首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The progressive deformation recorded in the magnetic fabric of sedimentary rocks was studied in the SE Rhenohercynian Zone (RHZ), eastern margin of the Bohemian Massif, Czech Republic. Almost 800 oriented samples of the Lower Carboniferous mudstones and graywackes were collected from the SSE part of the Czech RHZ, so-called the Drahany Upland. The anisotropy of magnetic susceptibility (AMS) is predominantly controlled by the preferred orientation of paramagnetic phyllosilicates, mainly iron-bearing chlorites. A regional distribution of the magnetic fabric within the Drahany Upland revealed an increasing deformation from the SSE to the NNW. In the SE, the magnetic fabric is bedding-parallel with magnetic lineation scattered in the bedding plane or trending N–S to NNE–SSW. Further to the NW, the magnetic foliation rotates from the bedding-parallel orientation to the orientation parallel to the evolving cleavage. This rotation is accompanied by a decrease of the anisotropy degree and the prolate nature of the anisotropy ellipsoids. The magnetic lineation is parallel to the strike of the bedding, bedding/cleavage intersection, pencil structure or the fold axes on a regional scale. In the NW part of the Drahany Upland, the magnetic foliation becomes parallel to the cleavage accompanied by an increase of the anisotropy degree and the oblate nature of the anisotropy ellipsoids. The increasing trend of deformation corresponds to the SSE–NNW increase in the degree of anchimetamorphism; both trends being oblique to the main lithostratigraphic formations as typically observed in the sedimentary rocks of the accretionary wedges. The SSE–NNW increase in deformation and anchimetamorphism continues to the Nízký Jeseník Mts., representing the northern part of the same accretionary wedge. The kinematics of deformation could not be unambiguously assessed. The observed magnetic fabric may reflect either lateral shortening or horizontal simple shear or a combination of both mechanisms. Regarding the subduction process, it seems that the sedimentary sequences of the Drahany Upland were subducted, partly offscraped and accreted frontally or partly underplated as opposed to the Nízký Jeseník Mts. where some return flow must have occurred.  相似文献   

2.
Anisotropy of magnetic susceptibility (AMS) represents a valuable proxy able to detect subtle strain effects in very weakly deformed sediments. In compressive tectonic settings, the magnetic lineation is commonly parallel to fold axes, thrust faults, and local bedding strike, while in extensional regimes, it is perpendicular to normal faults and parallel to bedding dip directions. The Altotiberina Fault (ATF) in the northern Apennines (Italy) is a Plio-Quaternary NNW–SSE low-angle normal fault; the sedimentary basin (Tiber basin) at its hanging-wall is infilled with a syn-tectonic, sandy-clayey continental succession. We measured the AMS of apparently undeformed sandy clays sampled at 12 sites within the Tiber basin. The anisotropy parameters suggest that a primary sedimentary fabric has been overprinted by an incipient tectonic fabric. The magnetic lineation is well developed at all sites, and at the sites from the western sector of the basin it is oriented sub-perpendicular to the trend of the ATF, suggesting that it may be related to extensional strain. Conversely, the magnetic lineation of the sites from the eastern sector has a prevailing N–S direction. The occurrence of triaxial to prolate AMS ellipsoids and sub-horizontal magnetic lineations suggests that a maximum horizontal shortening along an E–W direction occurred at these sites. The presence of compressive AMS features at the hanging-wall of the ATF can be explained by the presence of gently N–S-trending local folds (hardly visible in the field) formed by either passive accommodation above an undulated fault plane, or rollover mechanism along antithetic faults. The long-lasting debate on the extensional versus compressive Plio-Quaternary tectonics of the Apennines orogenic belt should now be revised taking into account the importance of compressive structures related to local effects.  相似文献   

3.
The easternmost part of the Neoproterozoic Araçuaí belt comprises an anatectic domain that involves anatexites (the Carlos Chagas unit), leucogranites and migmatitic granulites that display a well-developed fabric. Microstructural observations support that the deformation occurred in the magmatic to submagmatic state. Structural mapping integrating field and anisotropy of magnetic susceptibility (AMS) revealed a complex, 3D structure. The northern domain displays gently dipping foliations bearing a NW-trending lineation, southward, the lineation trend progressively rotates to EW then SW and the foliation is gently folded. The eastern domain displays E–W and NE–SW trending foliations with moderate to steeply dips bearing a dominantly NS trending lineation. Magnetic mineralogy investigation suggests biotite as the main carrier of the magnetic susceptibility in the anatexites and ferromagnetic minerals in the granulites. Crystallographic preferred orientation (CPO) measurements using the electron backscatter diffraction (EBSD) technique suggest that the magnetic fabric comes from the crystalline anisotropy of biotite and feldspar grains, especially. The delineation of several structural domains with contrasted flow fabric suggests a 3D flow field involving westward thrusting orthogonal to the belt, northwestward orogen-oblique escape tectonics and NS orogen-parallel flow. This complex deformation pattern may be due to interplay of collision-driven and gravity-driven deformations.  相似文献   

4.
本文对藏东昌都地区侏罗纪汪布组、东大桥组和小索卡组红层共71个采点开展了磁组构(AMS)研究。磁组构测试结果表明,早侏罗世汪布组岩石磁线理较磁面理发育,磁化率各向异性度较高,磁化率椭球最小轴K3散布于层面缩短方向,代表了与构造成因相关的磁组构;中侏罗世东大桥组和晚侏罗世小索卡组岩石则磁面理较磁线理发育,磁化率各向异性度较低,磁化率椭球最小轴K3与层面近垂直,指示了原生沉积磁组构。早侏罗世汪布组地层的磁组构揭示了其构造应力场方向为NE-SW向。中侏罗世东大桥组的磁组构指示了其沉积时的古水流方向为SE向(138.3°),而晚侏罗世小索卡组磁组构指示了其沉积时的古水流方向为NNW向(328.3°)。古水流方向的明显变化揭示了昌都地区从中侏罗世到晚侏罗世沉积物物源发生了相应的转变,表明昌都地区南早北晚的隆升过程。  相似文献   

5.
Evaluating magnetic lineations (AMS) in deformed rocks   总被引:3,自引:0,他引:3  
Magnetic lineation in rocks is given by a cluster of the principal axes of maximum susceptibility (Kmax) of the Anisotropy of Magnetic Susceptibility (AMS) tensor. In deformed rocks, magnetic lineations are generally considered to be the result of either bedding and cleavage intersection or they parallel the tectonic extension direction in high strain zones. Our AMS determinations, based on a variety of samples that were taken from mudstones, slates and schists from the Pyrenees and Appalachians, show that strain is not the only factor controlling the development of magnetic lineation. We find that the development and extent to which the magnetic lineation parallels the tectonic extension direction depends on both the original AMS tensor, which in turn depends on the lithology, and the deformation intensity. Rocks having a weak pre-deformational fabric will develop magnetic lineations that more readily will track the tectonic extension.  相似文献   

6.
North Norfolk is a classic area for the study of glacial sediments with a complex glaciotectonic deformational history, but the processes leading to the formation of some structures can be ambiguous. Anisotropy of magnetic susceptibility (AMS) analyses, providing quantitative fabric data, have been combined with the analysis of visible structures and applied to the Bacton Green Till Member, exposed at Bacton, Norfolk. Thermomagnetic curves, low temperature susceptibility and acquisition of isothermal remanent magnetism (IRM) reveal that the magnetic mineralogy is dominated by paramagnetic phases. The magnetic foliation is parallel to fold axial planes and weakly inclined to bedding, whilst the magnetic lineation is orientated parallel to stretching, indicated by the presence of stretching lineations and the trend of sheath folds. Variations in the orientation of the magnetic lineation suggest that the Bacton section has been subject to polyphase deformation. After subaqueous deposition, the sequence was overridden by ice and glaciotectonically deformed which involved stretching initially north–south, then east–west. These results show that AMS can be used to detect strain in three dimensions through a glaciotectonite where paramagnetic mineralogy is dominant. This approach therefore provides further support to the use of AMS as a fast, objective and accurate method of examining strain within deformed glacial sediments.  相似文献   

7.
Magnetic fabric and rock-magnetism studies were performed on the four units of the 578 ± 3-Ma-old Piracaia pluton (NW of São Paulo State, southern Brazil). This intrusion is roughly elliptical (~32 km2), composed of (i) coarse-grained monzodiorite (MZD-c), (ii) fine-grained monzodiorite (MZD-f), which is predominant in the pluton, (iii) monzonite heterogeneous (MZN-het), and (iv) quartz syenite (Qz-Sy). Magnetic fabrics were determined by applying both anisotropy of low-field magnetic susceptibility (AMS) and anisotropy of anhysteretic remanent magnetization (AARM). The two fabrics are coaxial. The parallelism between AMS and AARM tensors excludes the presence of a single domain (SD) effect on the AMS fabric of the units. Several rock-magnetism experiments performed in one specimen from each sampled units show that for all of them, the magnetic susceptibility and magnetic fabrics are carried by magnetite grains, which was also observed in the thin sections. Foliations and lineations in the units were successfully determined by applying magnetic methods. Most of the magnetic foliations are steeply dipping or vertical in all units and are roughly parallel to the foliation measured in the field and in the country rocks. In contrast, the magnetic lineations present mostly low plunges for the whole pluton. However, for eight sites, they are steep up to vertical. Thin-section analyses show that rocks from the Piracaia pluton were affected by the regional strain during and after emplacement since magmatic foliation evolves to solid-state fabric in the north of the pluton, indicating that magnetic fabrics in this area of the pluton are related to this strain. Otherwise, the lack of solid-state deformation at outcrop scale and in thin sections precludes deformation in the SW of the pluton. This evidence allows us to interpret the observed magnetic fabrics as primary in origin (magmatic) acquired when the rocks were solidified as a result of magma flow, in which steeply plunging magnetic lineation suggests that a feeder zone could underlie this area.  相似文献   

8.
Magnetic measurements were performed on apparently undeformed limestones and carbonate shales from 44 sites in nearly horizontal stratigraphic layers mainly from the basal units of the Neoproterozoic Bambui Group in the southern part of the São Francisco Basin. Rock magnetism, cathodoluminescence, transmitted and reflected light microscopy analyses reveal that there is a mix of ferromagnetic minerals, mainly magnetite and pyrrhotite, in most sites. In some sites, however, the ferromagnetic minerals are magnetite and hematite. Fine-grained pyrrhotite and pyrite accompany rare fine-grained graphite and probably amorphous carbon in some of stylolites, while pyrrhotite is also present as larger interstitial masses in coarse-grained domains outside, but close to the stylolites. Magnetic fabrics were determined applying both anisotropy of low-field magnetic susceptibility (AMS) and anisotropy of anhysteretic remanence magnetization (AAR). The AAR tensor was less well defined than the AMS fabric due to the low ferromagnetic mineral content. The analysis at the individual-site scale defines three AMS fabric types. The first type (two sites) shows Kmin perpendicular to the bedding plane, while Kmax and Kint are scattered within bedding plane itself. This fabric is usually interpreted as primary (sedimentary-compactional), typical of totally undeformed sediments. The second type shows the three well-clustered AMS axes with Kmin still perpendicular to the bedding plane. This fabric is the most important since it was found in the majority of the sites. The third type (two sites) is characterized by well-clustered Kmax in the bedding plane, while Kmin and Kint are distributed along a girdle. The second and third fabric types are interpreted as combinations of sedimentary-compactional and tectonic contributions at the earliest, and at a slightly later stage of deformation, respectively. AMS represents the contribution of all the rock-forming minerals, while AAR isolates the contribution of remanence-bearing minerals from the matrix minerals. However, rock magnetism shown that anhysteretic remanence only reaches grains with coercivity < 100 mT because the maximum AF in the majority of the available instruments is 100 mT. Therefore, hematite and pyrrhotite probably do not contribute to AAR, which is due to the shape-preferred orientation of magnetite grains. For some sites, the AMS and AAR fabric orientations are different, mainly with respect to the lineation orientations (Kmax and Amax, respectively). In general, Kmax is well developed and follows the trend of the main regional thrusts, fold axes and faults generated in the first deformational phase, while Amax follows both this trend and that of structural lineaments formed during the second deformational phase. These deformation phases arose from the compression, which occurred during the evolution of the Brasília fold belt during the last stages of the Brasiliano event. The magnetic fabrics of the apparently undeformed Bambui limestones are typical of very weakly deformed sediments, in which the depositional-compaction fabric has been partly overprinted by a tectonic one, with minimum susceptibility direction remaining perpendicular to bedding. This result is in agreement with the textures given by the petrographic observations.  相似文献   

9.
In this work, we report the results of combined geological, structural, and anisotropy of magnetic susceptibility (AMS) studies carried out on Quaternary deposits in the Picentini Mountains, southern Apennines (Italy). The study concerns four small continental basins, Acerno, Tizzano, Iumaiano, and Piano del Gaudo, related to fluvial–lacustrine depositional environments, ranging in altitude from 600 to 1,200 m a.s.l. and strongly incised during recent time. Stratigraphic and structural analyses, integrated by low- and high-field anisotropy of magnetic susceptibility (AMS), show that the formation of these basins has been controlled by extensional and transtensional tectonics. Most of the AMS sites exhibit a well-defined magnetic foliation parallel to the bedding planes. A well-defined magnetic lineation has also been measured within the foliation planes. In the Iumaiano, Tizzano, and Piano del Gaudo basins, magnetic lineations cluster around NNE–SSW trend and are parallel to the stretching directions inferred by structural analysis of faults and fractures. On the basis of structural, sedimentological, and high-field AMS data, we suggest a tectonic origin for the magnetic lineation, analogously to what has been observed in other weakly deformed sediments from Neogene and Quaternary extensional basins of the Mediterranean region. Our results demonstrate that onset and the evolution of the investigated basins have been mainly controlled since lower Pleistocene by NW–SE normal and transtensional faults. This deformation pattern is consistent with a prevalent NE–SW extensional tectonic regime, still active in southern Apennines, as revealed by seismological and geodetic data.  相似文献   

10.
罗良  贾东  李一泉  邓飞  孙圣思 《地质学报》2008,82(6):850-856
磁组构是一种灵敏的应变指示计。单一方向应力作用下,在平行层缩短的初始阶段,磁线理与地层走向是一致的。然而,在构造叠加背景下弱变形的沉积岩地区,另一个(多个)不同方向的应力使得已经产生定向排列的磁性矿物发生旋转,表现为磁线理和与地层走向斜交。川西北盆地在新生代是一个典型的构造叠加区域,来自龙门山和米仓山的变形在此相互作用。本文在川西北盆地分3条剖面在18个采样点中采集了172个样品进行了磁组构研究。研究区内观察到3种弱变形的磁组构类型:沉积磁组构、初始变形磁组构和铅笔状磁组构。由于应变的叠加,由盆地内部向造山带前缘没有出现应变由弱到强的变化趋势,同时磁线理的方向也不一致。由盆地向造山带,来自米仓山的变形逐渐增强,磁线理从与地层走向一致转变成与地层走向斜交。  相似文献   

11.
The 616 ± 3 Ma (Ediacaran) Egersund doleritic dike swarm cuts across the Rogaland anorthosite province and its granulitic country rocks, in SW Norway. The structure of eight out of eleven main dikes of the swarm was investigated using the anisotropy of magnetic susceptibility (AMS) technique. Thermomagnetic data and values of the bulk magnetic susceptibility reveal a magnetic mineralogy dominated by Ti-poor titanomagnetite. Magnetic fabric and global petrofabric are coaxial, except in sites strongly affected by hydrothermal alteration, as demonstrated through image analysis. Asymmetrical dispositions of the magnetic foliation and lineation support the existence of a syn-emplacement, sinistral strike-slip shearing resolved on dike walls. Such asymmetrical fabrics are attributed to a transtension tectonic regime, in a context of oblique extension during the continental rifting phase which preceded the opening of the Iapetus Ocean along the SW margin (present-day orientation) of Baltica.  相似文献   

12.
We ask the question whether petrofabric data from anisotropy of magnetic susceptibility (AMS) analysis of deformed quartzites gives information about shape preferred orientation (SPO) or crystallographic preferred orientation (CPO) of quartz. Since quartz is diamagnetic and has a negative magnetic susceptibility, 11 samples of nearly pure quartzites with a negative magnetic susceptibility were chosen for this study. After performing AMS analysis, electron backscatter diffraction (EBSD) analysis was done in thin sections prepared parallel to the K1K3 plane of the AMS ellipsoid. Results show that in all the samples quartz SPO is sub-parallel to the orientation of the magnetic foliation. However, in most samples no clear correspondance is observed between quartz CPO and K1 (magnetic lineation) direction. This is contrary to the parallelism observed between K1 direction and orientation of quartz c-axis in the case of undeformed single quartz crystal. Pole figures of quartz indicate that quartz c-axis tends to be parallel to K1 direction only in the case where intracrystalline deformation of quartz is accommodated by prism <c> slip. It is therefore established that AMS investigation of quartz from deformed rocks gives information of SPO. Thus, it is concluded that petrofabric information of quartzite obtained from AMS is a manifestation of its shape anisotropy and not crystallographic preferred orientation.  相似文献   

13.
In the high-grade Moldanubian Zone of the European Variscides, numerous bodies of ultramafic rocks occur embedded in granulite. The anisotropy of magnetic susceptibility and its low-field variation as well as the anisotropy of magnetic remanence were used to investigate magnetic fabrics of some ultramafic bodies and host granulite. In granulite, the magnetic foliation is roughly parallel to the metamorphic foliation and the magnetic lineation is near the mineral alignment lineation. In ultramafite, the magnetic foliation is relatively scattered spatially, but mostly oriented in a different way than that in granulite. The magnetic lineation is also scattered, but still relatively well defined spatially. Again, its orientation is mostly different than that of granulite. The magnetic fabric in ultramafic rocks is therefore different from that in the host granulite even though both rock types underwent at least partially common structural history. The componental movements forming the granulite fabric, mostly during amphibolite facies retrograde metamorphism, were evidently not intensive enough to strongly overprint the magnetic fabric of ultramafite. The ultramafite is therefore strong enough to maintain its pre-metamorphism fabric even at such high temperatures and pressures that are characteristic of high amphibolite facies retrograde metamorphism.  相似文献   

14.
Abstract

The fabric and the anisotropy of magnetic susceptibility of the Cabo Ortegal eclogite (NW Spain) are studied. These mafic rocks were metamorphosed and deformed under high pressures and temperatures between 390 and 370 Ma in a subduction/collision tectonic setting. Massive eclogite slices and deformed eclogite in shear zones have bulk magnetic susceptibilities of 31 to 82·10?5 S.I. and 28 to 75·10?5 S.I., respectively. The paramagnetic mineral fraction is the principal magnetic susceptibility carrier. This fraction includes notably garnet and clinopyroxene as matrix minerals, and ilmenite and rutile as accessory constituents. Though magnetic anisotropy degree varies between 3.1 % and 6.6 %, variations of this parameter in each rock type are marked. In the deformed eclogite, magnetic lineation (Kmax) and the pole to the magnetic foliation (Kmin) are coaxial and coincident with macroscopic petrofabric elements (foliation and lineation). In the massive eclogite, the magnetic fabric is dispersed along the principal structural planes and inversions are associated with samples with small degrees of anisotropy. The anisotropy of magnetic susceptibility is interpreted as being due to the crystallographic preferred orientation and spatial organisation of the polymineralic aggregate. Relating the evolution of the symmetry of magnetic fabric to the symmetry of petrofabric or deformation is rather precluded since susceptibility has multiple origins and bulk magnetic fabric is due to minerals of different symmetry. © Elsevier, Paris  相似文献   

15.
The anisotropy of magnetic susceptibility (AMS) was systematically measured for samples collected across the Lachlan Transverse Zone in the Eastern Subprovince of the Lachlan Orogen, New South Wales. Although the degree of anisotropy is usually moderate to low, it can be shown that the origin of the magnetic fabric is generally composite. Many localities are witness to a tectonic influence in addition to a magnetic foliation preserved from the time of rock formation (compaction). Furthermore, some localities indicate the presence of superimposed magnetic fabrics, potentially associated with a Silurian east–west direction of shortening, and a younger north–south (?) direction of shortening. Finally, the progressive southwards change in orientation of the magnetic lineation in the Molong area from north–south to east–west and then back to north–south again south of the Lyndhurst–Neville Fault suggests that the Lachlan Transverse Zone coincides with, and reflects, a major cross-structure in the Eastern Subprovince. AMS is thus a powerful tool to help map the fabric of Paleozoic rocks in the Tasmanides. Additional data will be required to help obtain a comprehensive picture of the tectonic history of the region.  相似文献   

16.
The magnetic lineation observed in “undeformed” sedimentary units has been interpreted either as an indication of paleoflow direction, or as a result of tectonic overprint which progressively modifies the original sedimentary fabric related to compactional processes. Distinguishing between the two processes is not always easy. In fact, most studies of the Anistropy of Magnetic Susceptibility (AMS) of “undeformed” sequences have been carried out in fine-grained sediments from foredeep sequences, which are characterized by sedimentary flow directions which are almost parallel to the main deformation structures, like thrust faults and folds. In the Alborz Mts., the Upper Triassic–Lower Jurassic Shemshak Group was deposited in a foreland to molassic basin of the Eo-Cimmerian orogen and now outcrops in several folds which are oriented parallel to the curved chain. Paleoflow directions are generally oblique to the main tectonic structures, being directed SSW to SSE and showing negligible changes in their orientation along the Alborz Mountains. We have, therefore, the opportunity to distinguish between tectonic- or sedimentary-related origins of the magnetic lineation. The AMS results show that magnetic lineations of the Shemshak Group are oriented almost parallel to the main fold axes and thrust structures, which follow the Alborz Mts. curved trend, suggesting that magnetic lineation is of tectonic origin in fine to medium grained, mostly massive sandstones, and confirming that AMS is a valuable tool to study deformation processes in sedimentary rocks.  相似文献   

17.
《Geodinamica Acta》2013,26(1-3):73-82
Paleomagnetic declinations from the Inner Carpathian Paleogene Basin imply that the area rotated counterclockwise about 60°, during the Miocene[1]. The question may arise if the paleomagnetic declination could have been biased by the W-E directed turbidity currents prevailing in the basin causing an apparent counter-clockwise rotation of the paleomagnetic direction.

The paleomagnetic results were obtained for fine grained strata, deposited in relatively calm water. Nevertheless, to confirm the paleomagnetic rotation, we needed evidence that flow activity on the magnetic grains was indeed insignificant in the beds yielding paleomagnetic results. Therefore, we carried out magnetic anisotropy measurements.

Results of AMS (representing para and ferromagnetic minerals together) measurements, compared with paleomagnetic observations, demonstrate that well-clustered lineations at locality level and failure to define a paleomagnetic direction are coupled. Lineation, when observable, is flow parallel, suggesting that magnetic lineation in the Inner Carpathian flysch basins may be regarded as a good proxy for turbidity current direction. It is remarkable, however, that the well-defined paleomagnetic directions are observed for localities, where the magnetic fabric is not showing lineation on locality level. Moreover, the lineation direction of the ferromagnetic minerals alone (obtained by measuring the anisotropy of the remanence) is independent of that of the turbidity currents. Thus we can safely conclude that the Inner Carpathian flysch basin indeed was affected by 60° tectonic rotation, and the paleomagnetic vectors were not biased by paleocurrents.  相似文献   

18.
There is little visible primary hydrodynamic lamination preserved in the Bridport-Yeovil Sands as a result of intense bioturbation. Where lamination is present, it exhibits wave-produced characteristics, although current ripple lamination is also found. The grain orientation of a variety of bioturbated and non-bioturbated fine-grained sandstones has been determined by measuring the magnetic susceptibility anisotropy. The magnetic fabric is of a primary style and preserves two lineation directions approximately 90° apart in azimuth. These lineation directions are interpreted as the result of grain long-axis orientations produced by wave and current processes. The magnetic fabric is dominantly carried by a small proportion of paramagnetic minerals, thought to be largely detrital chlorite and micas. This magnetic fabric has been acquired by depositional alignment of the detrital phyllosilicates and by reorientation of the phyllosilicates during the early stages of compaction. The magnetic fabric of the intensely bioturbated sandstone is not significantly different in magnitude characteristics or in the preservation of lineation directions from that of the non-bioturbated sandstone.  相似文献   

19.
《Geodinamica Acta》1998,11(6):271-283
The fabric and the anisotropy of magnetic susceptibility of the Cabo Ortegal eclogite (NW Spain) are studied. These mafic rocks were metamorphosed and deformed under high pressures and temperatures between 390 and 370 Ma in a subduction/collision tectonic setting. Massive eclogite slices and deformed eclogite in shear zones have bulk magnetic susceptibilities of 31 to 82 · 10−5 S.I. and 28 to 75 · 10−5 S.I., respectively. The paramagnetic mineral fraction is the principal magnetic susceptibility carrier. This fraction includes notably garnet and clinopyroxene as matrix minerals, and ilmenite and rutile as accessory constituents. Though magnetic anisotropy degree varies between 3.1 % and 6.6%, variations of this parameter in each rock type are marked. In the deformed eclogite, magnetic lineation (Kmax) and the pole to the magnetic foliation (Kmin) are coaxial and coincident with macroscopic petrofabric elements (foliation and lineation). In the massive eclogite, the magnetic fabric is dispersed along the principal structural planes and inversions are associated with samples with small degrees of anisotropy. The anisotropy of magnetic susceptibility is interpreted as being due to the crystallographic preferred orientation and spatial organisation of the polymineralic aggregate. Relating the evolution of the symmetry of magnetic fabric to the symmetry of petrofabric or deformation is rather precluded since susceptibility has multiple origins and bulk magnetic fabric is due to minerals of different symmetry.  相似文献   

20.
The Apiaí gabbro-norite is a massive fine-grained Neoproterozoic intrusion emplaced in a core of synformal structure that deforms low-grade marine metasedimentary rocks of the Ribeira Belt of south-eastern Brazil. The lack of visible magmatic layering or any internal fabric has been a major limitation in deciding whether the emplacement occurred before or after the regional folding. To assist in the tectonic interpretations, we combine low-field anisotropy of magnetic susceptibility (AMS) and silicate shape preferred orientation (SPO) to reveal the internal structure of the mafic intrusion. Magnetic data indicate a mean susceptibility of about 10−2 SI and a mean anisotropy degree (P) of about 1.08, essentially yielded by titanomagnetite. The magnetic and silicate foliations for P ≥ 1.10 are parallel to each other, while the lineations tend to scatter on the foliation plane, in agreement with the dominant oblate symmetry of the AMS and SPO ellipsoids. For lower P values, the magnetic and silicate fabrics vary from coaxial to oblique, and for P ≤ 1.05, their shapes and orientations can be quite distinct. The crystal size distribution (CSD) of plagioclase for P > 1.05 is log linear, in agreement with a bulk simple crystallisation history. These results combined show that for a strong SPO, corresponding to a magnetic anisotropy above 1.10, AMS is a reliable indicator of the magmatic fabric. They indicate that the Apiaí gabbro-norite consists of sill-like body that was inclined gently to the north by the regional folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号