首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
黄、渤海海冰长期变化特征分析   总被引:6,自引:0,他引:6  
选取渤海、黄海北部冰情等级、冰面积资料和大气环流逐月资料,采用小波分析和交叉小波分析方法,研究海冰长期变化特征及其气候成因。结果发现黄、渤海海冰具有多尺度变化特征,存在低频变化、高频变化和无明显周期的演变过程。西太平洋副高、亚洲极涡以及纬向环流是影响海冰生成与变化的直接因素。黄、渤海海冰还与印度洋副高、北美副高,以及大西洋副高存在显著年代际相关关系。  相似文献   

2.
A contrasting study of the large-scale circulation features responsible for months with many typhoons and months with tew typhoons has revealed that the frequency of typhoon formation over the Northwest Pacific is related to the following conditions:Over the Northwest Pacific, a well-defined ITCZ (Intertropical Convergence Zone) extending eastward to 160°E was displaced to 20°N. At 200 mb, an extensive anomalous anticyclonic circulation prevails over the western and central Pacific. The condition characteristic of a break in the monsoon prevailed in India. The monsoon trough at 500 mb and at the surface over the Indian Peninsula was relatively weak and was accompanied by higher-than-normal rainfall in the northern part of India and lower-than-normal rainfall over the peninsula. In addition, the polar vortex tends to be weak and move to the side of the Northern Hemisphere, opposite to the North Pacific. Finally, abnormally warm water was observed over the Central and Eastern Pacific and abnormally cold  相似文献   

3.
金啟华  王辉  姜华  何春  刘珊 《海洋学报》2012,34(1):64-70
利用SODA资料和ECCO资料计算得到的北太平洋副热带海洋环流强度,和国家气候中心整编的中国160站逐月降水资料,结合NCEP/NCAR再分析资料和Hadley中心海表面温度资料,分析了1970-2007年海洋环流强度异常同期的大尺度大气环流异常特征及对中国东部夏季降水的影响。结果表明:海洋环流强度变化与长江中下游地区降水存在密切的反相关。环流强度异常可以通过影响西太平洋副热带高压的南北位置异常进而影响长江中下游降水。海洋环流偏弱时,副高位置偏南,长江中下游地区受气旋性环流异常影响,来自副高西北侧的强西南水汽输送至此,在该地区形成强水汽辐合中心,同时伴随上升运动加强和对流的加强,进一步导致该地区降水偏多;当海洋环流偏强时,西太平洋副高位置偏北,长江中下游地区受反气旋性环流异常影响,伴随辐散下沉及水汽辐散,导致该地区降水偏少;海洋环流强度异常导致的中纬度海区海表面温度异常,可能是导致副高南北位置异常的主要原因。  相似文献   

4.
Deep water in the Nordic seas is the major source of Atlantic deep water and its formation and transport play an important role in the heat and mass exchange between polar and the North Atlantic. A monthly hydrological climatology—Hydrobase II—is used to estimate the deep ocean circulation pattern and the deep water distribution in the Nordic seas. An improved P-vector method is applied in the geostrophic current calculation which introduces sea surface height gradient to solve the issue that a residual barotropic flow cannot be recognized by traditional method in regions where motionless level does not exist. The volume proportions, spatial distributions and seasonal variations of major water masses are examined and a comparison with other hydrological dataset is carried out. The variations and transports of deep water are investigated based on estimated circulation and water mass distributions. The seasonal variation of deep water volume in the Greenland Basin is around 22×103 km3 whereas significantly weaker in the Lofoten and Norwegian Basins. Annual downstream transports of about 1.54×103 and 0.64×103 km3 are reported between the Greenland/Lofoten and Lofoten/Norwegian Basins. The deep water transport among major basins is generally in the Greenland-Lofoten-Norwegian direction.  相似文献   

5.
邓凤飞  张旭 《海洋学报》2022,44(9):13-22
大西洋经向翻转环流(Atlantic Meridional Overturning Circulation,AMOC)是气候系统重要的组成部分,其强度变化可直接影响南北半球的热量分配,厘清其变化机理对全球变暖背景下的未来预估至关重要。海洋沉积物记录发现,在晚更新世,AMOC的变化与地球岁差周期有紧密联系,但其物理机理尚不清楚。本文利用海洋?大气耦合气候模型—COSMOS(ECHAM5/JSBACH/MPIOM)模型,通过敏感试验,分析在冰盛期冷期和间冰期暖期气候背景下,AMOC对地球岁差变化的响应机理。结果表明:岁差降低引起的北半球夏季太阳辐射增强,会导致间冰期暖期背景下的AMOC显著减弱,但对冰盛期AMOC的影响并不明显。通过进一步分析发现,在间冰期暖期,夏季太阳辐射增强,造成高低纬大西洋海表的升温,同时促进北大西洋高纬度地区的局地降水,两者导致北大西洋表层海水密度降低,共同削弱大西洋深层水生成。而在冰盛期冷期,大西洋高低纬度地区的响应对AMOC的影响反向—副热带升温触发的海盆尺度低压异常,通过其南侧的西风异常削弱大西洋向太平洋的水汽输送,导致净降水增多,海表盐度下降;同时,高纬度升温造成的海冰减少,促进了海洋热丧失,海表失热变重,有利于大西洋深层水的生成,最终两者的共同作用导致AMOC对岁差变化的响应偏弱。本文系统揭示了不同气候背景下,岁差尺度AMOC变化的控制机理,对理解晚更新世AMOC重建记录中持续存在的岁差周期具有重要启示意义。  相似文献   

6.
Variations in hydrophysical parameters in the Arctic Ocean and the North Atlantic are studied on the basis of numerical simulation with the use of an ocean circulation model (including ice formation and drift). The main circulation and ice-drift modes have been ascertained depending on atmospheric cycles. The possibilities of the parameterization of intermediate and deep water formation in numerical models of polar ocean dynamics are considered. The effect of the interannual variability of the discharge of Siberian rivers on the distribution and propagation of fresh water in this region are estimated from numerical experiments. The simulation results of the propagation of the dissolved methane from Siberian rivers are presented.  相似文献   

7.
An analysis of the water mass structure of the Atlantic Ocean central layer is conducted by applying optimum multiparameter (OMP) analysis to an expansive historical data set. This inverse method utilises hydrographic property fields to determine the spreading and mixing of water masses in the permanent thermocline. An expanded form of OMP analysis is used, incorporating Redfield ratios and pseudo-age to correct for the non-conservative behaviour of oxygen and nutrients over large oceanic areas.Three water masses are considered to contribute to the central layer of the Atlantic Ocean. One of these is formed in each hemisphere of the Atlantic Ocean and the other advects around the southern tip of Africa from its formation region in the Indian Ocean. The Atlantic Ocean is analysed on a fine three-dimensional grid so that at every grid point the relative contributions of each water mass and the pseudo-age are determined.The model is remarkably successful in verifying many accepted circulation features in the Atlantic Ocean, including the large-scale circulations of the subtropical gyres, the zonal flows of equatorial currents at the equator, and a cross-equatorial flow of the water masses formed in the southern hemisphere near the western boundary. The inter-hemisphere flow is so important that almost half of the thermocline waters in the Caribbean Sea and the Gulf of Mexico are supplied by the two water masses formed in the South Atlantic and Indian Oceans. This provides support for an upper-layer replacement path for the formation of North Atlantic Deep Water. Further east, the sharp front at about 15°N between North and South Atlantic Central Waters is clearly discriminated throughout the thermocline. The central waters of the South Atlantic thermocline are found to be highly stratified, with central water formed in the Indian Ocean underlying the South Atlantic Central Water. At around 5°N a strong upwelling zone is identified in which the central water formed in the Indian Ocean penetrates towards the surface. The pseudo-age results allow pathways for the flow of water masses to be inferred, and clearly identify circulation features such as the subtropical gyres, the Equatorial Undercurrent, and the shadow zones in the eastern equatorial regions of the Atlantic Ocean. Water mass renewal in these shadow zones occurs on considerably longer time scales than for the well-ventilated subtropical gyres.  相似文献   

8.
How are large western hemisphere warm pools formed?   总被引:1,自引:0,他引:1  
During the boreal summer the Western Hemisphere warm pool (WHWP) stretches from the eastern North Pacific to the tropical North Atlantic and is a key feature of the climate of the Americas and Africa. In the summers following nine El Niño events during 1950–2000, there have been five instances of extraordinarily large warm pools averaging about twice the climatological annual size. These large warm pools have induced a strengthened divergent circulation aloft and have been associated with rainfall anomalies throughout the western hemisphere tropics and subtropics and with more frequent hurricanes. However, following four other El Niño events large warm pools did not develop, such that the mere existence of El Niño during the boreal winter does not provide the basis for predicting an anomalously large warm pool the following summer.In this paper, we find consistency with the hypothesis that large warm pools result from an anomalous divergent circulation forced by sea surface temperature (SST) anomalies in the Pacific, the so-called atmospheric bridge. We also find significant explanations for why large warm pools do not always develop. If the El Niño event ends early in the eastern Pacific, the Pacific warm anomaly lacks the persistence needed to force the atmospheric bridge and the Atlantic portion of the warm pool remains normal. If SST anomalies in the eastern Pacific do not last much beyond February of the following year, then the eastern North Pacific portion of the warm pool remains normal. The overall strength of the Pacific El Niño does not appear to be a critical factor. We also find that when conditions favor a developing atmospheric bridge and the winter atmosphere over the North Atlantic conforms to a negative North Atlantic Oscillation (NAO) pattern (as in 1957–58 and 1968–69), the forcing is reinforced and the warm pool is stronger. On the other hand, if a positive NAO pattern develops the warm pool may remain normal even if other circumstances favor the atmospheric bridge, as in 1991–92. Finally, we could find little evidence that interactions internal to the tropical Atlantic are likely to mitigate for or against the formation of the largest warm pools, although they may affect smaller warm pool fluctuations or the warm pool persistence.  相似文献   

9.
The role of Mediterranean Overflow Water (MOW) in creating subsurface salinity anomalies within the Rockall Trough, a gateway to high latitude areas of deep convection, has been examined closely in recent years. Eulerian investigations of high latitude property fields have suggested that these subsurface anomalies are likely the result of variability in the zonal extent of the eastern limb of the subpolar gyre: when expanded into the eastern North Atlantic, the gyre is presumed to limit the extent to which MOW is able to penetrate northward to subpolar latitudes. However, though the depth of the subsurface salinity anomalies in the Rockall Trough supports the hypothesis that the intermittent presence of MOW is involved in creating the anomalies, MOW pathways to the Rockall Trough have not yet been established. Here, Lagrangian trajectories from floats released in the eastern North Atlantic between 1996 and 1997 and synthetic trajectories launched within an eddy-resolving ocean general circulation model are used to demonstrate that two main density neutral transport pathways lead to the Rockall Trough. One pathway involves the transport of relatively fresh waters as part of the North Atlantic Current and the other involves the transport of relatively salty waters from the eastern reaches of the subtropical North Atlantic. The results from this study indicate that changes in these pathways over time can explain the subsurface salinity variability in the Rockall Trough.  相似文献   

10.
《Marine Geology》2001,172(3-4):309-330
The link between smectite composition in sediments from the northern North Atlantic and Labrador Sea, and deep circulation is being further investigated through detailed studies of the X-ray pattern of smectites and cation saturations. This allows clear distinction of dominant terrigenous sources associated to the main components of the modern Western Boundary Undercurrent. Time variations of smectite characteristics in two piston cores from the inlet and outlet of the Western Boundary Undercurrent gyre in the Labrador Sea indicate: (1) a more southern circulation of North East Atlantic Deep Water during the Late Glacial; (2) a step by step transition to the modern pattern of deep circulation during the Late Glacial/Holocene transition, with intensification of North East Atlantic Deep Water and Davis Strait Overflow; (3) an expansion of Davis Strait Overflow and Labrador Sea Water circulation in relation to ice surges and deposition of detrital layers; (4) an intensified circulation of North East Atlantic Deep Water during the Younger Dryas; and (5) a very recent increased influence of Denmark Strait Overflow Water beginning between 4.4 and <1 kyr.  相似文献   

11.
Meridional ocean freshwater transports and convergences are calculated from absolute geostrophic velocities and Ekman transports. The freshwater transports are analyzed in terms of mass-balanced contributions from the shallow, ventilated circulation of the subtropical gyres, intermediate and deep water overturns, and Indonesian Throughflow and Bering Strait components. The following are the major conclusions:
1.
Excess freshwater in high latitudes must be transported to the evaporative lower latitudes, as is well known. The calculations here show that the northern hemisphere transports most of its high latitude freshwater equatorward through North Atlantic Deep Water (NADW) formation (as in [Rahmstorf, S., 1996. On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dynamics 12, 799-811]), in which saline subtropical surface waters absorb the freshened Arctic and subpolar North Atlantic surface waters (0.45 ± 0.15 Sv for a 15 Sv overturn), plus a small contribution from the high latitude North Pacific through Bering Strait (0.06 ± 0.02 Sv). In the North Pacific, formation of 2.4 Sv of North Pacific Intermediate Water (NPIW) transports 0.07 ± 0.02 Sv of freshwater equatorward.In complete contrast, almost all of the 0.61 ± 0.13 Sv of freshwater gained in the Southern Ocean is transported equatorward in the upper ocean, in roughly equal magnitudes of about 0.2 Sv each in the three subtropical gyres, with a smaller contribution of <0.1 Sv from the Indonesian Throughflow loop through the Southern Ocean. The large Southern Ocean deep water formation (27 Sv) exports almost no freshwater (0.01 ± 0.03 Sv) or actually imports freshwater if deep overturns in each ocean are considered separately (−0.06 ± 0.04 Sv).This northern-southern hemisphere asymmetry is likely a consequence of the “Drake Passage” effect, which limits the southward transport of warm, saline surface waters into the Antarctic [Toggweiler, J.R., Samuels, B., 1995a. Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Research I 42(4), 477-500]. The salinity contrast between the deep Atlantic, Pacific and Indian source waters and the denser new Antarctic waters is limited by their small temperature contrast, resulting in small freshwater transports. No such constraint applies to NADW formation, which draws on warm, saline subtropical surface waters .
2.
The Atlantic/Arctic and Indian Oceans are net evaporative basins, hence import freshwater via ocean circulation. For the Atlantic/Arctic north of 32°S, freshwater import (0.28 ± 0.04 Sv) comes from the Pacific through Bering Strait (0.06 ± 0.02 Sv), from the Southern Ocean via the shallow gyre circulation (0.20 ± 0.02 Sv), and from three nearly canceling conversions to the NADW layer (0.02 ± 0.02 Sv): from saline Benguela Current surface water (−0.05 ± 0.01 Sv), fresh AAIW (0.06 ± 0.01 Sv) and fresh AABW/LCDW (0.01 ± 0.01 Sv). Thus, the NADW freshwater balance is nearly closed within the Atlantic/Arctic Ocean and the freshwater transport associated with export of NADW to the Southern Ocean is only a small component of the Atlantic freshwater budget.For the Indian Ocean north of 32°S, import of the required 0.37 ± 0.10 Sv of freshwater comes from the Pacific through the Indonesian Throughflow (0.23 ± 0.05 Sv) and the Southern Ocean via the shallow gyre circulation (0.18 ± 0.02 Sv), with a small export southward due to freshening of bottom waters as they upwell into deep and intermediate waters (−0.04 ± 0.03 Sv).The Pacific north of 28°S is essentially neutral with respect to freshwater, −0.04 ± 0.09 Sv. This is the nearly balancing sum of export to the Atlantic through Bering Strait (−0.07 ± 0.02 Sv), export to the Indian through the Indonesian Throughflow (−0.17 ± 0.05 Sv), a negligible export due to freshening of upwelled bottom waters (−0.03 ± 0.03 Sv), and import of 0.23 ± 0.04 Sv from the Southern Ocean via the shallow gyre circulation.
3.
Bering Strait’ssmall freshwater transport of <0.1 Sv helps maintains the Atlantic-Pacific salinity difference. However, proportionally large variations in the small Bering Strait transport would only marginally impact NADW salinity, whose freshening relative to saline surface water is mainly due to air-sea/runoff fluxes in the subpolar North Atlantic and Arctic. In contrast, in the Pacific, because the total overturning rate is much smaller than in the Atlantic, Bering Strait freshwater export has proportionally much greater impact on North Pacific salinity balances, including NPIW salinity.
  相似文献   

12.
Trends in the Atlantic tropical cyclones and the cyclones that had tracks through North Carolina were analyzed for more than 100 years. From about 1970, there appears to be an increase in the mean number of storms developing. The number of storms affecting North Carolina each decade has been increasing since the 1960s. In the 1980s, 1990s, and into the 2000s, there was an increase in the number of landfalling storms in North Carolina. Although August and September are the most active months of the Atlantic hurricane season, the hurricane season for North Carolina peaks in September. Wind distribution and frictional convergence associated with landfalling hurricanes in North Carolina are discussed. Convection and precipitation patterns of landfalling hurricanes are presented. Two examples of the effect of spatial surface moisture distribution on intensification of tropical cyclones over land after landfall are discussed.  相似文献   

13.
The distribution and optical absorption characteristics of chromophoric dissolved organic matter (CDOM) were systematically investigated along three meridional transects in the North Atlantic Ocean and Caribbean Sea conducted as part of the 2003 US CLIVAR/CO2 Repeat Hydrography survey. Hydrographic transects covered in aggregate a latitudinal range of 5° to 62° north along longitudes 20°W (line A16N, Leg 1), 52°W (A20), and 66°W (A22). Absorption spectra of filtered seawater samples were collected and analyzed for depths ranging from the surface to ∼6000 m, sampling all the ocean water masses in the western basin of the subtropical North Atlantic and several stations on the North and South American continental slopes. The lowest surface abundances of CDOM (< 0.1 m−1 absorption coefficient at 325 nm) were found in the central subtropical gyres while the highest surface abundances (∼0.7 m−1) were found along the continental shelves and within the subpolar gyre, confirming recent satellite-based assessments of surface CDOM distribution. Within the ocean interior, CDOM abundances were relatively high (0.1–0.2 m−1 absorption coefficient at 325 nm) except in the subtropical mode water, where a local minimum exists due to the subduction of low CDOM surface waters during mode water formation. In the subthermocline water masses of the western basin, changes in CDOM abundance are not correlated with increasing ventilation age as assessed using chlorofluorocarbon (CFC) concentrations and the atmospheric CFC history. But dissolved organic carbon (DOC) mass-specific absorption coefficients of CDOM increase with increasing ventilation age in the deep sea, indicating that CDOM is a refractory component of the DOC pool. The overall CDOM distribution in the North Atlantic reflects the rapid advection and mixing processes of the basin and demonstrates that remineralization in the ocean interior is not a significant sink for CDOM. This supports the potential of CDOM as a tracer of ocean circulation processes for subducted water masses.  相似文献   

14.
Year-long Lagrangian trajectories within the Labrador Sea Water of the eastern North Atlantic Ocean are analysed for basic flow statistics. Root-mean-square velocities at 1750 m depth are about 2 cm/s, except within the North Atlantic Current, where they are twice as large. These values are consistent with previous Eulerian measurements and extend those results to a much larger domain of the eastern basin. Mean flow estimates in boxes large enough to contain about 1 float-year of data indicate that Labrador Sea Water, having crossed the Mid- Atlantic Ridge (not resolved) near 50–55°N, presumably with the North Atlantic Current, partially recirculates to the north in the subpolar gyre, as well as entering the subtropical gyre and continuing south and west. The circulation of this water mass, as defined by the 1 yr average velocities, is stronger than traditional models of deep circulation would suggest, with an interior flow of roughly 1 cm/s. Mean speeds up to 3 cm/s were observed, with the highest values near the Azores Plateau. North of 45°N–55°N, mean eastward speeds closer to 0.2 cm/s were observed. Wind-generated barotropic fluctuations may be responsible for some part of the transport at this depth.  相似文献   

15.
The present study reveals the fact that the relationship between the spring(April–May) North Atlantic Oscillation(NAO) and the following summer(June–September) tropical cyclone(TC) genesis frequency over the western North Pacific(WNP) during the period of 1950–2018 was not stationary. It is shown that the relationship between the two has experienced a pronounced interdecadal shift, being weak and insignificant before yet strong and statistically significant after the early 1980 s. Next we compare the spring NAO associated dynamic and thermodynamic conditions, sea surface temperature(SST) anomalies, and atmospheric circulation processes between the two subperiods of 1954–1976 and 1996–2018, so as to illucidate the possible mechanism for this interdecadal variation in the NAO-TC connection. During the latter epoch, when the spring NAO was positive,enhanced low-level vorticity, reduced vertical zonal wind shear, intensified vertical velocity and increased middle-level relative humidity were present over the WNP in the summer, which is conducive to the genesis of WNP TCs. When the spring NAO is negative, the dynamic and thermodynamic factors are disadvantageous for the summertime TC formation and development over the WNP. The results of further analysis indicate that the persistence of North Atlantic tri-pole SST anomalies from spring to the subsequent summer induced by the spring NAO plays a fundamental role in the linkage between the spring NAO and summer atmospheric circulation.During the period of 1996–2018, a remarkable eastward propagating wave-train occurred across the northern Eurasian continent, forced by the anomalous SST tri-pole in the North Atlantic. The East Asian jet flow became greatly intensified, and the deep convection in the tropics was further enhanced via the changes of the local Hadley circulation, corresponding to a positive spring NAO. During the former epoch, the spring NAO-induced tri-pole SST anomalies in the North Atlantic were non-existent, and the related atmospheric circulation anomalies were extremely weak, thereby leading to the linkage between spring NAO and WNP TC genesis frequency in the following summer being insignificant.  相似文献   

16.
基于该系列文章前文研究中构建的海气耦合气候模式和所揭示的北大西洋热盐环流年代际振荡机制,针对海气要素对该振荡机制的影响问题进行了重点的探讨。为细致准确的研究北大西洋海洋要素同北大西洋热盐环流年代际振荡的关系,有针对性的定义了副极地海区表层密度指数和北大西洋暖流强度指数并对模式结果进行了全面分析。分析结果表明副极地海区表层密度变化领先大西洋径向翻转环流(MOC)变化7 a,北大西洋暖流的变化领先 MOC变化4 a,格陵兰-苏格兰海脊溢流水强度(包括丹麦海峡溢流水和法鲁海峡溢流水,是北大西洋深层水的重要来源)的变化领先 MOC的变化3 a;北大西洋大气要素变化对北大西洋热盐环流年代际振荡有非常重要的调制作用,当副极地流环和北大西洋暖流(NAC)达到最强的2 a之前,高纬度地区大气为气旋式环流异常,中纬度地区大气为反气旋式环流异常,海表热通量在大西洋副极地海区是负异常,这都有利于副极地流环和NAC的加强,更多高盐度的北大西洋水进入格陵兰-冰岛-挪威海(GIN)海域,由此可以导致GIN海域表层密度上升,使水体的层结稳定性减弱,有利于深层对流的发生,同时大气变化通过风应力旋度和海表热通量也直接影响GIN海域深层水的生成,进而导致格陵兰-苏格兰海脊溢流水的强度增加。  相似文献   

17.
基于该系列文章前文研究中构建的海气耦合气候模式和所揭示的北大西洋热盐环流年代际振荡机制,针对海气要素对该振荡机制的影响问题进行了重点的探讨.为细致准确的研究北大西洋海洋要素同北大西洋热盐环流年代际振荡的关系,有针对性的定义了副极地海区表层密度指数和北大西洋暖流强度指数并对模式结果进行了全面分析.分析结果表明副极地海区表...  相似文献   

18.
The leading modes of interannual and long-term variations in the stratospheric and tropospheric circulation and total ozone (TOMS data) and their relations to Northern Hemisphere sea surface temperature (SST) anomalies are investigated using the monthly mean NCEP/NCAR reanalysis data for the winter months of 1958–2003. Strong correlations are indicated between the interannual total ozone variations over Labrador and the North Atlantic and changes in the stratospheric polar vortex. The onset of major stratospheric warmings is connected not only with the strengthening of westerlies at the 500-hPa level in the midlatitude Atlantic, but also with the weakening of tropospheric winds over the north of eastern Siberia and strengthening over the Far East. In years with major stratospheric warmings, abnormally cold winters are observed in Eurasia, especially in eastern Siberia and northeastern China. The calculated simultaneous (with no time lags) correlations of the stratospheric circulation changes with El Niño/La Niña events give evidence of low correlations between the tropical Pacific SST anomalies and the stratospheric dynamics in the Arctic. However, there are high correlations of the extratropical Pacific and Atlantic SST anomalies with interannual tropospheric and stratospheric circulation variations, the stratospheric dynamics being more strongly connected with Pacific SST than with Atlantic SST anomalies. The interannual changes in tropospheric circulation are coupled to SST anomalies in both the Pacific and the Atlantic. Mechanisms of long-term changes in the interactive ocean-atmosphere-ozone layer system are discussed.  相似文献   

19.
We examine the effect of a northward shift in the position of the southern hemisphere subpolar westerly winds (SWWs) on the vertical and horizontal distribution of temperature and salinity in the world ocean. A northward shift of the SWWs causes a latitudinal contraction of the subpolar gyres in the southern hemisphere (SH). In the Indian and Pacific, this leads to subsurface warming in the subtropical thermocline. As the southern margins of the gyres move into latitudes characterised by warmer surface air temperature (SAT), the layers at mid-depth below 400 m depth become ventilated by warmer water. We characterize the approximation of the ventilated thermocline in our coarse resolution model using a set of passive tracer experiments, and illustrate how the northward shift in the SWWs causes an equatorward shift in the latitude of origin of water ventilating layers deeper than 400 m in the Indian and Pacific, leaving the total surface ventilation of the upper 1200 m unchanged. In contrast, the latitudinal constraint on the Antarctic Circumpolar Current posed by the Drake Passage causes a cooling and freshening throughout the Atlantic thermocline; here, subsurface thermocline water originates from higher latitudes under the wind shift. On longer timescales Atlantic cooling and freshening is reinforced by a reduction in North Atlantic Deep Water (NADW) formation and surface salinification of the Indian and Pacific Oceans. In effect, the latitude of zero wind stress curl in the SWWs regulates the relative importance of the “cold water route” via the Drake Passage and the “warm water route” associated with thermocline water exchange via the Indian Ocean. Thus, a more northward location of the SWWs corresponds with a reduced salinity contrast between the Indian/ Pacific Oceans and the Atlantic. This results in reduced NADW formation. Also, a more northward location of the SWWs facilitates the injection of cool fresh Antarctic Intermediate Water into the South Atlantic subtropical gyre. Beyond these changes, on a millennial timescale, the deep ocean warms throughout the water column in response to the wind shift. Global salinity stratification also becomes less stable, as more saline water remains at the surface and accumulates in the Indian and Pacific thermocline. The freshening of the deep ocean reflects a reduced stirring of the global ocean due to reduced net circulation arising from a misalignment between the westerlies and the topographically constrained ACC. Our results lend support to the idea that a more equatorward location of the SWW maximum during glacial climates contributed to cooler and fresher conditions in the Atlantic, inhibiting NADW.  相似文献   

20.
The effects of spatial variations of the thickness diffusivity (K) appropriate to the parameterisation of [Gent, P.R. and McWilliams, J.C., 1990. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155.] are assessed in a coarse resolution global ocean general circulation model. Simulations using three closures yielding different lateral and/or vertical variations in K are compared with a simulation using a constant value. Although the effects of changing K are in general small and all simulations remain biased compared to observations, we find systematic local sensitivities of the simulated circulation on K. In particular, increasing K near the surface in the tropical ocean lifts the depth of the equatorial thermocline, the strength of the Antarctic Circumpolar Current decreases while the subpolar and subtropical gyre transports in the North Atlantic increase by increasing K locally. We also find that the lateral and vertical structure of K given by a recently proposed closure reduces the negative temperature biases in the western North Atlantic by adjusting the pathways of the Gulf Stream and the North Atlantic Current to a more realistic position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号