首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Izumi Group in southwestern Japan is considered to represent deposits in a forearc basin along an active volcanic arc during the late Late Cretaceous. The group consists mainly of felsic volcanic and plutonic detritus, and overlies a Lower to Upper Cretaceous plutono‐metamorphic complex (the Ryoke complex). In order to reconstruct the depositional environments and constrain the age of deposition, sedimentary facies and U–Pb dating of zircon grains in tuff were studied for a drilled core obtained from the basal part of the Izumi Group. On the basis of the lithofacies associations, the core was subdivided into six units from base to top, as follows: mudstone‐dominated unit nonconformably deposited on the Ryoke granodiorite; tuffaceous mudstone‐dominated unit; tuff unit; tuffaceous sandstone–mudstone unit; sandstone–mudstone unit; and sandstone‐dominated unit. This succession suggests that the depositional system changed from non‐volcanic muddy slope or basin floor, to volcaniclastic sandy submarine fan. Based on a review of published radiometric age data of the surrounding region of the Ryoke complex and the Sanyo Belt which was an active volcanic front during deposition of the Izumi Group, the U–Pb age (82.7 ±0.5 Ma) of zircon grains in the tuff unit corresponds to those of felsic volcanic and pyroclastic rocks in the Sanyo Belt.  相似文献   

2.
The Ryoke Metamorphic complex has undergone low‐P/T metamorphism and was intruded by granitic magmas around 100 Ma. Subsequently, the belt was uplifted and exposed by the time deposition of the Izumi Group began. The tectonic history of uplift, such as the timing and processes, are poorly known despite being important for understanding the spatiotemporal evolution of the Ryoke Metamorphic Belt. U–Pb zircon ages from sedimentary rocks in the forearc and backarc basins are useful for constraining uplift and magmatism in the provenance. U–Pb dating of detrital zircons from 12 samples (four sandstones and eight granitic clasts) in the Yuasa–Aridagawa basin, a Cretaceous forearc basin in the Chichibu Belt of Southwest Japan, gave mostly ages of 60–110 Ma. Granitic clasts contained in conglomerate suggest that granitic intrusions predate the formation of Coniacian and Maastrichtian conglomerate. Emplacement ages of granitic bodies originated from granitic clasts in Coniacian conglomerate are (110.2 ±1.3) Ma, (106.1 ±1.8) Ma, (101.8+5.8–3.8) Ma, and (95.3 ±1.4) Ma; for granitic clasts in Maastrichtian conglomerate, (89.6 ±1.8) Ma, (87.3+2.4–1.8) Ma, (85.7 ±1.2) Ma, and (82.7 ±1.2) Ma. The results suggest that detrital zircons in the sandstones were mainly derived from volcanic eruptions contemporaneous with depositional age, and plutonic rocks of the Ryoke Metamorphic Belt. Zircon ages of the granitic clast samples also indicate that uplift in the provenance began after Albian and occurred at least during the Coniacian to Maastrichtian. Our results, together with the difference of provenance between backarc and forearc basins suggest that the southern marginal zone of the Ryoke Metamorphic Belt was uplifted and supplied a large amount of clastic materials to the forearc basins during the Late Cretaceous.  相似文献   

3.
The stratigraphy and radiolarian age of the Mizuyagadani Formation in the Fukuji area of the Hida‐gaien terrane, central Japan, represent those of Lower Permian clastic‐rock sequences of the Paleozoic non‐accretionary‐wedge terranes of Southwest Japan that formed in island arc–forearc/back‐arc basin settings. The Mizuyagadani Formation consists of calcareous clastic rocks, felsic tuff, tuffaceous sandstone, tuffaceous mudstone, sandstone, mudstone, conglomerate, and lenticular limestone. Two distinctive radiolarian faunas that are newly reported from the Lower Member correspond to the zonal faunas of the Pseudoalbaillella u‐forma morphotype I assemblage zone to the Pseudoalbaillella lomentaria range zone (Asselian to Sakmarian) and the Albaillella sinuata range zone (Kungurian). In spite of a previous interpretation that the Mizuyagadani Formation is of late Middle Permian age, it consists of Asselian to Kungurian tuffaceous clastic strata in its lower part and is conformably overlain by the Middle Permian Sorayama Formation. An inter‐terrane correlation of the Mizuyagadani Formation with Lower Permian tuffaceous clastic strata in the Kurosegawa terrane and the Nagato tectonic zone of Southwest Japan indicates the presence of an extensive Early Permian magmatic arc(s) that involved almost all of the Paleozoic non‐accretionary‐wedge terranes in Japan. These new biostratigraphic data provide the key to understanding the original relationships among highly disrupted Paleozoic terranes in Japan and northeast Asia.  相似文献   

4.
Yong I. Lee 《Island Arc》2008,17(4):458-470
The currently available paleogeographic maps of the East Asia continental margin during the Mesozoic have been recast in the light of recent research results on sediments distributed in Korea and Japan. Both the Korean peninsula and the Inner zone of Southwest Japan exchanged sediment supply during the Middle to Late Mesozoic, suggestive of a close paleogeographic relationship between the two countries at the active continental margin setting. During the latest Middle to earliest Late Jurassic the Mino–Tamba trench was developed along the southeastern Korean peninsula, from which trench‐fill sediments were sourced and to which an accretionary complex was accreted. Lower Cretaceous quartz‐arenite clasts of the Tetori Group in the Hida Marginal Belt of Southwest Japan were derived from pre‐Mesozoic quartz‐arenite strata distributed in the southern central and east central Korean peninsula, suggesting that the Tetori Basin was located close to the central eastern part of the Korean peninsula at the time of deposition of quartz‐arenite clasts, contrary to conventional thought of far distance between the two areas based on paleomagnetic data. During the early Late Cretaceous radiolaria‐bearing chert pebbles and sands in the northern part of the non‐marine Gyeongsang Basin distributed in the southeastern Korean peninsula were derived from the uplifted Mino–Tamba accretionary complex distributed in southwest Japan, suggesting that the Mino–Tamba terrane was land‐connected with the eastern Korean peninsula. These new findings suggest that in contrast to conventional thought, the collage of tectonic blocks in Southwest Japan has assembled in post‐early Late Cretaceous time.  相似文献   

5.
Kazuo Kiminami 《Island Arc》2010,19(3):530-545
This study examines the geology of low‐grade (chlorite zone) metamorphic rocks in the Sanbagawa belt and of a Jurassic accretionary complex in the Northern Chichibu belt, eastern Shikoku, Japan. The bulk chemistries of metasandstones and metapelites in the Sanbagawa belt of eastern Shikoku are examined in order to determine their parentage. The Sanbagawa belt can be divided into northern and southern parts based on lithology and geologic structure. Geochemical data indicate that metasediments in the northern and southern parts are the metamorphic equivalents of the KS‐II (Coniacian–Campanian) and KS‐I (late Albian–early Coniacian) units of the Shimanto belt, respectively. The depositional ages of the parent sediments of low‐grade metamorphic rocks found in the Sanbagawa belt and the Jurassic Northern Chichibu belt, indicate a north‐younging polarity. In contrast, sedimentological evidence indicates younging to the south. These observations suggest that a tectonic event has resulted in a change from a northerly to southerly dip direction for schistosity and bedding in the Sanbagawa and Northern Chichibu belts of eastern Shikoku. The younging polarity observed in the Sanbagawa and Northern Chichibu belts, together with previously reported data on vitrinite reflectance and geological structure, indicate that the Northern Chichibu belt was part of the overburden formerly lying on top of the Sanbagawa low‐grade metamorphic rocks.  相似文献   

6.
A comparative analysis of Late Jurassic-Early Cretaceous strata have been done for the Sanjiang-Middle Amur basin, a coal- and oil-bearing area spanning the eastern Heilongjiang of northeastern China and southeastern Far East of Russia. On the basis of various fossils occurring in the formations, particularly by means of the Tithonian-Valanginian index Buchia and the late Barremian-middle Albian indicator Aucellina assemblages, the marine and non-marine Late Jurassic-Early Cretaceous strata in the basin are correlated. The Mesozoic international chronostratigraphic chart () is established basically based on the marine rocks. To accurately date the non-marine strata, it is necessary to correlate them with the marine deposits. This study sheds new light on the dating and correlation of non-marine Upper Mesozoic. Additionally, the results would help understand the tectonics and paleogeography and thus aid the exploration of energy resources.  相似文献   

7.
Alternating chert–clastic sequences juxtaposed with limestone blocks, which are units typical of accretionary complexes, constitute the Buruanga peninsula. New lithostratigraphic units are proposed in this study: the Unidos Formation (Jurassic chert sequence), the Saboncogon Formation (Jurassic siliceous mudstone–terrigenous mudstone and quartz‐rich sandstone), the Gibon Formation (Jurassic(?) bedded pelagic limestone), the Libertad Metamorphics (Jurassic–Cretaceous slate, phyllite, and schist) and the Buruanga Formation (Pliocene–Pleistocene reefal limestone). The first three sedimentary sequences in the Buruanga peninsula show close affinity with the ocean plate stratigraphy of the North Palawan terrane in Busuanga Island: Lower–Middle Jurassic chert sequences overlain by Middle–Upper Jurassic clastics, juxtaposed with pelagic limestone. Moreover, the JR5–JR6 (Callovian to Oxfordian) siliceous mudstone of the Saboncogon Formation in the Buruanga peninsula correlates with the JR5–JR6 siliceous mudstone of the Guinlo Formation in the Middle Busuanga Belt. These findings suggest that the Buruanga peninsula may be part of the North Palawan terrane. The rocks of the Buruanga peninsula completely differ from the Middle Miocene basaltic to andesitic pyroclastic and lava flow deposits with reefal limestone and arkosic sandstone of the Antique Range. Thus, the previously suggested boundary between the Palawan microcontinental block and the Philippine Mobile Belt in the central Philippines, which is the suture zone between the Buruanga peninsula and the Antique Range, is confirmed. This boundary is similarly considered as the collision zone between them.  相似文献   

8.
Abstract The low grade metamorphic Jurassic accretionary complex in the western part of the Mino-Tanba Belt, Southwest Japan, is a chaotic sedimentary complex which consists of argillaceous matrices with allochthonous blocks of chert, greenstone, siliceous mudstone, terrigenous sandstone and mudstone. The complex is divided into three distinct geologic units, Units I, II and III, with a tectonic boundary (thrust) between them, forming a pile-nappe structure. They have different features for lithologies, fossil age, metamorphic condition and K-Ar age. Microfossil researches revealed that their timings of accretion were in the early Early Jurassic ( ca 195 Ma) for Unit III, in the early Middle Jurassic ( ca 175 Ma) for Unit II and in the latest Late Jurassic (ca 147 Ma) for Unit I. On the other hand, K-Ar age determinations of white mica separated from pelitic rocks of the three units clarified that the subsequent subduction-related metamorphism was 23 million years after the accretion of each unit. These results strongly suggest that the accretionary and metamorphic process had taken place episodically with an interval of 20 to 28 million years during Mesozoic time in the western part of the Mino-Tanba Belt, Southwest Japan.  相似文献   

9.
The Cretaceous accretionary complexes of the Idonnappu Zone in the Urakawa area are divided into five lithological units, four of which contain greenstone bodies. The Lower Cretaceous Naizawa Complex consists of two lithologic units. The Basaltic Unit (B‐Unit) is a large‐scale tectonic slab of greenstone, consisting of depleted tholeiite similar to that of the Lower Sorachi Ophiolite (basal forearc basin ophiolite) in the Sorachi‐Yezo Belt. The Mixed Unit of Naizawa Complex (MN‐Unit) contains oceanic island‐type alkaline greenstones which occur as slab‐like bodies and faulted blocks with tectonically dismembered trench‐fill sediments. Repeated alternations of the two units in the Naizawa Complex may have been formed by the collision of seamounts with forearc ophiolitic body (Lower Sorachi Ophiolite) in the trench. The Upper Cretaceous Horobetsugawa Complex structurally underlies the Naizawa Complex in its original configuration, and it also contains greenstone bodies. Greenstones in the MH‐Unit occur as blocks and sedimentary clasts in a clastic matrix, and exhibit depleted tholeiite and oceanic‐island alkaline basalt/tholeiite chemistry. This unit is interpreted as submarine slide and debris flow deposits. Greenstones in the PT‐Unit occur at the base of several chert‐clastic successions. Most of the greenstones are severely sheared and show normal‐type mid‐ocean ridge basalt composition. The PT‐Unit greenstones are considered to have been derived from abyssal basement peeled off during accretion. The different accretion mechanism of the greenstones in the Naizawa and Horobetsugawa complexes reflects temporal changes in subduction zone conditions. Seamount accretion and tectonic erosion were dominant in the Early Cretaceous, due to highly oblique subduction of the old oceanic crust and minimal sediment supply. Whereas, thick sediments with minor mid‐ocean ridge basalt and olistostrome accreted in the Late Cretaceous, due to near‐orthogonal subduction of young oceanic crust with voluminous sediment supply.  相似文献   

10.
Lithostratigraphic correlation of a 6–10‐km‐thick Aptian–Maastrichtian terrigenous sequence of the East Asian continental margin and Sakhalin and Hokkaido Islands has revealed the existence of a single marine basin. This basin was populated by mixed Tethyan–Boreal fauna and sloped eastward until the Middle Cenomanian. Intense volcanic and tectonic processes caused the uplift of the continental margin in the mid‐Albian to Cenomanian and eastward migration of the shoreline. Paleobotanical studies have discovered a number of climatic changes. Relatively warm conditions existed in the Aptian, changing to cooler conditions in the Early Albian. The maximum warming occurred from the Late Albian to Cenomanian when large‐leaved flowering plants dominated the population. In the Late Cretaceous, the East Asian volcanic belt created a mountain edifice up to 3000 m high, which controlled longitudinal climatic and floral zonation. This control was more efficient than the latitudinal control. A wide development of flowering Platanaceae flora in the Turonian points to a relative cooling. The floral assemblage shows a temperate climate from the Early Coniacian onwards, with an optimum in the Campanian that is consistent with global transgression. As a result of the warm climate, the early Maastrichtian is characterized by highly diverse biota. Furthermore, in the middle Maastrichtian floral and faunal diversity decreased and the seasonal prevalence increased. Cooling occurred in the latest Maastrichtian. Five periods of coal accumulation are recognized throughout the Late Cenomanian to Late Maastrichtian. Shelf, deltaic, and slope turbidite facies of the continental margin contain organic carbon ranging from 0.3% to 2.2%, which together with direct evidence for oil and gas, are believed to be prolific for hydrocarbon exploration.  相似文献   

11.
The Yezo Group has a wide longitudinal distribution across Hokkaido, northern Japan. It represents a Cretaceous (Early Aptian–Late Maastrichtian) and Late Paleocene forearc basin‐fill along the eastern margin of the paleo‐Asian continent. In the Nakagawa area of northern Hokkaido, the uppermost part of the Yezo Group consists of the Hakobuchi Formation. Along the western margin of the Yezo basin, 24 sedimentary facies (F) represent 6 facies associations (FA), suggesting prevailing storm‐dominated inner shelf to shoreface environments, subordinately associated with shoreface sand ridges, outer shelf, estuary and fluvial environments. The stacking patterns, thickness and facies trends of these associations allow the discrimination of six depositional sequences (DS). Inoceramids Sphenoceramus schmidti and Inoceramus balticus, and the ammonite Metaplacenticeras subtilistriatum, provide late Early to Late Campanian age constraints to this approximately 370‐m thick final stage of deposition and uplift of the Yezo forearc basin. Six shallow‐marine to subordinately non‐marine sandstone‐dominated depositional sequences include four 10 to 110‐m thick upward‐coarsening regressive successions (FS1), occasionally associated with thin, less than 10‐m thick, upward‐fining transgressive successions (FS2). The lower DS1–3, middle DS4–5 and upper DS6 represent three depositional sequential sets (DSS1–3). These eastward prograding and westward retrograding recurring shallow‐marine depositional systems may reflect third‐ and fourth‐order relative sealevel changes, in terms of sequence stratigraphy.  相似文献   

12.
Lawrence R.  Zamoras  Atsushi  Matsuoka 《Island Arc》2004,13(4):506-519
Abstract   Upper Paleozoic to Mesozoic sedimentary sequences of chert (Liminangcong Formation), clastics (Guinlo Formation) and a number of limestone units (Coron Formation, Minilog Formation and Malajon Limestone) constitute the accretionary complex of the North Palawan block, Philippines. Based on chert-to-clastic transitions from different stratigraphic sequences around the Calamian Islands, three accretionary belts are delineated: the Northern Busuanga Belt (NBB), the Middle Busuanga Belt (MBB) and the Southern Busuanga Belt (SBB). The accretion events of these belts along the East Asian accretionary complex, indicated by their sedimentary transitions, began with the Middle Jurassic NBB accretion, followed by the Late Jurassic MBB accretion and the Early Cretaceous SBB accretion. Several limestone blocks that formed over the seamounts became juxtaposed with chert–clastic sequences during accretion. During the Late Cretaceous, accretion-subduction along the East Asian margin subsided bringing tectonic stability to the region. The seafloor spreading during the mid-Oligocene disconnected the entire North Palawan block from the Asian mainland and then migrated southward. The collision between the North Palawan block and the Philippine Island Arc system in the middle Miocene generated a megafold structure in the Calamian Islands as a result of the clockwise turn of the accretionary belts in the eastern Calamian from originally northeast–southwest to northwest–southeast.  相似文献   

13.
The Qinling Orogenic Belt is divided commonly by the Fengxian-Taibai strike-slip shear zone and the Huicheng Basin into the East and West Qinling mountains,which show significant geological differences after the Indosinian orogeny.The Fengxian-Taibai fault zone and the Meso-Cenozoic Huicheng Basin,situated at the boundary of the East and West Qinling,provide a natural laboratory for tectonic analysis and sedimentological study of intracontinental tectonic evolution of the Qinling Orogenic Belt.In order to explain the dynamic development of the Huicheng Basin and elucidate its post-orogenic tectonic evolution at the junction of the East and West Qinling,we studied the geometry and kinematics of fault zones between the blocks of West Qinling,as well as the sedimentary fill history of the Huicheng Basin.First,we found that after the collisional orogeny in the Late Triassic,post-orogenic extensional collapse occurred in the Early and Middle Jurassic within the Qinling Orogenic Belt,resulting in a series of rift basins.Second,in the Late Jurassic and Early Cretaceous,a NE-SW compressive stress field caused large-scale sinistral strike-slip faults in the Qinling Orogenic Belt,causing intracontinental escape tectonics at the junction of the East and West Qinling,including eastward finite escape of the East Qinling micro-plate and southwest lateral escape of the Bikou Terrane.Meanwhile,the strike-slip-related Early Cretaceous sedimentary basin was formed with a right-order echelon arrangement in sinistral shear zones along the southern margin of the Huicheng fault.Overall during the Mesozoic,the Huicheng Basin and surrounding areas experienced four tectonic evolutionary stages,including extensional rift basin development in the Early and Middle Jurassic,intense compressive uplift in the Late Jurassic,formation of a strike-slip extensional basin in the Early Cretaceous,and compressive uplift in the Late Cretaceous.  相似文献   

14.
Tethyan ophiolites and Pangea break-up   总被引:6,自引:0,他引:6  
Abstract The break‐up of Pangea began during the Triassic and was preceded by a generalized Permo‐Triassic formation of continental rifts along the future margins between Africa and Europe, between Africa and North America, and between North and South America. During the Middle–Late Triassic, an ocean basin cutting the eastern equatorial portion of the Pangea opened as a prograding branch of the Paleotethys or as a new ocean (the Eastern Tethys); westwards, continental rift basins developed. The Western Tethys and Central Atlantic began to open only during the Middle Jurassic. The timing of the break‐up can be hypothesized from data from the oceanic remnants of the peri‐Mediterranean and peri‐Caribbean regions (the Mesozoic ophiolites) and from the Atlantic ocean crust. In the Eastern Tethys, Middle–Late Triassic mid‐oceanic ridge basalt (MORB) ophiolites, Middle–Upper Jurassic MORB, island arc tholeiite (IAT) supra‐subduction ophiolites and Middle–Upper Jurassic metamorphic soles occur, suggesting that the ocean drifting was active from the Triassic to the Middle Jurassic. The compressive phases, as early as during the Middle Jurassic, were when the drifting was still active and caused the ocean closure at the Jurassic–Cretaceous boundary and, successively, the formation of the orogenic belts. The present scattering of the ophiolites is a consequence of the orogenesis: once the tectonic disturbances are removed, the Eastern Tethys ophiolites constitute a single alignment. In the Western Tethys only Middle–Upper Jurassic MORB ophiolites are present – this was the drifting time. The closure began during the Late Cretaceous and was completed during the Eocene. Along the area linking the Western Tethys to the Central Atlantic, the break‐up was realized through left lateral wrench movements. In the Central Atlantic – the link between the Western Tethys and the Caribbean Tethys – the drifting began at the same time and is still continuing. The Caribbean Tethys opened probably during the Late Jurassic–Early Cretaceous. The general picture rising from the previous data suggest a Pangea break‐up rejuvenating from east to west, from the Middle–Late Triassic to the Late Jurassic–Early Cretaceous.  相似文献   

15.
本文综合运用磷灰石-锆石裂变径迹和(U-Th)/He、镜质体反射率及盆地模拟等手段,深入细致地探讨了中扬子江汉平原簰洲湾地区中、新生代构造-热史演化过程.研究结果表明,研究区中-新生代大规模构造抬升剥蚀、地层冷却事件始于早白垩世(140-130 Ma);大规模抬升冷却过程主要发生在早白垩世中后期至晚白垩世.研究区虽然可能存在一定厚度的晚白垩世-古近纪地层沉积,总体沉积规模相对较小.综合分析认为,区内应该存在较大厚度的中侏罗统或/和上侏罗统乃至早白垩世地层的沉积;而现今残存中生代中、上侏罗统地层相对较薄,主要是由于后期持续构造抬升剥蚀造成的,估计总剥蚀厚度约4300 m左右.区内中生代地层在早白垩世达到最大古地温,而不是在古近纪沉积末期;上三叠统地层最大古地温在170~190℃之间.热史分析结果表明,区内古生代古热流相对稳定,平均热流在53.64 mW·m-2;早侏罗世末期古热流开始降低,在早白垩世初期古热流约为48.38 mW·m-2.  相似文献   

16.
Abstract Mesozoic accretionary complexes of the southern Chichibu and the northern Shimanto Belts, widely exposed in the Kanto Mountains, consist of 15 tectonostratigraphic units according to radiolarian biochronologic data. The units show a zonal arrangement of imbricate structure and the age of the terrigenous clastics of each unit indicates successive and systematic southwestward younging. Although rocks in these complexes range in age from Carboniferous to Cretaceous, the trench-fill deposits corresponding to the Hauterivian, the Aptian to Middle Albian and the Turonian are missing. A close relationship between the missing accretionary complexes and the development of strike-slip basins is recognizable. The tectonic nature of the continental margin might have resulted from a change from a convergent into a transform or oblique-slip condition, so that strike-slip basins were formed along the mobile zones on the ancient accretionary complexes. Most terrigenous materials were probably trapped by the strike-slip basins. Then, the accretion of the clastic rock sequence occurred, probably as a result of the small supply of terrigenous materials in the trench. However, in the case of right-angle subduction, terrigenous materials might have been transported to the trench through submarine canyons and deposited there. Thus, the accretionary complexes grew rapidly and thickened. Changes both in oceanic plate motion and in the fluctuation of terrigenous supply due to the sedimentary trap caused pulses of accretionary complex growth during Jurassic and Cretaceous times. In the Kanto Mountains, three tectonic phases are recognized, reflecting the changes of the consuming direction of the oceanic plates along the eastern margin of the Asian continent. These are the Early Jurassic to early Early Cretaceous right-angle subduction of the Izanagi Plate, the Early to early Late Cretaceous strike-slip movement of the Izanagi and Kula Plates, and the late Late Cretaceous right-angle subduction of the Kula Plate.  相似文献   

17.
Geodynamic evolution of Korea: A view   总被引:2,自引:0,他引:2  
Abstract Evidence for South Korean Palaeozoic geodynamic evolution is restricted to the Ogcheon Belt, which is a complex polycyclic domain forming the boundary between the Precambrian Gyeonggi Block to the northwest and the Ryeongnam Block to the southeast. Two independent sub-zones can be distinguished: the Taebaeksan Zone to the northeast and the Ogcheon Zone sensu stricto. The Taebaeksan Zone and Ryeongnam Block display characteristic features of the North China palaeocontinent. This domain remained relatively stable during the Palaeozoic. In contrast, the Ogcheon Belt s. s. is a highly mobile zone that belongs to the South China palaeocontinent and corresponds to a rift that opened during the Early Palaeozoic. In lowermost Devonian times, the rift basin was closed and the Ogcheon Belt was structured in a pile of nappes. From the lack of suture in the Ogcheon Belt it can be inferred that the Gyeonggi Block belongs to the South China palaeocontinent. Thus, the boundary between the North China and South China blocks should be located to the north of Gyeonggi Block, that is, in the Palaeozoic Imjingang Belt. From the Middle Carboniferous, sedimentation started again on a weakly subsiding paralic platform located in the hinterland of the Late Palaeozoic orogen of southwest Japan. In the Late Carboniferous, increasing subsidence recorded extensional tectonics related to the opening of the Yakuno Oceanic Basin (southwest Japan). In the Middle Permian, the end of marine influences in the platform and emplacement of terrestrial coal measures, may be correlated with the closure of the oceanic area and subsequent ophiolite obduction. In Late Permian to Early Triassic times, the Honshu Block (the eastern palaeomargin of the Yakuno Basin) collided with Sino-Korea. Post-collisional intracontinental tectonics reached the Ogcheon Belt in the Middle Triassic (Songnim tectonism). Ductile dextral shear zones associated with synkinematic granitoids were emplaced in the southwest of the belt. In the Upper Triassic, the late stages of the intracontinental transcurrent tectonics generated narrow intramontane troughs (Daedong Supergroup). The Daedong basins were deformed during two tectonic events, in the Middle (?) and Late Jurassic. The Upper Jurassic to Lower Cretaceous basins (Gyeongsang Supergroup), that are controlled by left-lateral faults, may have resulted from the same tectonic event.  相似文献   

18.
One of the more prominent architectural elements of the Nankai subduction margin, offshore southwest Japan, is an out‐of‐sequence thrust fault (megasplay) that separates the inner accretionary prism from the outer prism. The inner prism (hanging wall of the megasplay) is dominated by mudstone, which is enigmatic when the sedimentary facies is compared to coeval deposits in the Shikoku Basin (i.e. inputs from the subducting Philippine Sea plate) and to coarser‐grained turbidite sequences from the Quaternary trench wedge. Clay mineral assemblages amplify the mismatches of sedimentary facies. Mudstones from the inner prism are uniformly depleted in smectite, with average bulk values of 23–24 wt%, whereas the Shikoku Basin deposits show progressive decreases in proportions of smectite over time, from averages of 46–48 wt% at 10 Ma to 17–21 wt% at 1 Ma. Plate‐boundary reconstructions for the Philippine Sea region provide one solution to the conundrum. Between 15 Ma and 10 Ma, the Pacific plate subducted near the NanTroSEIZE transect, and a trench‐trench‐trench triple junction migrated to the northeast. Accretion during that period involved sediments that had been deposited on the Pacific plate. Motion of the Philippine Sea plate changed from 10 Ma to 6 Ma, resulting in sinistral slip along the proto‐Nankai Trough. Sediments accreted during that period probably had been deposited near the triple junction, with a hybrid detrital provenance. Renewed subduction of the Philippine Sea plate at 6 Ma led to reorganization of watersheds near the Izu–Honshu collision zone and gradual incision of large submarine canyons on both sides of the colliding Izu arc. Accreted Pliocene mudstones share more of an affinity to the triple junction paleoenvironment than they do to Shikoku Basin. These differences between subducting Shikoku Basin strata and accreted Pacific plate sediments have important implications for interpretations of frictional properties, structural architecture, and diagenetic fluid production.  相似文献   

19.
Thermal histories of Cretaceous sedimentary basins in the Korean peninsula have been assessed to understand the response of the East Asian continental margin to subduction of the Paleo‐Pacific (Izanagi) Plate. The Izanagi Plate subducted obliquely beneath the East Asian continent during the Early Cretaceous and orthogonally in the Late Cretaceous. First, the Jinan Basin, a pull‐apart basin, was studied by illite crystallinity and apatite fission‐track analyses. Analytical results indicate that Jinan Basin sediment was heated to a maximum temperature of approximately 287°C by burial. The sediment experienced two cooling episodes during ca 95–80 Ma and after ca 30 Ma, with a quiescent period between them. A similar cooling pattern is recognized in the Gyeongsang Basin, the largest Cretaceous basin in Korea. The Jinan and Gyeongsang Basins were cooled mainly by exhumation between ca 95 and 80 Ma, but the former was exhumed slightly earlier than the latter by transpressional force due to the subduction direction change of the Izanagi Plate. Comparison of thermal history of Korean Cretaceous basins with those of granitoids in northeastern China and the accretionary complexes in southwestern Japan reveals that the Upper Cretaceous regional exhumation of the East Asian continental margin including the Korean peninsula during ca 95–80 Ma was facilitated by the subduction of the Izanagi–Pacific ridge, which migrated northeastwards with time, resulting in the end of regional exhumation at ca 80 Ma in this region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号