首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   371篇
  免费   18篇
  国内免费   3篇
测绘学   22篇
大气科学   23篇
地球物理   99篇
地质学   154篇
海洋学   5篇
天文学   75篇
综合类   2篇
自然地理   12篇
  2023年   4篇
  2022年   5篇
  2021年   2篇
  2020年   6篇
  2019年   4篇
  2018年   27篇
  2017年   18篇
  2016年   21篇
  2015年   15篇
  2014年   18篇
  2013年   20篇
  2012年   12篇
  2011年   15篇
  2010年   11篇
  2009年   6篇
  2008年   9篇
  2007年   5篇
  2006年   13篇
  2005年   5篇
  2004年   6篇
  2003年   4篇
  2002年   10篇
  2001年   3篇
  2000年   7篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   6篇
  1991年   7篇
  1990年   3篇
  1988年   3篇
  1987年   5篇
  1986年   10篇
  1985年   7篇
  1984年   13篇
  1983年   8篇
  1982年   14篇
  1981年   5篇
  1980年   6篇
  1979年   4篇
  1978年   6篇
  1975年   2篇
  1974年   3篇
  1973年   7篇
  1972年   6篇
  1971年   4篇
  1970年   4篇
  1969年   2篇
排序方式: 共有392条查询结果,搜索用时 15 毫秒
1.
It is important to identify and locate glacial lakes for assessing any potential hazard. This study presents a combination of semi-automatic method Double-Window Flexible Pace Search (DFPS) and edge detection technique to identify glacial lakes using Sentinel 2A satellite data. Initially, Normalized Difference Water Index (NDWI) has been used to identify water and non-water areas, while DFPS and Edge detection technique has been used to identify an optimum threshold value to distinguish between water and shadow areas. The optimal threshold from DFPS process is 0.21, while threshold value of gradient magnitude using edge detection process is 0.318. The number of glacial lakes identified using the above algorithm is in close agreement with previously published results on glacial lakes in Gangotri glacier using different techniques. Thus, a combination of DFPS and edge detection process has successfully segregated glacial lakes from other features present in Gangotri glacier.  相似文献   
2.
3.
The impact of realistic representation of sea surface temperature (SST) on the numerical simulation of track and intensity of tropical cyclones formed over the north Indian Ocean is studied using the Weather Research and Forecast (WRF) model. We have selected two intense tropical cyclones formed over the Bay of Bengal for studying the SST impact. Two different sets of SSTs were used in this study: one from TRMM Microwave Imager (TMI) satellite and other is the weekly averaged Reynold’s SST analysis from National Center for Environmental Prediction (NCEP). WRF simulations were conducted using the Reynold’s and TMI SST as model boundary condition for the two cyclone cases selected. The TMI SST which has a better temporal and spatial resolution showed sharper gradient when compared to the Reynold’s SST. The use of TMI SST improved the WRF cyclone intensity prediction when compared to that using Reynold’s SST for both the cases studied. The improvements in intensity were mainly due to the improved prediction of surface latent and sensible heat fluxes. The use of TMI SST in place of Reynold’s SST improved cyclone track prediction for Orissa super cyclone but slightly degraded track prediction for cyclone Mala. The present modeling study supports the well established notion that the horizontal SST gradient is one of the major driving forces for the intensification and movement of tropical cyclones over the Indian Ocean.  相似文献   
4.
This paper evaluates the potential of a terrestrial laser scanner (TLS) to characterize forest canopy fuel characteristics at plot level. Several canopy properties, namely canopy height, canopy cover, canopy base height and fuel strata gap were estimated. Different approaches were tested to avoid the effect of canopy shadowing on canopy height estimation caused by deployment of the TLS below the canopy. Estimation of canopy height using a grid approach provided a coefficient of determination of R2 = 0.81 and an RMSE of 2.47 m. A similar RMSE was obtained using the 99th percentile of the height distribution of the highest points, representing the 1% of the data, although the coefficient of determination was lower (R2 = 0.70). Canopy cover (CC) was estimated as a function of the occupied cells of a grid superimposed upon the TLS point clouds. It was found that CC estimates were dependent on the cell size selected, with 3 cm being the optimum resolution for this study. The effect of the zenith view angle on CC estimates was also analyzed. A simple method was developed to estimate canopy base height from the vegetation vertical profiles derived from an occupied/non-occupied voxels approach. Canopy base height was estimated with an RMSE of 3.09 m and an R2 = 0.86. Terrestrial laser scanning also provides a unique opportunity to estimate the fuel strata gap (FSG), which has not been previously derived from remotely sensed data. The FSG was also derived from the vegetation vertical profile with an RMSE of 1.53 m and an R2 = 0.87.  相似文献   
5.
Glacierised basins are significant sources of sediments generated by glacial retreat. Estimation of suspended sediment transfer from glacierised basins is very important in reservoir planning for hydropower projects in Himalaya. The present study indicates that storage and release of sediment in proglacial streams may categorise the pattern of suspended sediment transfer from these basins. Assessment of suspended sediment concentration (SSC), suspended sediment load (SSL) and yield has been undertaken for Dunagiri Glacier basin located in Garhwal Himalaya (30o33'20”N, 79o53'36”E), and its results are compared with the Gangotri and Dokriani glaciers sharing close proximity. Out of the total drainage basin area, about 14.3 % of the area is glacierised. Data were collected for five ablation seasons (1984–1989, barring 1986). The mean daily SSCs for July, August and September were 333.9, 286.0 and 147.15 mg/l, respectively, indicating highest concentration of mean daily suspended sediment in July followed by August. SSL trends were estimated to be 93.0, 57.0 and 21.3 tonnes. About 59% of the total SSL of the melt period was transported during the months of August and September. Sediment yield for the study basin was computed to be 296.3 t km?2 yr ?1. It is observed that the cumulative proportion of SSC precedes the discharge throughout the melt season except in the year 1987. Release of SSL in terms of total load is less in the early part of melt season than in the later stage as compared to that of discharge. Diurnal variations in SSC reach their maximum at 2400 h, and therefore, SSC was found to be high during night (2000–0400 h). There was a good relationship between SSC and SSL with discharge for the ablation seasons (1988 and 1989). Mean monthly SSC and mean monthly SSL provide a good exponentional relationship with mean monthly temperature. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
6.
Sediment trap samples collected from the Western Arabian Sea yielded a rich assemblage of intact and non-living (opaque white) pteropod tests from a water depth of 919 m during January to September 1993. Nine species of pteropods were recorded, all (except one) displaying distinct seasonality in abundance, suggesting their response to changing hydrographical conditions influenced by the summer/winter monsoon cycle. Pteropod fluxes increased during the April–May peak of the intermonsoon, and reached maximum levels in the late phase of the southwest summer monsoon, probably due to the shallowing of the mixed layer depth. This shallowing, coupled with enhanced nutrient availability, provides ideal conditions for pteropod growth, also reflected in corresponding fluctuations in the flux of the foraminifer Globigerina bulloides. Pteropod/planktic foraminifer ratios displayed marked seasonal variations, the values increasing during the warmer months of April and May when planktic foraminiferal fluxes declined. The variation in fluxes of calcium carbonate, organic carbon and biogenic opal show positive correlations with fluxes of pteropods and planktic foraminifers. Calcium carbonate was the main contributor to the total particulate flux, especially during the SW monsoon. In the study area, pteropod flux variations are similar to the other flux patterns, indicating that they, too could be used as a potential tool for palaeoclimatic reconstruction of the recent past.  相似文献   
7.
Haryana plain is the drainage divide between the Ganga plain in the east and the Indus plain in the west. Being a part of the Himalayan foreland, its geomorphology, sedimentation processes, and tectonism are broadly controlled by the Himalayan tectonics. Soil and geomorphological mapping in Haryana plain bring out geomorphic features such as paleochannels, various active drainage patterns, and landforms such as old fluvial plains, floodplains, piedmonts, pediments, terminal fans, and eolian plains. Based on the degree of soil development, and Optical stimulated luminescence (OSL) ages, the soil-geomorphic units were grouped into six members (QIMS-I to VI) (Quaternary Indus Morphostratigraphic Sequence) of a morphostratigraphic sequence: QIMS-VI 9.86–5.38 Ka, QIMS-V 5.38–4.45 Ka, QIMS-IV 4.45–3.60 Ka, QIMS-III 3.60–2.91 Ka, QIMS-II <?2.91–1.52 Ka, and QIMS-I <?1.52 Ka. OSL chronology of different geomorphic features suggests six episodes of tectono-geomorphic evolution in the region since 10 Ka. Neotectonic features such as nine faults, two lineaments, and five fault-bounded tectonic blocks have been identified. Independent tilting and sagging of the blocks in response to neotectonics have resulted in modification of landforms, depositional processes, and hydro-geomorphology of the region. Major rivers like the Yamuna, the Ghaggar, and the Sutlej show different episodes of shifting of their courses. Lineament controlled few extinct channels have been recorded between 20 and 25 m depth below the surface in the ground-penetrating radar (GPR) profiles. These buried channels are aligned along the paleo-course of the Lost Saraswati River interpreted from the existing literature and hence are considered as the course of the lost river. Seven terminal fans have been formed on the downthrown blocks of the associated faults. The Markanda Terminal Fan, the first of such features described, is indeed a splay terminal fan and was formed by a splay distributary system of the Markanda River. Association of three terminal fans of different ages with the Karnal fault indicates the segment-wise development of the fault from west to east. Also, comparison with other such studies in the Ganga plain to further east suggests that the terminal fans formed by streams with distributary drainage pattern occur only in semiarid regions as in the present area and thus are indicators of semiarid climate/paleoclimate. Though the whole region is tectonically active, the region between the Rohtak fault and Hisar fault is most active at present signified by the concentration of earthquake epicenters.  相似文献   
8.
In the present study, measurements of surface ozone (\(\hbox {O}_{3}\)) and its precursors (NO and \(\hbox {NO}_{2}\)) were carried out at a sub-urban site of Agra (\(27{^{\circ }}10'\hbox {N}\), \(78{^{\circ }}05'\hbox {E}\)), India during May 2012–May 2013. During the study period, average concentrations of \(\hbox {O}_{3}\), NO, and \(\hbox {NO}_{2}\) were \(39.6 \pm 25.3\), \(0.8 \pm 0.8\) and \(9.1 \pm 6.6 \, \hbox {ppb}\), respectively. \(\hbox {O}_{3}\) showed distinct seasonal variation in peak value of diurnal variation: summer \({>}\) post-monsoon \({>}\) winter \({>}\) monsoon. However, \(\hbox {NO}_{2}\) showed highest levels in winter and lowest in monsoon. The average positive rate of change of \(\hbox {O}_{3}\) (08:00–11:00 hr) was highest in April (16.3 ppb/hr) and lowest in August (1.1 ppb/hr), while average negative rate of change of \(\hbox {O}_{3}\) (17:00–19:00 hr) was highest in December (–13.2 ppb/hr) and lowest in July (–1.1 ppb/hr). An attempt was made to identify the \(\hbox {VOC--NO}_{\mathrm{x}}\) sensitivity of the site using \(\hbox {O}_{3}/\hbox {HNO}_{3}\) ratio as photochemical indicator. Most of the days this ratio was above the threshold value (12–16), which suggests \(\hbox {NO}_{\mathrm{x}}\) sensitivity of the site. The episodic event of ozone was characterized through meteorological parameters and precursors concentration. Fine particles (\(\hbox {PM}_{2.5}\)) cause loss of ozone through heterogeneous reactions on their surface and reduction in solar radiation. In the study, statistical analyses were used to estimate the amount of ozone loss.  相似文献   
9.
The Arabian Sea is characterized today by a well-developed and perennial oxygen minimum zone (OMZ) at mid-water depths. The Indian margin where the OMZ impinges provides sediment records ideal to study past changes in the OMZ intensity and its vertical extent in response to the changes of monsoon-driven primary productivity and intermediate water ventilation. Benthic foraminifera, depending upon their adaptation capabilities to variation in sea floor environment and microhabitat preferences, develop various functional morphologies that can be potentially used in paleoenvironmental reconstruction. In this study, we analysed benthic foraminiferal morphogroups in assemblage records of the last 30 ka in a sediment core collected from the lower OMZ of the Indian margin (off Goa). In total, nine morphogroups within two broadly classified epifaunal and infaunal microhabitat categories are identified. The abundance of morphogroups varies significantly during the late Glacial, Deglacial and Holocene. It appears that monsoon wind driven organic matter flux, and water column ventilation governing the OMZ intensity and sea-bottom oxygen condition, have profound influence on structuring the benthic foraminiferal morphogroups. We found a few morphogroups showing major changes in their abundances during the periods corresponding to the northern hemisphere climatic events. Benthic foraminifera with planoconvex tests are abundant during the cold Heinrich events, when the sea bottom was oxygenated due to a better ventilated, weak OMZ; whereas, those having tapered/cylindrical tests dominate during the last glacial maximum and the Holocene between 5 and 8 ka BP, when the OMZ was intensified and poorly ventilated, leading to oxygen-depleted benthic environment. Characteristically, increased abundance of taxa with milioline tests during the Heinrich 1 further suggests enhanced ventilation attributed probably to the influence of oxygen-rich Antarctic Intermediate Water (AAIW).  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号