海啸风险,达到淹没至严重淹没等级。  相似文献   

10.
The history of catastrophic events on the Indian coast helps us to understand the frequency and magnitude of the tsunamis that occurred in the Indian Ocean. These catastrophic events have changed the coastal landscape and have left significant records for further studies. These rare events have occurred in the Indian Ocean. There have been megatsunamigenic events in the past due to volcanic eruptions and earthquakes. Those events due to earthquakes have proved more catastrophic than the volcanic activities. There has been limited official records of the causality and magnitude of palaeo-tsunamigenic events. These have been studied using the various proxies. The rate of sedimentation is a proportional tool to study the magnitude of a tsunami and this has proved to be a successful tool along with foraminiferal assemblages. Causes for a tsunami to occur are by and large, the subduction zone earthquakes of the Indian plate has been the most common source for tsunami in the Indian Ocean. More often the Andaman and Nicobar and the Indonesian islands have been vulnerable to tsunami than the mainland of India and Sri Lanka.

In summary, in the last 200 years at least three basin-wide tsunamis have occurred, with several smaller tsunami affecting one or more coastlines in the region. The December 2004 M-9 tsunami seems to have been the largest and most destructive in the last two centuries, suggesting most tsunami are likely to be smaller but still allowing the possibility that even larger tsunami could be generated in propitious circumstances.  相似文献   

11.
The radioelement and heavy mineral distribution in river, beach and innershelf areas of the southern Kerala coast is related to placer mineral concentration on the beaches at Chavara. Southern Kerala rivers—Neyyar, Karamana and Vamanapuram—transport higher amounts of radioactive elements than the larger Kallada River due to higher radioactive minerals in the hinterland rocks. Coastal configurations and the seasonal longshore current pattern seems to control along-shore distribution of minerals. The proposed model for placer concentration suggests that the energy difference and seasonal current direction along this coast is important.  相似文献   

12.
The Tokachi-Oki earthquake was the strongest seismic event in 2003. The tsunami caused by the earthquake reached a height of four meters at the northeastern coast of Hokkaido. The JAMSTEC successfully recorded the variations of the near-bottom pressure in the region of the tsunami source. An analysis of the data reveals low-frequency (~ 0.15 Hz) elastic vibrations of the water layer. Estimates of the amplitude, velocity, and duration of the bottom deformation at the tsunami source were obtained.  相似文献   

13.
The linear model of long waves is used for the evaluation of the parameters of tsunami waves along the South Coast of Crimea, in the near-Kerch zone, and near the northeast coast of the Black Sea. Our numerical investigations are carried out for 24 probable locations of the elliptic zones of tsunami generation over the continental slope of the basin. The amplitude characteristics of tsunamis are computed for 27 sites of the Black-Sea coast. It is shown that significant strengthening of tsunami waves is possible in the course of their propagation toward the coast. The highest waves are formed at the sites of the coast closest to the seismic source. The dependence of the intensity of tsunami waves along the Black-Sea coast on the location of the seismic source and its magnitude is analyzed.  相似文献   

14.
2015年9月16日22时54分(当地时间)智利中部近岸发生Mw8.3级地震,震源深度25 km。同时,强震的破裂区长200 km,宽100 km,随之产生了中等强度的越洋海啸。海啸影响了智利沿岸近700 km的区域,局部地区监测到近5 m的海啸波幅和超过13 m的海啸爬坡高度。太平洋区域的40多个海啸浮标及200多个近岸潮位观测站详细记录了此次海啸的越洋传播过程,为详细研究此次海啸近场及远场传播及演化规律提供了珍贵的数据。本文选择有限断层模型和自适应网格海啸数值模型建立了既可以兼顾越洋海啸的计算效率又可以实现近场海啸精细化模拟的高分辨率海啸模型。模拟对比分析了海啸的越洋传播特征,结果表明采用所建立的模型可以较好地再现远场及近场海啸特征,特别是对近场海啸的模拟结果非常理想。表明有限断层可以较好地约束近场、特别是局部区域的破裂特征,可为海啸预警提供更加精确的震源信息,结合高分辨率的海啸数值预报模式实现海啸传播特征的精细化预报。本文结合观测数据与数值模拟结果初步分析了海啸波的频散特征及其对模型结果的影响。同时对观测中典型的海啸波特征进行的简要的总结。谱分析结果表明海啸波的能量主要分布在10~50 min周期域内。这些波特征提取是现行海啸预警信息中未涉及,但又十分重要的预警参数。进一步对这些波动特征的详细研究将为海啸预警信息及预警产品的完善提供技术支撑。  相似文献   

15.
越洋海啸的数值模拟及其对我国的影响分析   总被引:7,自引:2,他引:5  
简要介绍了地震海啸产生的物理机制、海啸波在大洋中的传播特性以及海啸所具有的超强破坏力可能引发的巨大灾害;概述了全球地震海啸发生的频率和太平洋区域历史海啸的时空分布;整理分析了我国沿海发生海啸的频次和空间分布。针对越洋海啸传播的特点,采用基于波浪追逐原理和自适应网格加密技术的海啸数值模型对1960智利海啸进行了数值模拟,将模拟的结果与历史记录进行了对比,验证了模型的可靠性。通过对数值模拟结果的分析,初步讨论了我国沿海地区越洋海啸的危险性,并定量阐述了越洋海啸对我国各海区的影响。  相似文献   

16.
Abstract

Marine positioning is relevant for several aspects of tsunami research, observation, and prediction. These include accurate positioning of instruments on the ocean bottom for determining the deep‐water signature of the tsunami, seismic observational setups to measure the earthquake parameters, equipment to determine the tsunami characteristics during the propagation phase, and instruments to map the vertical uplift and subsidence that occurs during a dip‐slip earthquake.

In the accurate calculation of coastal tsunami run‐up through numerical models, accurate bathymetry is needed, not only near the coast (for tsunami run‐up) but also in the deep ocean (for tsunami generation and propagation). If the bathymetry is wrong in the source region, errors will accumulate and will render the numerical calculations inaccurate. Without correct and detailed run‐up values on the various coastlines, tsunami prediction for actual events will lead to false alarms and loss of public confidence.  相似文献   

17.
2017年9月8日4时49分(UTC),墨西哥瓦哈卡州沿岸海域(15.21°N,93.64°W)发生Mw8.2级地震,震源深度30 km。强震在该海域引发海啸,海啸对震源附近数百千米范围内造成了严重影响。位于太平洋上的多个海啸监测网络捕捉到了海啸信号并详细记录了此次海啸的传播过程。本文选用了近场2个DART浮标和6个验潮站的水位数据,通过潮汐调和分析和滤波分离出海啸信号,对近场海啸特征值进行了统计分析,并采用小波变换分析方法进一步分析了海啸的波频特征。基于Okada弹性位错理论断层模型计算得到了强震引发的海底形变分布,并采用MOST海啸模式对本次海啸事件近场传播特征进行了模拟,模拟结果与观测吻合较好。最后,基于实测和模拟结果,详细分析了此次地震海啸的近场分布特征,发现除受海啸源的强度和几何分布特征影响外,近岸海啸波还主要受地形特征控制,在与特定地形相互作用后波幅产生放大效应,会进一步加剧海啸造成的灾害。  相似文献   

18.
印尼附近海域地震海啸发生的构造背景综述   总被引:3,自引:0,他引:3  
2004年12月26日在印度尼西亚苏门答腊岛以西海域发生的里氏9级地震,引发了历史上第五大地震海啸,引起了地学界的高度关注。印度尼西亚西部位于环太平洋地震带和地中海-喜马拉雅地震带结合部位,处于洋壳和陆壳的汇聚边界以及弧状压缩构造格局中。苏门答腊陆缘NW—SE向延伸约1600km,苏门答腊俯冲带源于印度-澳大利亚和欧亚板块3°N的汇聚。苏门答腊弧前区沿着平行于俯冲海沟的两大走滑断裂——苏门答腊大断裂和明打威断裂向北运动。本文对印度尼西亚苏门答腊岛附近海域的地质背景、大地构造特征和地震活动评估等进行了综述,对该海域产生大地震的深部动力学机制进行了分析,并从地质、地球物理资料的获取与分析角度出发,对区域灾害模型进行了探讨。  相似文献   

19.
基于线性长波方程和缓变地形近岸波幅格林公式建立了覆盖整个太平洋区域的准实时地震海啸波幅预报系统。系统利用了GPU并行加速技术,可在90 s之内完成太平洋区域32 h的海啸传播计算和中国沿海城市岸段的波幅特征值预报。筛选了自2006年以来的9次发生在太平洋区域,矩震级(Mw)超过8.0且资料丰富的历史地震海啸事件,对预报系统进行了后报检验。结果表明,线性长波模型能够很好的模拟海啸在大洋中的传播过程;格林公式能够较为准确的估算缓变水深和开阔地形条件下的近岸海啸最大波幅,波幅预警准确率可达80%,基本满足海啸预警需求。以2011年日本Mw9.0地震海啸为例,评估了该系统对中国城市岸段的波幅预警能力,结论基本合理。需要注意的是,利用该系统计算对海啸源特别敏感的近场海啸波幅可能产生较大偏差。提出了若要进一步提高定量海啸波幅预警的准确率,可从以下两个方面加强研究和业务实践:一是采用多数据联合反演方法提升海啸源的精度;二是提高格林公式的适用性,或者构建高效的近岸精细化海啸数值预报系统。  相似文献   

20.
本文利用数值模拟技术重现了1707年宝永地震海啸的传播过程,定量分析了我国东海沿岸海啸时空分布特征。计算结果表明,地震发生2.5小时后海啸波传至东海陆架,震后6小时浙江沿海地区遭到海啸的袭击,沿岸最大海啸波高为0.8米。通过海啸波在东海大陆架传播时海底地形与波幅的关系,研究分析了东海陆架缓变地形下海啸放大效应,为及时判断沿海可能的海啸强度和受灾程度提供了便捷的估算方法。此外,本文还评估了南海海槽发生极端地震时,中国东海沿岸的海啸危险性,为东海区域针对日本南海海槽进行海啸预警和减灾评估提供定量科学的参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号