首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the selection of GMPEs for Vrancea subcrustal seismic source   总被引:2,自引:0,他引:2  
The Vrancea subcrustal seismic source is characterized by large magnitude ( $M_{W} \ge 7$ ) intermediate-depth earthquakes that occur two or three times during a century on average. In this study several procedures are used to grade four candidate ground motion prediction equations proposed for Vrancea source in the SHARE project. In the work of Delavaud et al. (J Seismol 16(3):451–473, 2012) four ground motion prediction models developed for subduction zones (Zhao et al. in Bull Seism Soc Am 96(3):898–913, 2006; Atkinson and Boore in Bull Seism Soc Am 93(4):1703–1729, 2003; Youngs et al. in Seism Res Lett 68(1):58–73, 1997; Lin and Lee in Bull Seism Soc Am 98(1):220–240, 2008) are suggested as suitable for Vrancea subcrustal seismic source. The paper presents the appropriateness analysis of the four suggested ground motion prediction equations done using a dataset of 109 triaxial accelerograms recorded during seven Vrancea seismic events with moment magnitude $M_{W}$ between 5.4 and 7.4, occurred in the past 35 years. The strong ground motions were recorded in Romania, as well as in Bulgaria, Republic of Moldova and Serbia. Based on the ground motion dataset several goodness-of-fit measures are used in order to quantify how well the selected models match with the recorded data. The compatibility of the four ground motion prediction models with respect to magnitude scaling and distance scaling implied by strong ground motion dataset is investigated as well. The analyses show that the Youngs et al. (Seism Res Lett 68(1):58–73, 1997) and Zhao et al. (Bull Seism Soc Am 96(3):898–913, 2006) ground motion prediction models have a better fit with the data and can be candidate models for Probabilistic Seismic Hazard Assessment.  相似文献   

2.
The 23 October 2011 Van (Mw 7.1) earthquake that occurred in Eastern Turkey resulted in heavy damage particularly in the city of Van and town of Ercis. This paper presents ground motion simulations of Van earthquake by using stochastic finite fault method (EXSIM, Motazedian and Atkinson in Bull Seismol Soc Am 95:995–1010, 2005; Boore in Bull Seismol Soc Am 99:3202–3216, 2009) that provides a simple and effective tool to generate high frequency strong motion. The input parameters related to source, path, and site effects are calibrated on the basis of minimizing the error functions between simulations and observations both in time and frequency domain. Validated model parameters are used to produce synthetics in regional extent with the aim of understanding the level and distribution of the ground shaking particularly in the near fault region where no recordings are available within the 40 km of the epicenter. This paper evaluates the effect of two different slip models on ground motion intensity measures over the area of interest and addresses the variability in the near fault region associated with the source effect. The synthetics are compared with the corresponding estimations of ground motion prediction equations by Boore and Atkinson (Earthq Spectra 24:99–138, 2008), Akkar and Bommer (Seismol Res Lett 81:195–206, 2010) and Akkar and Cagnan (Bull Seismol Soc Am 100:2978–2995, 2010). Our results indicate that despite the limitation of the method for incorporating the directivity effect and inadequate representation of the soil conditions at the individual stations, a satisfactory match between synthetics and observations are obtained both in time and frequency domain. Spatial distributions of the synthetics in regional level also show reasonable correlation with ground motion prediction equations and damage observations.  相似文献   

3.
It has been two decades since the last comprehensive standard model of ambient earth noise was published Peterson (Observations and modelling of seismic background noise, US Geological Survey, open-file report 93–322, 1993). The PETERSON model was updated by analyzing the absolute quietest conditions for stations within the GSN (Berger et al. in J Geophys Res 109, 2005; Mcnamara and Buland in Bull Seism Soc Am 94:1517–1527, 2004; Ringler et al. in Seismol Res Lett 81(4) doi:10.1785/gssrl.81.4.605, 2010). Unfortunately, both the original model and the updated models did not include any deployed station in North Africa and Middle East, which reflects the noise levels within the desert environment of those regions. In this study, a survey was conducted to create a new seismic noise model from very broadband stations which recently deployed in North Africa. For this purpose, 1 year of continuous recording of seismic noise data of the Egyptian National Seismic Network (ENSN) was analyzed in order to create a new noise model. Seasonal and diurnal variations in noise spectra were recorded at each station. Moreover, we constructed a new noise model for each individual station. Finally, we obtained a new cumulative noise model for all the stations. We compared the new high-noise model (EHNM) and new low-noise model (ELNM) with both the high-noise model (NHNM) and low-noise model (NLNM) of Peterson (Observations and modelling of seismic background noise, US Geological Survey, open-file report 93–322, 1993). The obtained noise levels are considerably lower than low-noise model of Peterson (Observations and modelling of seismic background noise, US Geological Survey, open-file report 93–322, 1993) at ultra long period band (ULP band), but they are still below the high-noise model of Peterson (Observations and modelling of seismic background noise, US Geological Survey, open-file report 93–322, 1993). The results of this study could be considered as a first step to create permanent seismic noise models for North Africa and Middle East regions.  相似文献   

4.
This article presents the latest generation of ground-motion models for the prediction of elastic response (pseudo-) spectral accelerations, as well as peak ground acceleration and velocity, derived using pan-European databases. The models present a number of novelties with respect to previous generations of models (Ambraseys et al. in Earthq Eng Struct Dyn 25:371–400, 1996, Bull Earthq Eng 3:1–53, 2005; Bommer et al. in Bull Earthq Eng 1:171–203, 2003; Akkar and Bommer in Seismol Res Lett 81:195–206, 2010), namely: inclusion of a nonlinear site amplification function that is a function of $\text{ V }_\mathrm{S30}$ and reference peak ground acceleration on rock; extension of the magnitude range of applicability of the model down to $\text{ M }_\mathrm{w}$ 4; extension of the distance range of applicability out to 200 km; extension to shorter and longer periods (down to 0.01 s and up to 4 s); and consistent models for both point-source (epicentral, $\text{ R }_\mathrm{epi}$ , and hypocentral distance, $\text{ R }_\mathrm{hyp}$ ) and finite-fault (distance to the surface projection of the rupture, $\text{ R }_\mathrm{JB}$ ) distance metrics. In addition, data from more than 1.5 times as many earthquakes, compared to previous pan-European models, have been used, leading to regressions based on approximately twice as many records in total. The metadata of these records have been carefully compiled and reappraised in recent European projects. These improvements lead to more robust ground-motion prediction equations than have previously been published for shallow (focal depths less than 30 km) crustal earthquakes in Europe and the Middle East. We conclude with suggestions for the application of the equations to seismic hazard assessments in Europe and the Middle East within a logic-tree framework to capture epistemic uncertainty.  相似文献   

5.
A total of 144 free-field ground motions with closest site-to-rupture distances (Rrup) less than 200 km recorded during the 2010 Mw 7.2 El Mayor–Cucapah earthquake are used to investigate predictive capabilities of the next generation attenuation (NGA) ground-motion prediction equations (GMPE). The NGA GMPEs underpredict observed spectral accelerations at sites with shear wave velocity in the upper 30 m of the site (Vs30) between 180 and 366 m/s with Rrup from about 10 to 50 km and overpredict at sites with Rrup from about 50 to 200 km. Intra-event residuals of the NGA GMPEs exhibit a noticeable negative trend for peak ground acceleration and 0.3, 1.0, and 2.0 s periods. Comparison of the inter-event residual between the 2010 Mw 7.2 El Mayor–Cucapah earthquake and the NGA dataset reveals that short-period inter-event residuals from the 2010 Mw 7.2 El Mayor–Cucapah earthquake is within the scatter of inter-event residuals from the NGA dataset but long-period inter-event residuals do not appear within of the scatter of inter-event residuals from the NGA dataset. Spectral accelerations predicted by the NGA GMPEs are generally unbiased against Vs30 and periods of less than 4.0 s. Observed spectral accelerations show a stronger Vs30 dependence for both short and long periods compared with the NGA GMPEs. The Boore and Atkinson (Earthq Spectra 24(1):99–138, 2008) and Chiou and Youngs (Earthq Spectra 24(1):173–215, 2008) GMPEs perform better in predicting observed short-period spectral accelerations at the sites with Vs30 between 180 and 250 m/s than the Abrahamson and Silva (Earthq Spectra 24(1):67–97, 2008) and Campbell and Bozorgnia (Earthq Spectra 24(1):139–171, 2008) GMPEs.  相似文献   

6.
In a companion article Akkar et al. (Bull Earthq Eng, doi:10.1007/s10518-013-9461-4, 2013a; Bull Earthq Eng, doi:10.1007/s10518-013-9508-6, 2013b) present a new ground-motion prediction equation (GMPE) for estimating 5 %-damped horizontal pseudo-acceleration spectral (PSA) ordinates for shallow active crustal regions in Europe and the Middle East. This study provides a supplementary viscous damping model to modify 5 %-damped horizontal spectral ordinates of Akkar et al. (Bull Earthq Eng, doi:10.1007/s10518-013-9461-4 2013a; Bull Earthq Eng, doi:10.1007/s10518-013-9508-6, 2013b) for damping ratios ranging from 1 to 50 %. The paper also presents another damping model for scaling 5 %-damped vertical spectral ordinates that can be estimated from the vertical-to-horizontal (V/H) spectral ratio GMPE that is also developed within the context of this study. For consistency in engineering applications, the horizontal and vertical damping models cover the same damping ratios as noted above. The article concludes by introducing period-dependent correlation coefficients to compute horizontal and vertical conditional mean spectra (Baker in J Struct Eng 137:322–331, 2011). The applicability range of the presented models is the same as of the horizontal GMPE proposed by Akkar et al. (Bull Earthq Eng, doi:10.1007/s10518-013-9461-4 2013a; Bull Earthq Eng, doi:10.1007/s10518-013-9508-6, 2013b): as for spectral periods $0.01 \hbox { s}\le \,\hbox {T}\le \,4\hbox { s}$ as well as PGA and PGV for V/H model; and in terms of seismological estimator parameters $4\le \hbox {M}_\mathrm{w} \le 8, \hbox { R} \le 200 \hbox { km}, 150\hbox { m/s}\le \hbox { V}_\mathrm{S30}\le $ 1,200 m/s, for reverse, normal and strike-slip faults. The source-to-site distance measures that can be used in the computations are epicentral $(\hbox {R}_\mathrm{epi})$ , hypocentral $(\hbox {R}_\mathrm{hyp})$ and Joyner–Boore $(\hbox {R}_\mathrm{JB})$ distances. The implementation of the proposed GMPEs will facilitate site-specific adjustments of the spectral amplitudes predicted from probabilistic seismic hazard assessment in Europe and the Middle East region. They can also help expressing the site-specific design ground motion in several formats. The consistency of the proposed models together with the Akkar et al. (Bull Earthq Eng, doi:10.1007/s10518-013-9461-4 2013a; Bull Earthq Eng, doi:10.1007/s10518-013-9508-6, 2013b) GMPE may be advantageous for future modifications in the ground-motion definition in Eurocode 8 (CEN in Eurocode 8, Design of structures for earthquake resistance—part 1: general rules, seismic actions and rules for buildings. European Standard NF EN 1998-1, Brussels, 2004).  相似文献   

7.
Earthquake early warning systems (EEWS) are considered to be an effective, pragmatic, and viable tool for seismic risk reduction in cities. While standard EEWS approaches focus on the real-time estimation of an earthquake’s location and magnitude, innovative developments in EEWS include the capacity for the rapid assessment of damage. Clearly, for all public authorities that are engaged in coordinating emergency activities during and soon after earthquakes, real-time information about the potential damage distribution within a city is invaluable. In this work, we present a first attempt to design an early warning and rapid response procedure for real-time risk assessment. In particular, the procedure uses typical real-time information (i.e., P-wave arrival times and early waveforms) derived from a regional seismic network for locating and evaluating the size of an earthquake, information which in turn is exploited for extracting a risk map representing the potential distribution of damage from a dataset of predicted scenarios compiled for the target city. A feasibility study of the procedure is presented for the city of Bishkek, the capital of Kyrgyzstan, which is surrounded by the Kyrgyz seismic network by mimicking the ground motion associated with two historical events that occurred close to Bishkek, namely the 1911 Kemin (M?=?8.2; ±0.2) and the 1885 Belovodsk (M?=?6.9; ±0.5) earthquakes. Various methodologies from previous studies were considered when planning the implementation of the early warning and rapid response procedure for real-time risk assessment: the Satriano et al. (Bull Seismol Soc Am 98(3):1482–1494, 2008) approach to real-time earthquake location; the Caprio et al. (Geophys Res Lett 38:L02301, 2011) approach for estimating moment magnitude in real time; the EXSIM method for ground motion simulation (Motazedian and Atkinson, Bull Seismol Soc Am 95:995–1010, 2005); the Sokolov (Earthquake Spectra 161: 679–694, 2002) approach for estimating intensity from Fourier amplitude spectra; and the Tyagunov et al. (Nat Hazard Earth Syst Sci 6:573–586, 2006) approach for risk computation. Innovatively, all these methods are jointly applied to assess in real time the seismic risk of a particular target site, namely the city of Bishkek. Finally, the site amplification and vulnerability datasets considered in the proposed methodology are taken from previous studies, i.e., Parolai et al. (Bull Seismol Soc Am, 2010) and Bindi et al. (Soil Dyn Earthq Eng, 2011), respectively.  相似文献   

8.
This paper describes a new method for the evaluation of the static eccentricity $e_{s}$ and the ratio $\Omega _{\uptheta } $ of uncoupled torsional to lateral frequencies in real multi-storey buildings. The above-mentioned parameters greatly affect the lateral-to-torsional coupling of the response of asymmetric systems and thus are of paramount importance in the assessment of the in-plan irregularity of buildings. The proposed method, which is a generalization of that suggested by Calderoni et al. (Earthq Spectra 18(2):219–231, 2002), allows the calculation of the static eccentricity $e_{s}$ and the ratio $\Omega _{\uptheta } $ from the structural response to arbitrary distributions of forces and torsional couples. The effectiveness of the method is validated on some regularly and non-regularly asymmetric buildings characterised by different in-plan irregularity. The analyses demonstrate that the results of the method are rigorous in the case of regularly asymmetric systems and only slightly depend upon the heightwise distribution of the forces in the case of non-regularly asymmetric systems. Finally, the values of the static eccentricity $e_{s}$ and the ratio $\Omega _{\uptheta } $ resulting from the proposed method are compared to those obtained by means of the procedure suggested by Makarios and Anastassiadis in (Struct Des Tall Spec Build 7(1):33–55, 1998a; Struct Des Tall Spec Build 7(1):57–71, 1998b) .  相似文献   

9.
We estimate seismological fracture energies from two subsets of events selected from the seismic sequences of L’Aquila (2009), and Northridge (1994): 57 and 16 selected events, respectively, including the main shocks. Following Abercrombie and Rice (Geophys J Int 162: 406–424, 2005), we postulate that fracture energy (G) represents the post-failure integral of the dynamic weakening curve, which is described by the evolution of shear traction as a function of slip. Following a direct-wave approach, we compute mainshock-/aftershock-source spectral ratios, and analyze them using the approach proposed by Malagnini et al. (Pure Appl. Geophys., this issue, 2014) to infer corner frequencies and seismic moment. Our estimates of source parameters (including fracture energies) are based on best-fit grid-searches performed over empirical source spectral ratios. We quantify the source scaling of spectra from small and large earthquakes by using the MDAC formulation of Walter and Taylor (A revised Magnitude and Distance Amplitude Correction (MDAC2) procedure for regional seismic discriminants, 2001). The source parameters presented in this paper must be considered as point-source estimates representing averages calculated over specific ruptured portions of the fault area. In order to constrain the scaling of fracture energy with coseismic slip, we investigate two different slip-weakening functions to model the shear traction as a function of slip: (i) a power law, as suggested by Abercrombie and Rice (Geophys J Int 162: 406–424, 2005), and (ii) an exponential decay. Our results show that the exponential decay of stress on the fault allows a good fit between measured and predicted fracture energies, both for the main events and for their aftershocks, regardless of the significant differences in the energy budgets between the large (main) and small earthquakes (aftershocks). Using the power-law slip-weakening function would lead us to a very different situation: in our two investigated sequences, if the aftershock scaling is extrapolated to events with large slips, a power law (a la Abercrombie and Rice) would predict unrealistically large stress drops for large, main earthquakes. We conclude that the exponential stress evolution law has the advantage of avoiding unrealistic stress drops and unbounded fracture energies at large slip values, while still describing the abrupt shear-stress degradation observed in high-velocity laboratory experiments (e.g., Di Toro et al., Fault lubrication during earthquakes, Nature 2011).  相似文献   

10.
Three-dimensional frequency dependent S-wave quality factor (Qβ(f)) value for the central Honshu region of Japan has been determined in this paper using an algorithm based on inversion of strong motion data. The method of inversion for determination of three-dimensional attenuation coefficients is proposed by Hashida and Shimazaki (J Phys Earth. 32, 299–316, 1984) and has been used and modified by Joshi (Curr Sci. 90, 581–585, 2006; Nat Hazards. 43, 129–146, 2007) and Joshi et al. (J. Seismol. 14, 247–272, 2010). Twenty-one earthquakes digitally recorded on strong motion stations of Kik-net network have been used in this work. The magnitude of these earthquake ranges from 3.1 to 4.2 and depth ranging from 5 to 20 km, respectively. The borehole data having high signal to noise ratio and minimum site effect is used in the present work. The attenuation structure is determined by dividing the entire area into twenty-five three-dimensional blocks of uniform thickness having different frequency-dependent shear wave quality factor. Shear wave quality factor values have been determined at frequencies of 2.5, 7.0 and 10 Hz from record in a rectangular grid defined by 35.4°N to 36.4°N and 137.2°E to 138.2°E. The obtained attenuation structure is compared with the available geological features in the region and comparison shows that the obtained structure is capable of resolving important tectonic features present in the area. The proposed attenuation structure is compared with the probabilistic seismic hazard map of the region and shows that it bears some remarkable similarity in the patterns seen in seismic hazard map.  相似文献   

11.
The North Pacific Subtropical Counter Current (STCC) is a weak zonal current comprising of a weak eastward flow near the surface (with speeds of less than 0.1 m/s and a thickness of approximately 50–100 m) and westward flow (the North Equatorial Current) beneath. Previous studies (e.g., Qiu J Phys Oceanogr 29: 2471–2486, 1999) have shown that the STCC is baroclinically unstable. Therefore, despite its weak mean speeds, nonlinear STCC eddies with diameters ~300 km or larger and rotational speeds exceeding the eddy propagation speeds develop (Samelson J Phys Oceanogr 27: 2645–2662, 1997; Chelton et al. Prog Oceanogr 91: 167–216, 2011). In this study, the authors present numerical experiments to describe and explain the instability and eddy-generation processes of the STCC and the seasonal variation. Emphasis is on finite-amplitude eddies which are analyzed based on the parameter of Okubo (Deep-Sea Res 17: 445–454, 1970) and Weiss (Physica D 48: 273–294, 1991). The temperature and salinity distribution in March and April offer the favorable condition for eddies to grow, while September and October are unfavorable seasons for the generation of eddies. STCC is maintained not only by subsurface front but also by the sea surface temperature (SST) front. The seasonal variation of the vertical shear is dominated by the seasonal surface STCC velocity. The SST front enhances the instability and lead to the faster growth of STCC eddies in winter and spring. The near-surface processes are therefore crucial for the STCC system.  相似文献   

12.
Unloaded natural rock masses are known to generate seismic signals (Green et al., 2006; Hainzl et al., 2006; Husen et al., 2007; Kraft et al., 2006). Following a 1,000 m3 mass failure into the Mediterranean Sea, centimeter-wide tensile cracks were observed to have developed on top of an unstable segment of the coastal cliff. Nanoseismic monitoring techniques (Wust-Bloch and Joswig, 2006; Joswig, 2008), which function as a seismic microscope for extremely weak seismic events, were applied to verify whether brittle failure is still generated within this unconsolidated sandstone mass and to determine whether it can be detected. Sixteen days after the initial mass failure, three small-aperture sparse arrays (Seismic Navigation Systems-SNS) were deployed on top of this 40-m high shoreline cliff. This paper analyzes dozens of spiky nanoseismic (?2.2 ≥ M L ≥ ?3.4) signals recorded over one night in continuous mode (at 200 Hz) at very short slant distances (3–67 m). Waveform characterization by sonogram analysis (Joswig, 2008) shows that these spiky signals are all short in duration (>0.5 s). Most of their signal energy is concentrated in the 10–75 Hz frequency range and the waveforms display high signal similarity. The detection threshold of the data set reaches M L ?3.4 at 15 m and M L ?2.7 at 67 m. The spatial distribution of source signals shows 3-D clustering within 10 m from the cliff edge. The time distribution of M L magnitude does not display any decay pattern of M L over time. This corroborates an unusual event decay over time (modified Omori’s law), whereby an initial quiet period is followed by regained activity, which then fades again. The polarization of maximal waveform amplitude was used to estimate spatial stress distribution. The orientation of ellipses displaying maximal signal energy is consistent with that of tensile cracks observed in the field and agrees with rock mechanics predictions. The M L– surface rupture length relationship displayed by our data fits a constant-slope extrapolation of empirical data collected by Wells and Coppersmith (1994) for normal fault features at much larger scale. Signal characterization and location as well as the absence of direct anthropogenic noise sources near the monitoring site, all indicate that these nanoseismic signals are generated by brittle failure within the top section of the cliff. The atypical event decay over time that was observed suggests that the cliff material is undergoing post-collapse bulk strain accommodation. This feasibility study demonstrates the potential of nanoseismic monitoring in rapidly detecting, locating and analyzing brittle failure generated within unconsolidated material before total collapse occurs.  相似文献   

13.
A systematic analysis was conducted of the different variability components that affect the prediction of $\text{ log }_{10}(PSA)$ (i.e., Pseudo-Spectral Acceleration) ordinates on (mostly) deep sedimentary soil sites using a sizable set of strong motion data recorded in the strong earthquake sequences of 2010 and 2012 in the Canterbury region of New Zealand. Following recent, well established approaches of residual analysis of ground motion predictions, as well as recent GMPEs based on a global dataset, it was found that the event-corrected single-station standard deviation (“sigma”) is strongly decreased, for all selected stations, with respect to the uncorrected sigma. Likewise, the event-corrected intraevent sigma estimated for the entire dataset is significantly reduced compared to the standard deviation associated to ground motion prediction models, i.e. the “ergodic” sigma, for all spectral periods. The event-corrected sigma values for the present dataset are surprisingly consistent with those recently derived using KiK-Net strong motion data from Japan and those by Boore and Atkinson (Earthq Spectra 34(1):99–138, 2008) GMPE, and remain fairly constant with respect to the spectral period at about $0.15\sim 0.2$ . An interpretation was provided of the physical meaning of the site correction term ( ${\delta }S2S)_{s}$ indicating a plausible correlation with prevailing geological conditions in the site area.  相似文献   

14.
We estimate the corner frequencies of 20 crustal seismic events from mainshock–aftershock sequences in different tectonic environments (mainshocks 5.7 < M W < 7.6) using the well-established seismic coda ratio technique (Mayeda et al. in Geophys Res Lett 34:L11303, 2007; Mayeda and Malagnini in Geophys Res Lett, 2010), which provides optimal stability and does not require path or site corrections. For each sequence, we assumed the Brune source model and estimated all the events’ corner frequencies and associated apparent stresses following the MDAC spectral formulation of Walter and Taylor (A revised magnitude and distance amplitude correction (MDAC2) procedure for regional seismic discriminants, 2001), which allows for the possibility of non-self-similar source scaling. Within each sequence, we observe a systematic deviation from the self-similar \( M_{0} \propto \mathop f\nolimits_{\text{c}}^{ - 3} \) line, all data being rather compatible with \( M_{0} \propto \mathop f\nolimits_{\text{c}}^{ - (3 + \varepsilon )} \) , where ε > 0 (Kanamori and Rivera in Bull Seismol Soc Am 94:314–319, 2004). The deviation from a strict self-similar behavior within each earthquake sequence of our collection is indicated by a systematic increase in the estimated average static stress drop and apparent stress with increasing seismic moment (moment magnitude). Our favored physical interpretation for the increased apparent stress with earthquake size is a progressive frictional weakening for increasing seismic slip, in agreement with recent results obtained in laboratory experiments performed on state-of-the-art apparatuses at slip rates of the order of 1 m/s or larger. At smaller magnitudes (M W < 5.5), the overall data set is characterized by a variability in apparent stress of almost three orders of magnitude, mostly from the scatter observed in strike-slip sequences. Larger events (M W > 5.5) show much less variability: about one order of magnitude. It appears that the apparent stress (and static stress drop) does not grow indefinitely at larger magnitudes: for example, in the case of the Chi–Chi sequence (the best sampled sequence between M W 5 and 6.5), some roughly constant stress parameters characterize earthquakes larger than M W ~ 5.5. A representative fault slip for M W 5.5 is a few tens of centimeters (e.g., Ide and Takeo in J Geophys Res 102:27379–27391, 1997), which corresponds to the slip amount at which effective lubrication is observed, according to recent laboratory friction experiments performed at seismic slip velocities (V ~ 1 m/s) and normal stresses representative of crustal depths (Di Toro et al. in Nature in press, 2011, and references therein). If the observed deviation from self-similar scaling is explained in terms of an asymptotic increase in apparent stress (Malagnini et al. in Pure Appl Geophys, 2014, this volume), which is directly related to dynamic stress drop on the fault, one interpretation is that for a seismic slip of a few tens of centimeters (M W ~ 5.5) or larger, a fully lubricated frictional state may be asymptotically approached.  相似文献   

15.
Dispersion, attenuation and wavefronts in a class of linear viscoelastic media proposed by Strick and Mainardi (Geophys J R Astr Soc 69:415–429, 1982) and a related class of models due to Lomnitz, Jeffreys and Strick are studied by a new method due to the author. Unlike the previously studied explicit models of relaxation modulus or creep compliance, these two classes support propagation of discontinuities. Due to an extension made by Strick, either of these two classes of models comprise both viscoelastic solids and fluids. We also discuss the Andrade viscoelastic media. The Andrade media do not support discontinuity waves and exhibit the pedestal effect.  相似文献   

16.
Ground motions are estimated at 55 sites in Delhi, the capital of India from four postulated earthquakes (three regional M w?=?7.5, 8.0, and 8.5 and one local). The procedure consists of (1) synthesis of ground motion at a hard reference site (NDI) and (2) estimation of ground motion at other sites in the city via known transfer functions and application of the random vibration theory. This work provides a more extensive coverage than earlier studies (e.g., Singh et al., Bull Seism Soc Am 92:555–569, 2002; Bansal et al., J Seismol 13:89–105, 2009). The Indian code response spectra corresponding to Delhi (zone IV) are found to be conservative at hard soil sites for all postulated earthquakes but found to be deficient for M w?=?8.0 and 8.5 earthquakes at soft soil sites. Spectral acceleration maps at four different natural periods are strongly influenced by the shallow geological and soil conditions. Three pockets of high acceleration values are seen. These pockets seem to coincide with the contacts of (a) Aravalli quartzite and recent Yamuna alluvium (towards the East), (b) Aravalli quartzite and older quaternary alluvium (towards the South), and (c) older quaternary alluvium and recent Yamuna alluvium (towards the North).  相似文献   

17.
To provide coastal engineers and scientists with a quantitative evaluation of nearshore numerical wave models in reef environments, we review and compare three commonly used models with detailed laboratory observations. These models are the following: (1) SWASH (Simulating WAves till SHore) (Zijlema et al. 2011), a phase-resolving nonlinear shallow-water wave model with added nonhydrostatic terms; (2) SWAN (Simulating WAve Nearshore) (Booij et al. 1999), a phase-averaged spectral wave model; and (3) XBeach (Roelvink et al. 2009), a coupled phase-averaged spectral wave model (applied to modeling sea-swell waves) and a nonlinear shallow-water model (applied to modeling infragravity waves). A quantitative assessment was made of each model’s ability to predict sea-swell (SS) wave height, infragravity (IG) wave height, wave spectra, and wave setup ( \( \overline{\eta} \) ) at five locations across the laboratory fringing reef profile of Demirbilek et al. (2007). Simulations were performed with the “recommended” empirical coefficients as documented for each model, and then the key wave-breaking parameter for each model (α in SWASH and γ in both SWAN and XBeach) was optimized to most accurately reproduce the observations. SWASH, SWAN, and XBeach were found to be capable of predicting SS wave height variations across the steep fringing reef profile with reasonable accuracy using the default coefficients. Nevertheless, tuning of the key wave-breaking parameter improved the accuracy of each model’s predictions. SWASH and XBeach were also able to predict IG wave height and spectral transformation. Although SWAN was capable of modeling the SS wave height, in its current form, it was not capable of modeling the spectral transformation into lower frequencies, as evident in the underprediction of the low-frequency waves.  相似文献   

18.
19.
The Princeton Ocean Model (POM) with generalized coordinate system (POMgcs) is used to study the summer surface-layer thermal response to surface gravity waves in the Yellow Sea (YS). The parameterization schemes of wave breaking developed by Mellor and Blumberg (J Phys Oceanogr 34:693–698, 2004) and Kantha and Clayson (Ocean Model 6:101–124, 2004), respectively, and Stokes production developed by Kantha and Clayson (Ocean Model 6:101–124, 2004) are both included in the Mellor–Yamada turbulence closure model Mellor and Yamada (Rev Geophys 20:851–875, 1982) of POMgcs. Numerical results show that surface gravity waves impact the depth of surface mixed layer of temperature in the YS in summer. The surface mixed layer in the YS cannot be reproduced well and has a visible difference from the observation if the parameterization schemes are not included. A diagnostic analysis of turbulent kinetic energy suggests that both Stokes production and wave breaking play key roles in enhancing the turbulent mixing near the sea surface in the YS. Stokes production seems to have a greater impact throughout the upper mixed layer in the YS in summer than that of wave breaking. In addition, a diagnostic analysis of the momentum balance shows that Coriolis–Stokes forcing has a significant effect on the momentum budget in the upper layer in the YS, and surface gravity waves are able to reduce the velocity of mean flow near the surface and make the mean flow near the surface more homogeneous vertically in the YS.  相似文献   

20.
We analyze the impact of a linear trend in the mean log-conductivity on the transport of a conservative tracer in a bounded domain. The effects of such a linear trend on solute transport were analyzed in depth for unbounded domains (Rubin and Seong, Water Resour Res 30(11):2901–2911, 1994; Indelman and Rubin, Water Resour Res 31(5):1257–1265, 1995; Water Resour Res 32(5):1257–1265, 1996), whereas studies concerning this special case of medium nonstationarity in finite domains usually focus on head or flow statistics (Guadagnini et al., Stoch Environ Res Risk Assess, 17:394–407, 2003). In this study both ensemble and effective plume moments are provided for an instantaneous release of a solute through a linear source normal to the mean flow direction, by taking into account different sizes of the source. The analysis involving a steady velocity field spatially nonstationary is developed by using the stochastic finite element method. Results show that ensemble moments are affected by increasing trends both parallel and normal to the mean flow direction, but the impact on effective plume moments is very different. A parallel trend does not seem to influence the effective second moments; while a normal trend, although modifies the transverse effective moment only weakly, strongly increases the longitudinal one, especially for large initial sizes of the source. Furthermore, the increase of the particle displacement variance produced by a parallel trend in the finite domain disagrees with the results obtained in an unbounded domain, due to the boundary conditions here considered making both head and velocity moments nonstationary and nonsymmetric.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号