首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 124 毫秒
1.
模糊度固定能够显著提高精密单点定位(PPP)的精度和收敛速度,是国内外卫星导航定位领域的研究热点.本文通过最小二乘法分离接收机端和卫星端小数周偏差(FCB),恢复非差模糊度的整数特性,将得到的卫星端FCB提供给用户,能够实现非差模糊度固定的PPP.采用全球IGS跟踪站的观测数据进行非差FCB解算,实验结果表明,宽巷FCB的稳定性较好,一周内变化小于0.1周,而窄巷FCB一天内变化较大.将获得的FCB用于模糊度固定PPP实验,E、N、U三个方向的定位精度分别为0.7 cm、0.8 cm和2.1 cm,与浮点解PPP相比,分别提高68%、51%和37%,验证了本文估计的FCB用于模糊度固定PPP的定位性能   相似文献   

2.
由于北斗地球静止轨道(geostationary earth orbiting,GEO)卫星轨道精度较低且其观测值受多路径误差和伪距偏差影响严重,目前各分析中心尚未针对北斗GEO卫星提供长期稳定的相位小数偏差(uncalibrated phase delay,UPD)产品,北斗精密单点定位(precise point positioning,PPP)模糊度固定技术研究主要针对倾斜轨道(inclined geosynchronous orbiting,IGSO)和中地球轨道(medium earth orbiting,MEO)卫星。本文采用Wanninger和Beer的高度角模型消除了IGSO/MEO观测值伪距偏差,并通过小波变换提取低频分量修正伪距观测值的方法削弱了GEO卫星多路径和伪距偏差的影响。由于窄巷UPD估值受未模型化误差影响较大,本文改进了窄巷UPD估计的策略,该策略利用上一历元成功估计的窄巷UPD对当前历元的浮点模糊度进行改正,剔除了残差较大的浮点模糊度,修正固定错误的整周模糊度,从而提高了窄巷UPD的精度和稳定性。利用估计得到的UPD产品,本文实现了联合GEO、IGSO和MEO卫星的北斗非差PPP模糊度固定,并对其定位性能进行分析。结果表明:联合GEO、IGSO和MEO卫星的PPP固定解的首次固定时间和收敛时间均可以缩短到30 min以内;6 h后的E、N、U方向的定位误差由(1.35、0.35、2.75)cm减少到(1.07、0.26、2.24)cm,分别减少了20%、27%和18%。  相似文献   

3.
卫星钟差解算及其星间单差模糊度固定   总被引:1,自引:0,他引:1  
整数相位模糊度解算可以显著提高GNSS精密单点定位(PPP)的精度。本文提出一种解算卫星钟差的方法,通过固定星间单差模糊度恢复出能够支持单台接收机进行整数模糊度解算的卫星钟差,即所谓的“整数”钟差。为了实现星间单差模糊度固定,分别通过卫星端宽巷FCB解算和模糊度基准的选择与固定恢复出宽巷和窄巷模糊度的整数性质。为了证明本文方法的可行性,采用IGS测站的GPS数据进行卫星钟差解算试验。结果表明,在解算钟差时,星间单差模糊度固定的平均成功率为73%。得到的卫星钟差与IGS最终钟差产品相比,平均的RMS和STD分别为0.170和0.012 ns。448个IGS测站的星间单差宽巷和窄巷模糊度小数部分的分布表明本文得到的卫星钟差和FCB产品具备支持PPP用户进行模糊度固定的能力。基于以上产品开展了模拟动态PPP定位试验,结果表明模糊度固定之后,N、E、U和3D的定位精度(RMS)分别达到0.009、0.010、0.023和0.027 m,与不固定模糊度或采用IGS钟差的结果相比,分别提高了30.8%、61.5%、23.3%和37.2%。  相似文献   

4.
利用全球分布的IGS和MGEX站多模观测数据,研究了北斗卫星多系统融合双差动力学精密定轨方法,提出了适应北斗系统的双差模糊度固定策略。结合实测数据,对比了单系统与多系统融合、模糊度固定解与浮点解的定轨效果。结果表明:相比单系统定轨,多系统融合定轨能有效改进IGSO和MEO卫星轨道精度,但对于GEO卫星,多系统融合定轨并无优势;利用改进的模糊度固定策略对IGSO和MEO卫星双差模糊度进行固定,有效提高了长基线模糊度固定率,整体固定成功率由40%提高到60%以上;模糊度固定对定轨精度改进作用明显,IGSO和MEO卫星三维定轨精度分别提高了48%和36%,达到0.048 m和0.066 m。  相似文献   

5.
北斗卫星导航系统播发3个频点的导航信号,有利于载波相位模糊度解算。鉴于传统的三频模糊度解算方法由于受基线距离的限制难以在中长基线情形下可靠地固定模糊度,本文提出一种适用于北斗卫星系统中长基线模糊度固定的新方法。实验结果表明,改进的新算法不受基线长度的约束,在保证超宽巷、宽巷模糊度正确固定的同时,宽巷模糊度估值误差在0.3周以内;窄巷模糊度估值误差在3周以内。相比于传统算法,新方法的改进效果较好。  相似文献   

6.
北斗卫星系统(BDS)能全星座播发三频信号,可通过线性组合构成不同虚拟观测量,有利于模糊度解算等,文中采用北斗三频中长基线实测数据进行差分定位,首先使用宽巷模糊度和电离层无关组合进行B3频段窄巷模糊度解算,在此基础上提出利用相邻历元B3频段窄巷模糊度构建卡尔曼滤波新息向量,通过新息向量内积RMS值很容易分析出窄巷模糊度的误差对滤波性能的影响,并结合滤波发散条件进行相关卫星历元挑选,实验最终得到中长基线厘米级定位精度并有效缩短首次收敛时间和提高固定率,对促进北斗高精度定位有着现实意义。   相似文献   

7.
随着北斗卫星导航系统(BeiDou navigation satellite system, BDS)的建设和完善,更多的北斗在轨卫星开始提供全球性的定位、导航、授时服务。为了验证北斗系统整体精密单点定位-模糊度固定(precise point positioning-ambiguity resolution, PPP-AR)的效果,基于全球分布的测站2020-08-01—2020-08-31共31 d的观测数据进行GPS、BDS双系统相位小数周偏差(fractional cycle bi?as, FCB)估计, 并对其中BDS-3卫星FCB产品时变特性进行分析。结果表明,大部分BDS-3卫星宽巷FCB在31 d内保持相对稳定,变化小于0.2周, 窄巷FCB在1 d之内的变化小于0.1周。利用估计的FCB产品进行动态和静态PPP-AR解算。单BDS-3静态PPP?-AR的历元固定率可以达到89.8%,东、北、天3个方向的均方根误差(root mean square error,RMSE)分别为0.94 cm、0.73 cm和1.39 cm,动态PPP-AR的历元固定率为83.9%,东、北、天3个方向的RMSE分别为1.99 ?cm、1.70 cm和3.28 cm。  相似文献   

8.
窄巷波长相对较短,受观测数据质量和未模型化误差的影响较大,导致参考站计算的窄巷FCB估值的互差较大,窄巷FCB稳定性较差。针对窄巷FCB估值出现较大偏差的参考站,本文提出了基于抗差初值的窄巷FCB抗差估计方法,该方法取当前历元所有参考站窄巷FCB估值的中位数作为抗差初值,采用IGGⅢ方案降低了有偏差的窄巷FCB估值的权比。采用IGS全球跟踪站网的数据进行验证,改进的方法提高了窄巷FCB的精度和稳定性,采用每天估计的一组卫星端的窄巷FCB即可满足窄巷模糊度固定的精度要求。同时,采用本文改进方法估计的窄巷FCB,可以提高用户端仿动态单天解的窄巷模糊度固定成功率和定位精度。  相似文献   

9.
焦博  郝金明  刘伟平  张辉  温旭峰  师一帅 《测绘学报》2018,47(10):1326-1336
单差FCB应用于模糊度固定解PPP中,能够提高定位精度并加快收敛速度。但由于地球遮挡,单颗卫星无法与全部卫星形成共视,因此单颗参考星下无法获得所有卫星的单差FCB。若播发多个参考星下的单差FCB作为补充,则会增加数据传输负担。为兼顾可用性与数据量,本文依据差分传递原理将不同参考星的单差FCB转换至同一参考星下,采用基于GPHASE初值的抗差估计对转换后的FCB进行合并,以获得单参考星下全星座单差FCB。选取IGS监测站网15 d的数据生成改进后的FCB产品,并进行固定解PPP验证。试验结果表明,仅播发单参考星改进后的单差FCB即可满足应用需求,改进FCB与现有的FCB产品相差小于0.04周,稳定性与可用性均优于传统的单差FCB。利用单参考星的合并FCB进行固定解PPP:静态解算的水平精度优于1 cm,垂直精度优于2 cm;动态解算时可在15 min左右实现5 cm以内的三维定位精度。  相似文献   

10.
非差模糊度固定能够有效提高精密单点定位(PPP)的定位精度和收敛速度,是国内外卫星导航定位领域的研究热点。基于整数钟实现了PPP非差模糊度固定,在非差模糊度逐级固定中分别估计接收机宽巷偏差和窄巷偏差;对宽巷和窄巷模糊度进行改正,从而消除了接收机硬件延迟对模糊度的影响;同时采用取整成功率检验和ratio值检验,保证模糊度固定的可靠性。将以上方法应用到动态精密单点定位中,实验结果表明:仿动态条件下,模糊度正确固定后,东、北向定位精度达到mm级、天向定位精度优于5 cm;动态解算条件下,采用1 s采样间隔数据16 min左右即可实现模糊度的首次固定。PPP固定解在东、北、天3个方向的定位精度分别为1.5、2.7和1.3 cm,相比于浮点解分别提升了61%、40%和38%。  相似文献   

11.
The main challenge of ambiguity resolution in precise point positioning (PPP) is that it requires 30 min or more to succeed in the first fixing of ambiguities. With the full operation of the BeiDou (BDS) satellite system in East Asia, it is worthwhile to investigate the performance of GPS + BDS PPP ambiguity resolution, especially the improvements of the initial fixing time and ambiguity-fixing rate compared to GPS-only solutions. We estimated the wide- and narrow-lane fractional-cycle biases (FCBs) for BDS with a regional network, and PPP ambiguity resolution was carried out at each station to assess the contribution of BDS. The across-satellite single-difference (ASSD) GPS + BDS combined ambiguity-fixed PPP model was used, in which the ASSD is applied within each system. We used a two-day data set from 48 stations. For kinematic PPP, the percentage of fixing within 10 min for GPS only (Model A) is 17.6 %, when adding IGSO and MEO of BDS (Model B), the percentage improves significantly to 42.8 %, whereas it is only 23.2 % if GEO is added (Model C) due to the low precision of GEO orbits. For static PPP, the fixing percentage is 32.9, 53.3 and 28.0 % for Model A, B and C, respectively. In order to overcome the limitation of the poor precision of GEO satellites, we also used a small network of 10 stations to analyze the contribution of GEO satellites to kinematic PPP. We took advantage of the fact that for stations of a small network the GEO satellites appear at almost the same direction, such that the GEO orbit error can be absorbed by its FCB estimates. The results show that the percentage of fixing improves from 39.5 to 57.7 % by adding GEO satellites.  相似文献   

12.
Ambiguity resolved precise point positioning with GPS and BeiDou   总被引:2,自引:1,他引:1  
This paper focuses on the contribution of the global positioning system (GPS) and BeiDou navigation satellite system (BDS) observations to precise point positioning (PPP) ambiguity resolution (AR). A GPS + BDS fractional cycle bias (FCB) estimation method and a PPP AR model were developed using integrated GPS and BDS observations. For FCB estimation, the GPS + BDS combined PPP float solutions of the globally distributed IGS MGEX were first performed. When integrating GPS observations, the BDS ambiguities can be precisely estimated with less than four tracked BDS satellites. The FCBs of both GPS and BDS satellites can then be estimated from these precise ambiguities. For the GPS + BDS combined AR, one GPS and one BDS IGSO or MEO satellite were first chosen as the reference satellite for GPS and BDS, respectively, to form inner-system single-differenced ambiguities. The single-differenced GPS and BDS ambiguities were then fused by partial ambiguity resolution to increase the possibility of fixing a subset of decorrelated ambiguities with high confidence. To verify the correctness of the FCB estimation and the effectiveness of the GPS + BDS PPP AR, data recorded from about 75 IGS MGEX stations during the period of DOY 123-151 (May 3 to May 31) in 2015 were used for validation. Data were processed with three strategies: BDS-only AR, GPS-only AR and GPS + BDS AR. Numerous experimental results show that the time to first fix (TTFF) is longer than 6 h for the BDS AR in general and that the fixing rate is usually less than 35 % for both static and kinematic PPP. An average TTFF of 21.7 min and 33.6 min together with a fixing rate of 98.6 and 97.0 % in static and kinematic PPP, respectively, can be achieved for GPS-only ambiguity fixing. For the combined GPS + BDS AR, the average TTFF can be shortened to 16.9 min and 24.6 min and the fixing rate can be increased to 99.5 and 99.0 % in static and kinematic PPP, respectively. Results also show that GPS + BDS PPP AR outperforms single-system PPP AR in terms of convergence time and position accuracy.  相似文献   

13.
GPS precise point positioning (PPP) ambiguity resolution (AR) can improve the positioning accuracy and shorten the convergence time. However, for the BeiDou Satellite Navigation System (BDS), the problems of satellite-induced code bias, imperfections in the error models and the inadequate accuracy of orbit products limit the applications of the BDS PPP AR system, which requires more than 6 h to achieve the first ambiguity-fixed solution. In this study, the accuracy of a wide-lane (WL) uncalibrated phase delay (UPD) is improved after careful consideration of the code bias and multipath. Meanwhile, the accuracy of the BDS float ambiguity is also improved by multi-GNSS fusion and improved precise orbit and clock products, which are critical for high-quality narrow-lane (NL) UPD estimations. With three tracking networks of different scales, including Hong Kong, the Crustal Movement Observation Network of China (CMONOC) and the multi-GNSS experiment (MGEX) networks, the spatial–temporal characteristics of WL and NL UPDs for BDS GEO/IGSO/MEO satellites are analyzed, and the PPP AR is performed. Numerous results show that WL and NL UPDs with a standard deviation (STD) of less than 0.15 cycles can be achieved for BDS GEO satellites, while a STD of less than 0.1 cycles can be obtained for IGSO and MEO satellites. With the precise UPD estimation, for the first time, the BDS PPP rapid ambiguity resolution for GEO/IGSO/MEO satellites is achieved. We found that the average time to first fix (TTFF) of the BDS PPP AR is shortened significantly, to approximately 40 min for Hong Kong and the CMONOC, while the TTFF was 57.4 min for the MGEX networks. With ambiguity resolution, the accuracy of the daily BDS PPP in the east, north and vertical directions improves from 1.74 cm, 1.08 cm, and 5.52 cm to 0.72 cm, 0.54 cm, and 3.21 cm for the Hong Kong network, 2.24 cm, 2.31 cm, and 5.64 cm to 1.18 cm, 0.79 cm, and 3.30 cm for the CMONOC, and 2.71 cm, 1.80 cm, and 6.00 cm to 1.58 cm, 1.15 cm, and 4.33 cm for the MGEX networks. Significant improvement is also achieved for kinematic PPP, with improvements of 40.41%, 34.33% and 37.17% in the east, north and vertical directions for the MGEX networks, respectively.  相似文献   

14.
With the development of precise point positioning (PPP), the School of Geodesy and Geomatics (SGG) at Wuhan University is now routinely producing GPS satellite fractional cycle bias (FCB) products with open access for worldwide PPP users to conduct ambiguity-fixed PPP solution. We provide a brief theoretical background of PPP and present the strategies and models to compute the FCB products. The practical realization of the two-step (wide-lane and narrow-lane) FCB estimation scheme is described in detail. With GPS measurements taken in various situations, i.e., static, dynamic, and on low earth orbit (LEO) satellites, the quality of FCB estimation and the effectiveness of PPP ambiguity resolution (AR) are evaluated. The comparison with CNES FCBs indicated that our FCBs had a good consistency with the CNES ones. For wide-lane FCB, almost all the differences of the two products were within ±0.05 cycles. For narrow-lane FCB, 87.8 % of the differences were located between ±0.05 cycles, and 97.4 % of them were located between ±0.075 cycles. The experimental results showed that, compared with conventional ambiguity-float PPP, the averaged position RMS of static PPP can be improved from (3.6, 1.4, 3.6) to (2.0, 1.0, 2.7) centimeters for ambiguity-fixed PPP. The average accuracy improvement in the east, north, and up components reached 44.4, 28.6, and 25.0 %, respectively. A kinematic, ambiguity-fixed PPP test with observation of 80 min achieved a position accuracy of better than 5 cm at the one-sigma level in all three coordinate components. Compared with the results of ambiguity-float, kinematic PPP, the positioning biases of ambiguity-fixed PPP were improved by about 78.2, 20.8, and 65.1 % in east, north, and up. The RMS of LEO PPP test was improved by about 23.0, 37.0, and 43.0 % for GRACE-A and GRACE-B in radial, tangential, and normal directions when AR was applied to the same data set. These results demonstrated that the SGG FCB products can be produced with high quality for users anywhere around the world to carry out ambiguity-fixed PPP solutions.  相似文献   

15.
Although integer ambiguity resolution (IAR) can improve positioning accuracy considerably and shorten the convergence time of precise point positioning (PPP), it requires an initialization time of over 30 min. With the full operation of GLONASS globally and BDS in the Asia–Pacific region, it is necessary to assess the PPP–IAR performance by simultaneous fixing of GPS, GLONASS, and BDS ambiguities. This study proposed a GPS + GLONASS + BDS combined PPP–IAR strategy and processed PPP–IAR kinematically and statically using one week of data collected at 20 static stations. The undifferenced wide- and narrow-lane fractional cycle biases for GPS, GLONASS, and BDS were estimated using a regional network, and undifferenced PPP ambiguity resolution was performed to assess the contribution of multi-GNSSs. Generally, over 99% of a posteriori residuals of wide-lane ambiguities were within ±0.25 cycles for both GPS and BDS, while the value was 91.5% for GLONASS. Over 96% of narrow-lane residuals were within ±0.15 cycles for GPS, GLONASS, and BDS. For kinematic PPP with a 10-min observation time, only 16.2% of all cases could be fixed with GPS alone. However, adding GLONASS improved the percentage considerably to 75.9%, and it reached 90.0% when using GPS + GLONASS + BDS. Not all epochs could be fixed with a correct set of ambiguities; therefore, we defined the ratio of the number of epochs with correctly fixed ambiguities to the number of all fixed epochs as the correct fixing rate (CFR). Because partial ambiguity fixing was used, when more than five ambiguities were fixed correctly, we considered the epoch correctly fixed. For the small ratio criteria of 2.0, the CFR improved considerably from 51.7% for GPS alone, to 98.3% when using GPS + GLONASS + BDS combined solutions.  相似文献   

16.
针对倾斜地球同步轨道(IGSO)是特殊的地球同步圆轨道,轨道稳定性较好,可以覆盖高纬度地区的特点,研究了北斗三频单历元基线解算中IGSO卫星对其精度的影响。采用内蒙古地区和安徽地区的两条短基线,在GEO和MEO卫星的基础上,按可见性增加一颗IGSO卫星参与解算。实验结果表明:增加1~3颗可见性较好的IGSO卫星时,模糊度解算成功率最高,且定位精度最佳;增加4~5颗IGSO卫星时,模糊度解算成功率和定位精度相对于1~3颗均有所下降。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号