首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The Sudety Mountains contain polymetallic deposits which have been exploited since the Middle Ages. Distinct concentrations of As, Hg, F, Cr in surface water near Zloty Stok suggested that groundwater in the area could also contain elevated metal concentrations. Water samples from 15 locations including Zloty Stream, mine adit discharges, and selected springs generally show low levels of dissolved components and near-neutral pH. However, arsenic concentrations range from 0.99 mg/l to 26.16 mg/l at all 15 sample locations. Mercury concentrations were locally as high as 0.011 mg/l. These high arsenic and mercury concentrations significantly exceed water quality standards and raise concerns for using Zloty Stream for potable water. Recieved: 21 December 1998 · Accepted: 8 June 1999  相似文献   

2.
 The most appropriate and widely used source of drinking water for the populations of the upper regions of Ghana is groundwater. In general, groundwater quality is acceptable except for some parts of the Bolgatanga and Bongo Districts, where there are occurrences of elevated levels of natural groundwater fluoride. Concentrations of groundwater fluoride in excess of the World Health Organization (WHO) maximum guideline value (1.5 mg/l) in the Bongo area have been known since 1978. However, the effect of fluoride on people ingesting the water did not receive public and medical attention until October 1993, when health personnel were asked to investigate the cause of stained teeth in school children. The investigation established that 62% of the total population of school children in the Bongo area had dental fluorosis. Against this background, a study was initiated to understand the geochemistry, genesis, and distribution of fluoride in relation to the geology of the area. Groundwater fluoride in the upper regions ranges from 0.11 to 4.60 ppm, with the highest concentrations associated with the fluorine-enriched Bongo coarse-grained hornblende granite and syenite suite. The source of groundwater fluoride within the Bongo granitoids is dissolution of the mineral fluorite and dissolution of and anion exchange with micaceous minerals and their clay products. Applying the WHO recommended guideline values for fluoride in drinking water reveals that 49% of wells in the area deliver water below the optimum level of 0.5 mg/l F; these populations are thus prone to dental caries. Twenty-eight percent of the wells fall within the optimum interval for good dental health (0.5–1.5 mg/l F). Twenty-three percent of the wells have concentrations above the recommended maximum guideline limit of 1.5 mg/l F; this population is susceptible to dental and possibly skeletal fluorosis. Climatic conditions of the area suggest that the individual water consumption is in the order of 3 to 4 l which is higher than the WHO estimate of 2 l/adult/day. In addition, dietary intake for the upper region population is probably higher than WHO baseline values (0.2–0.5 mg/day). This implies that a much higher population is susceptible to developing dental and skeletal fluorosis than originally suspected. Geochemical symbol plot maps help geochemists understand factors controlling the distribution and uptake of fluoride in the upper regions, but they are of minimal value to health officials responsible for planning epidemiological studies and dental health education programs in the region. By casting fluoride data into contoured 'geochemical health-risk maps' using intake interval guidelines more closely aligned to regional climatic and dietary conditions, health officals can better judge the impacts (regional and population based) of fluoride on segments of the population, such as various sex and age groups. Received: 11 March 1997 · Accepted: 17 June 1997  相似文献   

3.
The CO2-rich thermal groundwater in the Betic Cordilleras in Spain has been studied with regard to the geological and hydrogeological setting, physical and chemical characteristics, and 13C-isotope content. The study area is about 60 km northeast of Almería city, in southeastern Spain. The thermomineral waters are plentiful and are related to regional geothermal anomalies. Temperatures of 20 −41°C, high bicarbonate concentrations (183–1824 mg/L), and high amounts of PCO2 (<1.1 bar) characterize the groundwater. CO2 spatial variations are related to proximity to the Carboneras, Palomares, and Guadalentín fault systems, which may be the surface representation of the zone of crustal thinning and magmatism. δ 13C values probably indicate a deep source for the CO2, either the mantle or perhaps carbonate rocks in the metamorphic substratum. The high amount of CO2 in the groundwater causes problems in wells and severely restricts water usage. The hydrothermal features of this area are probably related to neotectonic activity. Received, September 1998/Revised, June 1999, September 1999/Accepted, December 1999  相似文献   

4.
The causes and nature of nitrate pollution of wells in a village within Kotagede, a subdistrict of the city of Yogyakarta, Indonesia, were investigated in a detailed hydrological study. Nitrate concentrations in groundwater frequently exceeded the WHO recommended limit of 50 mg L − 1. Groundwater nitrate concentrations were measured over a 19-month period in monitoring wells and in piezometers placed strategically in relation to sewage tanks within the village. Results indicate that the tanks are major sources of nitrate in the groundwater and that the input is markedly dependent on rainfall, resulting in a surge of nitrate into the groundwater at the beginning of each wet season. That the tanks are a major source was confirmed by measuring nitrate in soil cores obtained by augering close to selected tanks. Washrooms, where people wash themselves, are not significant sources of nitrate. Faecal coliform counts in groundwater from a random selection of wells are very high. The results have implications for the siting of wells and toilets within villages in Indonesia. Received, January 1999/Revised, August 1999/Accepted, August 1999  相似文献   

5.
Mathura oil refinery was commissioned during 1977 and effluent storage ponds were constructed at the same time. These storage ponds receive wastewater from the refinery at a rate of 10000 m3/day. After treatment, waste water is discharged through a 3-km pipeline to a stream leading to the Yamuna river. The groundwater-monitoring as well as water-quality monitoring was carried at 24 observation wells in the refinery site during 1997. The water quality measurements indicated total dissolved chloride and sulphate concentration of native groundwater as 400 mg/l, whereas elevated levels up to 600 mg/l were found at the wells close to polishing ponds. Thus combined transport of chloride and sulphate was simulated in the mass transport model. A three-dimensional flow, pathlines and mass transport model of the aquifer system were constructed to analyze the impact of seepage from polishing ponds contaminating the groundwater regime. The permeability of aquifer varies between 1.5–2.5 m/day. The porosity of formation was assumed as 0.2. The constant head and constant concentration boundaries were assigned to the nodes representing effluent storage ponds. Longitudinal dispersivity of 100 m, horizontal transverse dispersivity of 10 m and vertical transverse dispersivity of 0.01 m were assumed. The mass transport model was calibrated for 20 years by comparing total dissolved chloride and sulphate concentrations from 1997. The model predictions indicate further migration of contaminants on the east of effluent ponds in future. Received: 4 January 1999 · Accepted: 12 July 1999  相似文献   

6.
 The aim of the study is to investigate the interaction between waters of Lake Girdev and groundwater in the allochthonous limestone units exposed in the area between Lake Girdev and Kazanpınarı Spring, southwestern Turkey. The features analyzed include the flow direction and apparent groundwater velocity, their relationship with Lake Girdev, and the effect of lithological and structural features on the groundwater circulation. The results of a fluorescein tracer test indicate that groundwater flows east-northeast and the apparent flow velocity ranges from 26.2 to 35.6 m h–1 between the injection site and various observation points. Tritium data suggest that the water of Lake Girdev and groundwater are probably similar in age, and oxygen-18 isotope data indicate that water derived from Lake Girdev is the main source of recharge to the aquifer. The aquifer is fed not only by Lake Girdev but also by rainfall percolating through allochthonous limestones; together, these provide the discharge of springs in Elmalı Polje. The permeability of the allochthonous limestone aquifer has been enhanced as a result of jointing and faulting. Received, June 1997 / Revised, June 1998, March 1999 / Accepted, July 1999  相似文献   

7.
 The Hadejia–Nguru Wetlands are annually inundated flood plains in semi-arid northeastern Nigeria. The area has a unique ecosystem that forms a natural barrier against the encroachment of the Sahara desert. Both the rich wetland vegetation and local farmers using shallow tube wells depend on a groundwater mound (with a water table less than 6 m below the surface) that is present in the unconfined aquifer under the flood-plain area. Using well records (1991–97) and a hydrogeologic profile based on piezometers that were monitored for two years, it is shown that recharge through the annually inundated flood plains is the source of the groundwater mound. Maintenance of the groundwater-recharge function of the flood plains depends on wet-season releases from two large upstream dams. On the basis of a water-budget method, the mean (1991–97) wet-season unconfined groundwater recharge in the flood-plain area between Hadejia and Nguru and in the immediate vicinity (1250 km2) is estimated to be 132 mm (range, 73–197 mm). Outflow from the unconfined flood-plain aquifer to the unconfined upland aquifer is approximately 10% of the wet-season flood-plain recharge. The unconfined groundwater outflow from the flood-plain area can provide a significant contribution to the present-day rural water supply in the surrounding uplands, but it does not offer much potential for additional groundwater abstraction. In addition to outflow to the upland aquifer (∼14 mm), the distribution of the annually recharged water volume of the shallow flood-plain aquifer is (1) domestic uses (3 mm), (2) small-scale irrigation (∼15 mm), and (3) evapotranspiration ( 1 100 mm). Along the hydrogeologic profile, the recharge in the upland (i.e., outflow from the unconfined flood-plain aquifer and possibly diffuse rain-fed recharge) is in balance with the water uses (i.e., domestic uses, groundwater outflow, and evapotranspiration). The absence of a seasonal water-level trend in the two piezometers in the upland indicates that no rain-fed recharge occurs through preferential path-way (macropore) flow. Received, June 1998 / Revised, November 1998, January 1999 / Accepted, January 1999  相似文献   

8.
 Intensive application of surface water in command areas of irrigation projects is creating water logging problems, and the increase of groundwater usage in agriculture, industry and domestic purposes (through indiscriminate sinking of wells) is causing continuous depletion of water levels, drying up of wells and quality problems. Thus the protect aquifers to yield water continuously at economical cost, the management of water resources is essential. Integrated geological, hydrological (surface and groundwater) and geochemical aspects have been studied for the development and management of water resources in drought-prone Cuddapah district. The main lithological units are crystallines, quartzites, shales and limestones. About 91 000 ha of land in the Cuddapah district is irrigated by canal water. A registered ayacut of about 47 000 ha is irrigated by 1368 minor irrigation tanks. A total of 503 spring channels are identified in the entire district originating from the rivers/streams, which has the capacity of irrigating about 8700 ha. The average seasonal rise in groundwater level is 7.32 m in quartzites, 5.35 m in crystallines, 3.82 m in shales, 2.50 m in limestones and 2.11 m in alluvium. Large quantities of groundwater are available in the mining areas which can be utilised and managed properly by the irrigation department/cultivators for the irrigation practices. Groundwater assessment studies revealed that 584 million m3 of groundwater is available for future irrigation in the district. From the chemical analysis, the quality of groundwater in various rock units is within the permissible limits for irrigation and domestic purposes, but at a few places the specific conductance, chloride and fluoride contents are high. This may be due to untreated effluents, improper drainage system and/or the application of fertilisers. Received: 10 June 1998 · Accepted: 15 November 1998  相似文献   

9.
 This paper presents a site-specific conceptual model of groundwater flow in fractured damage zones associated with faulting in a package of sedimentary rocks. The model is based on the results of field and laboratory investigations. Groundwater and methane gas inflows from fault-fracture systems in the West Elk coal mine, Colorado, USA, have occurred with increasing severity. Inflows of 6, 160 and 500 L s−1 discharged almost instantaneously from three separate faults encountered in mine workings about 460 m below ground level. The faults are about 600 m apart. The δ 2H and δ 18O compositions of the fault-related inflow waters and the hydrodynamic responses of each fault inflow indicate that the groundwaters discharge from hydraulically isolated systems. 14C data indicate that the groundwaters are as much as 10,500 years old. Discharge temperatures are geothermal (≈30°C), which could indicate upwelling from depth. However, calculations of geothermal gradients, analysis of solute compositions of groundwater in potential host reservoirs, geothermometer calculations, and results of packer testing indicate that the fractured groundwater reservoir is the Rollins Sandstone (120 m thick) directly beneath the coal seams. The packer test also demonstrates that the methane gas is contained in the coal seams. A geothermal gradient of 70–80°C km−1, related to an underlying intrusion, is probably responsible for the slightly elevated discharge temperatures. Large discharge volumes, as great as 8.2×105 m3 from the 14 South East Headgate fault (14 SEHG), rapid declines in discharge rates, and vertical and horizontal permeability (matrix permeability generally <0.006 Darcy) indicate fracture flow. An in-mine pumping test demonstrates that the 14 SEHG fault has excellent hydraulic communication with fractures 50 m from the fault. Aeromagnetic data indicate that the faults are tectonically related to an igneous body that is several thousand meters below the coal seams. Exploratory drilling has confirmed a fourth fault, and two additional faults are projected, based on the aeromagnetic data. The conceptual model describes a series of parallel, hydraulically separate groundwater systems associated with fault-specific damage zones. The faults are about 600 m apart. Groundwater stored in fractured sandstone is confined above and below by clayey layers. Received March 1999 / Revised, November 1999 / Accepted, December 1999  相似文献   

10.
 The nitrate concentration in 12 water-supply wells were monitored for the period April 1992 to March 1993. Each water-supply well was sampled once a month. The nitrate concentrations in the 12 wells ranged from 7 to 156 mg/l. Two water-supply wells (Chacsinkin and Peto) showed concentrations that reached 3.5 times the maximum permissible limit for the Drinking Water Standard (45 mg/l). A third water-supply well (Akil) exceeds the norm for 7 out of 12 months. The use of nitrogen-rich fertilizers are responsible for high nitrate concentrations in groundwater in the southern part of Yucatan, Mexico where intensive agricultural practices exist. Received: 14 December 1999 · Accepted: 2 May 2000  相似文献   

11.
 A hydrogeochemical survey was conducted on Pico Island (Azores archipelago) in order to evaluate the groundwater chemistry patterns and the main mineralization processes. Samples were from cold waters and corresponded mainly to sodium chloride type. Conductivity measurements were ∼82–9790 μS/cm and suggest the existence of highly mineralized waters. In fact, 18% had a conductivity >5130 μS/cm and the total dissolved solid (TDS) value for two of the wells was from the brackish water range. The changes in groundwater composition are because of two main processes: (1) silicate mineral dissolution, especially in a few springs located at high altitude and (2) water salinization in the coastal area, as a result of saltwater intrusion and sea-salt spraying. The salinization process corresponds to a binary mixing system, as suggested by the chloride and δ18O data, and explains the sharp concentration increase in major and minor species detected in several wells. Received: 23 July 1999 · Accepted: 8 December 1999  相似文献   

12.
 Northland, New Zealand has been affected by natural hot water spring systems depositing elevated concentrations of mercury and arsenic over the past 5 million years. Due to the different erosion levels of these hot water systems, four principal types of mercury and arsenic occurrences are found: active hot springs; layered surface deposits (sinters) deposited by hot springs; highly fractured rock zones formed immediately beneath hot springs; and chemically altered and mineralized rock from the deeper roots of hot spring systems. Mercury occurs principally as cinnabar and as a minor impurity (<1 wt%) in phosphate minerals and iron sulfides, particularly marcasite. Mercury is irregularly distributed through limonitic cements formed during oxidation. Arsenic occurs as a minor impurity (<1 wt%) in phosphate minerals and iron sulfides, particularly marcasite. Arsenic is also variably dispersed through limonite, but not necessarily with mercury. Decomposition of marcasite constitutes the most significant source of mercury and arsenic pollution from the studied sites. Release of mercury and arsenic into the environment from marcasite, phosphates and limonite is enhanced by acidification of the sites (down to pH of 2), caused by oxidation of iron sulfides. Mercury and arsenic concentrations of up to 100 parts per billion should be expected in waters near the deposits; these concentrations are in excess of recommended drinking water levels. Received: 9 April 1999 · Accepted: 2 August 1999  相似文献   

13.
Pesticides are a potential threat to the quality of extracted groundwater when the water-supply area is used for agricultural activities. This problem is discussed for the water-supply area of Sint-Jansteen, The Netherlands, where measured pesticide concentrations in the extracted water regularly exceed EU limits (0.1 μg/L). Groundwater samples taken from the aquifer within the water-supply area show low contamination, but samples taken from the extracted water occasionally contain pesticides, making the water inadequate for drinking-water purposes. The more intense contamination of the extracted water is caused by the change in the natural groundwater flow pattern near the extraction wells. In this area, pesticide use cannot be avoided easily, and an approach is given to differentiate pesticide use in the area according to expected travel time toward the wells and the chemical characteristics of the pesticides. A groundwater flow model for the area is developed and the effects of groundwater extraction on the natural flow pattern are evaluated. Using particle tracking, the travel-time zones are determined. Combining these results and the degradation behavior of certain pesticides led to an optimal scheme to integrate agricultural activities and groundwater extraction in the area. This is illustrated for five different types of pesticides (atrazine, simazine, bentazone, MCPA, and mecoprop). Received, October 1998/Revised, July 1999, September 1999/Accepted, November 1999  相似文献   

14.
Presence of young groundwater (post-1950) in the Goose River basin is demonstrated with 3H and 85Kr analyses. A total of 96 wells and four springs were sampled quarterly from 1999 to 2001 to determine the extent of any recent recharge and to what depth hydraulic continuity existed in the groundwatershed (33.3 km2). Recharge groundwater is less than 50 years in about 31% (3H) to 37% (85Kr) of sampled wells and 75% of sampled springs. Young groundwater ages are recorded in wells up to 320 m in depth within fractured- and arsenic-bearing crystalline bedrock. Total arsenic 10 g L–1 occurs significantly in drinking water with young groundwater flowing through the pumping well intervals. Astotal occurs in 89% (85Kr) to 93% (3H) of all wells with post-1950 groundwater ages. Young groundwater recharge and elevated geogenic arsenic were discovered only in the anatectic granitoids and migmatized country rock of the southwestern part of the Goose River basin.  相似文献   

15.
 The release of metals during weathering has been studied in order to assess its geochemical controls and possible effects on environmental health in Bangladesh. A total of 27 soil samples and 7 surface water samples were collected from four locations covering three major regions in the country. Results show that weathering effects are a strong function of climatic conditions. Surface waters are typically enriched in Al, Mg, Ca, Na, K, As, Ba, Cr, Cu, Ni, Pb and Zn. The solubility of metal ions, organometallic complexes, co-precipitation or co-existence with the colloidal clay fraction are the main processes that lead to metal enrichment in lake and reservoir water. Aluminium concentrations exceed World Health Organization (WHO) drinking-water standards in all samples, and in two regions, arsenic concentrations also significantly exceed WHO standards. The elevated levels of As indicate that arsenic contamination of water supplies in Bangladesh is not confined to groundwater. Received: 4 June 1999 · Accepted: 17 August 1999  相似文献   

16.
 Drilling of 15 boreholes at a disused liquid waste disposal site near Perth, Western Australia, has indicated that a contamination plume extends about 1000 m in a southerly direction from the site in the direction of groundwater flow. The plume is up to 600 m wide and 5–40 m thick. Chemical and microbiological analyses have indicated that contaminated groundwater contains high concentrations of ammonia, iron, and bacteria at levels that commonly exceed national drinking water guidelines. It is likely that a proposed water supply production well in the path of the contamination plume will have to be abandoned, and additional wells may have to be abandoned if the plume continues to extend in the direction of groundwater flow. There is currently insufficient information to indicate whether the plume is continuing to expand, but studies on similar plumes in the Perth metropolitan area have indicated that contaminated groundwater can move at rates up to 100 m yr–1. Several other liquid waste disposal sites are now located in residential areas of Perth where wells are used for garden irrigation. Further work is required to ensure that there is no potential impact of groundwater contamination on public health in these areas. Received: 31 July 1995 · Accepted: 18 September 1995  相似文献   

17.
 The Dawu well field, one of the largest in China, supplies most of the water for the Zibo City urban area in Shandong Province. The field yields 522,400–535,400 m3/d from an aquifer in fractured karstic Middle Ordovician carbonate rocks. Much of the recharge to the aquifer is leakage of surface water from Zihe Stream, the major drainage in the area. Installation of the Taihe Reservoir in 1972 severely reduced the downstream flow in Zihe Stream, resulting in a marked reduction in the water table in the Dawu field. Since 1994, following the installation of a recharge station on Zihe Stream upstream from the well field that injects water from the Taihe Reservoir into the stream, the groundwater resources of the field have recovered. An average of 61.2×103 m3/d of groundwater, mostly from the Ordovician aquifer, is pumped from the Heiwang iron mine, an open pit in the bed of Zihe Stream below the Taihe Reservoir. A stepwise regression equation, used to evaluate the role of discharge from the reservoir into the stream, confirms that reservoir water is one of the major sources of groundwater in the mine. Received, May 1998 / Revised, May 1999 / Accepted, June 1999  相似文献   

18.
 Karstic aquifers are highly susceptible to rapid infiltration of river water, particularly during periods of high flow. Following a period of sustained rainfall in the Suwannee River basin, Florida, USA, the stage of the Suwannee River rose from 3.0 to 5.88 m above mean sea level in April 1996 and discharge peaked at 360 m3/s. During these high-flow conditions, water from the Suwannee River migrated directly into the karstic Upper Floridan aquifer, the main source of water supply for the area. Changes in the chemical composition of groundwater were quantified using naturally occurring geochemical tracers and mass-balance modeling techniques. Mixing of river water with groundwater was indicated by a decrease in the concentrations of calcium, silica, and 222Rn; and by an increase in dissolved organic carbon (DOC), tannic acid, and chloride, compared to low-flow conditions in water from a nearby monitoring well, Wingate Sink, and Little River Springs. The proportion (fraction) of river water in groundwater ranged from 0.13 to 0.65 at Wingate Sink and from 0.5 to 0.99 at well W-17258, based on binary mixing models using various tracers. The effectiveness of a natural tracer in quantifying mixing of river water and groundwater was related to differences in tracer concentration of the two end members and how conservatively the tracer reacted in the mixed water. Solutes with similar concentrations in the two end-member waters (Na, Mg, K, Cl, SO4, SiO2) were not as effective tracers for quantifying mixing of river water and groundwater as those with larger differences in end-member concentrations (Ca, tannic acid, DOC, 222Rn, HCO3). Received, March 1999 / Revised, July 1999 / Accepted, July 1999  相似文献   

19.
 Hydrogeologic data of 455 water wells comprising geologic logs, water qualities, and aquifer test results are analyzed to determine hydrogeological characteristics, water quality, and sustainable yield of the groundwater resources of Cheju volcanic island. The groundwater of the island occurs in unconsolidated pyroclastic deposits and clinkers interbedded in highly jointed basaltic and andesitic rocks as high-level, basal, and parabasal groundwater under unconfined conditions. The total storage of groundwater is estimated at about 44 billion m3. The average transmissivity and specific yield of the aquifer are at about 0.34 m2 s–1(29300 m2 day–1) and 0.12, respectively. The average annual precipitation is about 3.39 billion m3, of which 1.49 billion m3– equivalent to 44.0% of the total annual precipitation – is recharged into aquifers, with 0.638 billion m3 year–1 of runoff and 1.26 billion m3 year–1 of evapotranspiration. Based on a groundwater budget analysis, the sustainable yield is estimated at about 0.62 billion m3 year–1, equivalent to 41.6% of annual recharge. A low-permeability marine sedimentary formation (Sehwari formation), composed of loosely cemented sandy silt, was recently found to be situated at 120±68 m below mean sea level. If the said marine sediment is distributed as a basal formation of the freshwater zone of the island, most of its groundwater will be of parabasal type. So the marine sediment is one of the most important hydrogeological boundaries and groundwater occurrences in the area. Received: 16 January 1997 / Accepted: 16 June 1997  相似文献   

20.
Distribution of fluoride in groundwater of Maku area, northwest of Iran   总被引:3,自引:0,他引:3  
High fluoride groundwater occurs in Maku area, in the north of West Azarbaijan province, northwest of Iran. Groundwater is the main source of drinking water for the area residents. Groundwater samples were collected from 72 selected points including 40 basaltic and 32 nonbasaltic springs and wells, in two stages, during June and August 2006. The areas with high fluoride concentrations have been identified, and the possible causes for its variation have been investigated. Regional hydrogeochemical investigation indicates that water-rock interaction is probably the main reason for the high concentration of ions in groundwater. The concentration of F in groundwater is positively correlated with that of HCO3 and Na+, indicating that groundwater with high HCO3 and Na+ concentrations help to dissolve some fluoride-rich minerals. All of the water samples, collected from the basaltic areas do not meet the water quality standards for fluoride concentration and some other parameters. Hence, it is not suitable for consumption without any prior treatment. Inhabitants of the area that obtain their drinking water supplies from basaltic springs and wells are suffering from dental fluorosis. The population of the study area is at a high risk due to excessive fluoride intake especially when they are unaware of the amount of fluoride being ingested due to lack of awareness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号