首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we propose to compare different declustering methods on the basis of the time-correlation and the space-clustering of the residual earthquake catalog after the declustering techniques have been applied. To this aim, we applied two point process clustering measures, the Allan Factor and the Morisita Index, for the identification and quantification of temporal correlation and spatial clustering in point processes, respectively. We used our joint space–time approach to study the earthquake space–time point processes of southern California and Switzerland with surrounding area, declustered by using the method of Gardner and Knopoff (with Grünthal and Uhmhammer window) and that of Reasenberg (with different setting parameters). Our results show that the residual declustered catalog is still characterized by time-correlated structures at long timescales; however, the cutoff timescale that is the lowest timescale above which the time-correlation is visible is higher with the Reasenberg method while is smaller with the Gardner and Knopoff method with Grünthal window. The space-clustering analysis performed by means of the Morisita Index suggests that the declustering technique effectively reduces the spatial clustering of the seismicity of Switzerland, but does not change the spatial properties of the residual seismic catalogue of the southern California.  相似文献   

2.
The main goal of this article is to decluster Iranian plateau seismic catalog by the epidemic-type aftershock sequence (ETAS) model and compare the results with some older methods. For this purpose, Iranian plateau bounded in 24°–42°N and 43°–66°E is subdivided into three major tectonic zones: (1) North of Iran (2) Zagros (3) East of Iran. The extracted earthquake catalog had a total of 6034 earthquakes (Mw?>?4) in the time span 1983–2017. The ETAS model is an accepted stochastic approach for seismic evaluation and declustering earthquake catalogs. However, this model has not yet been used to decluster the seismic catalog of Iran. Until now, traditional methods like the Gardner and Knopoff space–time window method and the Reasenberg link-based method have been used in most studies for declustering Iran earthquake catalog. Finally, the results of declustering by the ETAS model are compared with result of Gardner and Knopoff (Bull Seismol Soc Am 64(5):1363–1367, 1974), Uhrhammer (Earthq Notes 57(1):21, 1986), Gruenthal (pers. comm.) and Reasenberg (Geophys Res 90:5479–5495, 1985) declustering methods. The overall conclusion is difficult, but the results confirm the high ability of the ETAS model for declustering Iranian earthquake catalog. Use of the ETAS model is still in its early steps in Iranian seismological researches, and more parametric studies are needed.  相似文献   

3.
A mixed model is proposed to fit earthquake interevent time distribution. In this model, the whole distribution is constructed by mixing the distribution of clustered seismicity, with a suitable distribution of background seismicity. Namely, the fit is tested assuming a clustered seismicity component modeled by a non-homogeneous Poisson process and a background component modeled using different hypothetical models (exponential, gamma and Weibull). For southern California, Japan, and Turkey, the best fit is found when a Weibull distribution is implemented as a model for background seismicity. Our study uses earthquake random sampling method we introduced recently. It is performed here to account for space–time clustering of earthquakes at different distances from a given source and to increase the number of samples used to estimate earthquake interevent time distribution and its power law scaling. For Japan, the contribution of clustered pairs of events to the whole distribution is analyzed for different magnitude cutoffs, m c, and different time periods. The results show that power laws are mainly produced by the dominance of correlated pairs at small and long time ranges. In particular, both power laws, observed at short and long time ranges, can be attributed to time–space clustering revealed by the standard Gardner and Knopoff’s declustering windows.  相似文献   

4.
Seismic and eruptive activities that occurred at Etna volcano during the decade 1978–1987 have been analyzed statistically. The seismic activity consists of about 7500 events. This catalog has been found complete above the magnitude threshold 2.8. On the basis of the complete catalog (1458 earthquakes), the clustering features of seismicity have been investigated. The hypothesis of a Simple Poisson process is rejected. Applying a Generalized Poisson process of the Shlien and Toksoz (1970) type, the “E” parameter of cluster size appears to be strongly dependent on the chosen time interval. The application of Gasperini and Mulargia (1989) algorithm for identifying the single earthquake sequences indicates that the whole period is composed of only three sequences. Etnean seismicity appears therefore characterized by a “diffuse” low-magnitude (less than about 3.0) earthquake occurrence. From the volcanological point of view, two time series of eruptions (flank and flank + summit) have been analyzed in order to identify different regimes in both magma output and inter-event time. No change-points are apparent in the magma output series, while both inter-event time series of flank and flank + summit eruptions are characterized by one change-point each. No evident relation between the series of eruptions and the identified earthquake sequences is apparent.  相似文献   

5.
—The clustering structure of the Vesuvian earthquakes occurring is investigated by means of statistical tools: the inter-event time distribution, the running mean and the multifractal analysis. The first cannot clearly distinguish between a Poissonian process and a clustered one due to the difficulties of clearly distinguishing between an exponential distribution and a power law one. The running mean test reveals the clustering of the earthquakes, but looses information about the structure of the distribution at global scales. The multifractal approach can enlighten the clustering at small scales, while the global behaviour remains Poissonian. Subsequently the clustering of the events is interpreted in terms of diffusive processes of the stress in the earth crust.  相似文献   

6.
Earthquake hazard in Marmara Region, Turkey   总被引:2,自引:0,他引:2  
Earthquake hazard in the Marmara Region, Turkey has been investigated using time-independent probabilistic (simple Poissonian) and time-dependent probabilistic (renewal) models. The study culminated in hazard maps of the Marmara Region depicting peak ground acceleration (PGA) and spectral accelerations (SA)'s at 0.2 and 1 s periods corresponding to 10 and 2% probabilities of exceedance in 50 yrs. The historical seismicity, the tectonic models and the known slip rates along the faults constitute the main data used in the assignment. Based on recent findings it has been possible to provide a fault segmentation model for the Marmara Sea. For the main Marmara Fault this model essentially identifies fault segments for different structural, tectonic and geometrical features and historical earthquake occurrences. The damage distribution and pattern of the historical earthquakes have been carefully correlated with this fault segmentation model. The inter-event time period between characteristic earthquakes in these segments is consistently estimated by dividing the seismic slip estimated from the earthquake catalog by the GPS-derived slip rate of 22±3 mm/yr. The remaining segments in the eastern and southern Marmara region are also identified using recent geological, geophysical studies and historical earthquakes. The model assumes that seismic energy along the segments is released by characteristic earthquakes. For the probabilistic studies characteristic earthquake based recurrence relationships are used. Assuming normal distribution of inter-arrival times of characteristic earthquakes, the ‘mean recurrence time’, ‘covariance’ and the ‘time since last earthquake’ are developed for each segment. For the renewal model, the conditional probability for each fault segment is calculated from the mean recurrence interval of the characteristic earthquake, the elapsed time since the last major earthquake and the exposure period. The probabilities are conditional since they change as a function of the time elapsed since the last earthquake. For the background earthquake activity, a spatially smoothed seismicity is determined for each cell of a grid composed of cells of size 0.005°×0.005°. The ground motions are determined for soft rock (NEHRP B/C boundary) conditions. Western US-based attenuation relationships are utilized, since they show a good correlation with the attenuation characteristics of ground motion in the Marmara region. The possibility, that an event ruptures several fault segments (i.e. cascading), is also taken into account and investigated by two possible models of cascading. Differences between Poissonian and renewal models, and also the effect of cascading have been discussed with the help of PGA ratio maps.  相似文献   

7.
Iranian earthquakes, a uniform catalog with moment magnitudes   总被引:3,自引:1,他引:2  
A uniform earthquake catalog is an essential tool in any seismic hazard analysis. In this study, an earthquake catalog of Iran and adjacent areas was compiled, using international and national databanks. The following priorities were applied in selecting magnitude and earthquake location: (a) local catalogs were given higher priority for establishing the location of an earthquake and (b) global catalogs were preferred for determining earthquake magnitudes. Earthquakes that have occurred within the bounds between 23–42° N and 42–65° E, with a magnitude range of M W 3.5–7.9, from the third millennium BC until April 2010 were included. In an effort to avoid the “boundary effect,” since the newly compiled catalog will be mainly used for seismic hazard assessment, the study area includes the areas adjacent to Iran. The standardization of the catalog in terms of magnitude was achieved by the conversion of all types of magnitude into moment magnitude, M W, by using the orthogonal regression technique. In the newly compiled catalog, all aftershocks were detected, based on the procedure described by Gardner and Knopoff (Bull Seismol Soc Am 64:1363–1367, 1974). The seismicity parameters were calculated for the six main tectonic seismic zones of Iran, i.e., the Zagros Mountain Range, the Alborz Mountain Range, Central Iran, Kope Dagh, Azerbaijan, and Makran.  相似文献   

8.
本文以蒙古国及其周边地区M≥3.5级以上地震目录为基础数据,对该目录做了余震删除、时间完整性分析以及时间统计分布特征分析.结果表明,蒙古国M≥3.5级地震完整记录起始时间为1977年;M≥5.0级地震完整记录起始时间为1945年;M≥6.0级地震完整记录起始时间为1900年.删除余震后,蒙古国地震活动随时间变化基本平稳,时间统计分布特征符合泊松分布.并且在删除余震后,蒙古国地震活动仍有6年左右的丛集周期.  相似文献   

9.
Earthquakes trigger other earthquakes and build up clusters in space and time that in turn create a bias in seismic catalogues. Therefore, declustering is considered as a prerequisite in seismic studies, particularly for probabilistic seismic hazard analysis, not only to eliminate the bias but also to decouple mainshocks and triggered events. However, a declustering process is not a straightforward task due to the complex nature of earthquake phenomena. There exist several declustering methods that mostly employ subjective rules to distinguish between background seismicity and offsprings. Eventually, the final declustered catalogues usually deviate significantly according to the employed method. This issue is raising some concerns, such as how to select the most suitable declustering algorithm, or to assess how this selection affects seismic hazard assessment. In consequence, the main goal of this paper is to quantify the sensitivity of seismic hazard assessments to different declustering techniques. Accordingly, the recently compiled Turkish earthquake catalogue was declustered by making use of three declustering algorithms. A total of six declustered catalogues, two catalogues per method, one by implementing the default input parameters, and one by altering the free input parameters of the employed methods, were produced. The clusters of selected earthquakes were studied in terms of the spatial–temporal distribution of earthquake sequences. A sensitivity analysis was conducted through the major steps of seismic hazard assessment for Istanbul metropolitan city. The seismicity of Istanbul and surroundings was modeled on the basis of four areal source zones. Comparative studies showed that, while the selected declustering algorithm did not significantly affect the completeness periods of moderate to large size earthquakes, it considerably altered those of small magnitude events (e.g. Mw 4.3–5.2) and consequently the recurrence parameters of the source zones. Depending on the declustering algorithm and input parameters, the activity rate was observed to vary up to a factor of two. The differences in the declustered catalogues obtained from different declustering approaches resulted in considerable variations in seismic hazard estimations. The hazard maps at return periods of 475 and 2475 years indicated that peak ground acceleration values may vary up to 20% at some locations. Moreover, the differences in 5% damped elastic spectral accelerations at T = 0.2 for the return periods of 475 and 2475 years are about 18 and 12%, respectively, on the southern shores of Istanbul where the highest hazard levels are observed.  相似文献   

10.
唐山老震区地震活动特征   总被引:2,自引:0,他引:2  
整理校正唐山长时间地震序列数据,用基于时空ETAS模型的随机除丛法,分析1976年唐山长时间地震序列的活动特点,发现唐山老震区1992年后进入余震活动的晚期阶段,目前地震活动未完全恢复到背景地震的水平。用频度和应变能两种不同的异常指标分析唐山老震区作为“余震窗口”对中强震的指示意义,发现唐山余震窗口的早期阶段(1980-1986年),频次作异常指标映震效果较好,晚期阶段(1992-2010年),应变能作为异常指标映震效果更好。  相似文献   

11.
利用基于时-空传染型余震序列(Epidemic Type Aftershock Sequence, 简称ETAS)模型的随机除丛法,重新审视了2008年5月12日汶川MS8.0地震前可能存在的长期地震活动异常,研究了川滇地区背景地震活动特征,并评估了当前的强震危险状态.对川滇地区1970年以来的ML3.0以上的背景地震和丛集地震活动的研究结果表明,该地区地震丛集特征明显、时空分布很不均匀、地震序列常有前震事件.直接将概率值作为地震计数的权重,对地震丛集率空间分布图像分析表明,汶川MS8.0地震前,龙门山断裂带中南段存在着长期、大范围的地震丛集率低值区,震前该段处于应力闭锁状态.对川滇地区地震丛集率低值区内背景地震与全部地震的累积次数、b值和新定义的Δb等统计参量的分析表明,龙日坝与龙门山断裂带具有地震活动的关联性,川滇地区当前的强震潜在危险区可能是巧家地区和汶川MS8.0地震破裂尚未穿越的龙门山断裂带南段.此外,还发现b值倾向于反映局部应力场变化,而Δb能较为敏感地给出更大范围应力场的相对变化.  相似文献   

12.
A statistical model for describing the energy scaling of the distribution of inter-event times is described. By considering the diverse region seismicity (natural and induced) on different scale (energy/magnitude) levels the self-similarity of the distribution has been determined. A comparison between the distribution of inter-event times on different scale levels and the most popular distributions of reliability theory has been carried out. The distribution of inter-event times for different scale levels is well approximated by the Weibull distribution. The Weibull distribution, with parameters which obey the scaling model and the Gutenberg-Richter law, has been tested.  相似文献   

13.
—We report the analysis of over 16 years of fault creep and seismicity data from part of the creeping section of the San Andreas fault to examine and assess the temporal association between creep events and subsequent earthquakes. The goal is to make a long-term evaluation of creep events as a potential earthquake precursor. We constructed a catalog of creep events from available digital creepmeter data and compared it to a declustered seismicity catalog for the area between San Juan Bautista and San Benito, California, for 1980 to 1996. For magnitude thresholds of 3.8 and above and time windows of 5 to 10 days, we find relatively high success rates (40% to 55% 'hits') but also very high false alarm rates (generally above 90%). These success rates are statistically significant (0.0007 < P < 0.04). We also tested the actual creep event catalog against two different types of synthetic seismicity catalogs, and found that creep events are followed closely in time by earthquakes from the real catalog far more frequently than the average for the synthetic catalogs, generally by more than two standard deviations. We find no identifiable spatial pattern between the creep events and earthquakes that are hit or missed. We conclude that there is a significant temporal correlation between creep events and subsequent small to moderate earthquakes, however that additional information (such as from other potential precursory phenomena) is required to reduce the false alarm rate to an acceptable level.  相似文献   

14.
Universality of the Seismic Moment-frequency Relation   总被引:1,自引:0,他引:1  
—We analyze the seismic moment-frequency relation in various depth ranges and for different seismic regions, using Flinn-Engdahl's regionalization of global seismicity. Three earthquake lists of centroid-moment tensor data have been used the Harvard catalog, the USGS catalog, and the Huang et al. (1997) catalog of deep earthquakes. The results confirm the universality of the β-values and the maximum moment for shallow earthquakes in continental regions, as well as at and near continental boundaries. Moreover, we show that although fluctuations in earthquake size distribution increase with depth, the β-values for earthquakes in the depth range of 0–500 km exhibit no statistically significant regional variations. The regional variations are significant only for deep events near the 660 km boundary. For declustered shallow earthquake catalogs and deeper events, we show that the worldwide β-values have the same value of 0.60 ± 0.02. This finding suggests that the β-value is a universal constant. We investigate the statistical correlations between the numbers of seismic events in different depth ranges and the correlation of the tectonic deformation rate and seismic activity (the number of earthquakes above a certain threshold level per year). The high level of these correlations suggests that seismic activity indicates tectonic deformation rate in subduction zones. Combined with the universality of the β-value, this finding implies little if any variation in maximum earthquake seismic moment among various subduction zones. If we assume that earthquakes of maximum size are similar in different depth ranges and the seismic efficiency coefficient, χ, is close to 100% for shallow seismicity, then we can estimate χ for deeper earthquakes for intermediate earthquakes χ≈ 5%, and χ≈ 1% for deep events. These results may lead to new theoretical understanding of the earthquake process and better estimates of seismic hazard.  相似文献   

15.
We report extensive anomalies identified in seismicity parameters at different energy levels which were observed during the precursory process of the Karymskii seismovolcanic crisis of January 1–2, 1996. The seismicity of different energies includes earthquakes contained in the Kamchatka regional catalog and seismic noise (amplitudes of 10?9–10?12 m, frequencies of a few tens of hertz), which is a manifestation of the seismic process in the lowest energy range. The parameters of background seismicity are considered in retrospect using techniques for analyzing the dynamics of the seismic process: RTL and the Z function. Microseismicity is examined using these authors’ own method based on monitoring the response of high frequency seismic noise to tidal excitation  相似文献   

16.
In this study, the influence of paleoseismic and geologic data in the seismic hazard estimation for the Catalan coastal ranges is analysed. We computed the probabilistic seismic hazard using area seismic sources with a Poissonian assumption for the earthquake occurrence. For the computations, a previously published attenuation relationship based on European strong motion data was applied. The resulting hazard estimates show similarities to the previous assessments in the region. These results were then used as a reference for comparison with other new models. In order to analyse the influence of the paleoseismic data three different models were tested. Since the number of faults that are investigated in detail are few, the same area sources that were used in the Poissonian assumption were kept in all three new models. In addition, the new paleoseismic data with faults expressed as line sources were used. In this case, a cyclic earthquake occurrence was assumed. The three models were based on the paleoseismic data with different assumptions on the time elapsed since last event. The time elapsed was set to 0, 10 and 85% of the recurrence interval in each model. The results are presented as maps showing the difference between the three models and the reference model with the Poissonian assumption. The results are given in horizontal peak ground acceleration contour maps for different return periods, also taking into account large return periods as high as 25,000 years. This is done to demonstrate the effect of large recurrence intervals found for some of the active faults. In general, we observe that for short return periods (<1000 years), the Poissonian assumption of earthquake occurrence is probably sufficient and provides a robust estimate of the hazard. However, for longer return periods (>5000 years) the effects of the paleoseismic data become increasingly significant. In order to estimate the true seismic hazard potential of this apparently low seismicity area, long-term behaviour of the possible active faults in the region needs to be investigated systematically.  相似文献   

17.
The central part of the Apulia region, in southern Italy, has been generally considered practically free from significant level of seismicity, but historical documentation, geological indicators and recent instrumental observations suggest that the activity of local minor tectonic structures could have been masked (and partly also induced) by that of major seismogenic structures located in the neighbouring regions. A revision of the central Apulia seismicity characteristics was conducted considering its space and time distribution, energy release rate and focal mechanisms, in view of possible hazard implications. To better constrain the seismicity rates inferable from the set of available historical data, special attention was paid to the declustering of a catalogue of low energy events (magnitude < 3.5) instrumentally detected in about 20 years: a new declustering procedure, useful for cases like to the one at hand, was purposely devised taking into account the peculiarity of local seismicity characteristics and the limitations of the available database. The results obtained by combining instrumental and historical data show that this area is affected by a rather sporadic seismicity, likely associated to a general tensional regime and possibly stimulated by the interaction with Apenninic and northern Apulia seismogenic activity. Even though less energetic, the local seismicity contributes to increase the moderately damaging shaking probability due to the activity of seismic sources located in the near areas, so to justify the adoption of at least a minimum level of caution in relation to the local definition of seismic protection measures.  相似文献   

18.
We present a detailed catalog of 13 671 earthquakes in the Eastern Tennessee Seismic Zone (ETSZ) that spans January 1, 2005 to July 31, 2020. We apply a matched filter detection technique on over 15 years of continuous data, resulting in arguably the most complete catalog of seismicity in the ETSZ yet. The magnitudes of newly detected events are determined by computing the amplitude ratio between the detections and templates using a principal component fit. We also compute the b-value for the new catalog and comparatively relocate a subset of newly detected events using XCORLOC and hypoDD, which shows a more defined structure at depth. We find the greatest concentration along and to the east of the New York-Alabama Lineament, as defined by the magnetic anomaly, supporting the argument that this feature likely is related to the generation of seismicity in the ETSZ. We examine seismicity in the vicinity of the Watts Bar Reservoir, which is located about 5 ?km from the epicenter of the MW 4.4 December 12, 2018 Decatur, Tennessee earthquake, and find possible evidence for reservoir modulated seismicity in this region. We also examine seismicity in the entire ETSZ to search for a correlation between shallow earthquakes and seasonal hydrologic changes. Our results show limited evidence for hydrologically-driven shallow seismicity due to seasonal groundwater levels in the ETSZ, which contradicts previous studies hypothesizing that most intraplate earthquakes are associated with the dynamics of hydrologic cycles.  相似文献   

19.
Seismogenic regions within some geographic area are interrelated through tectonics and seismic history, although this relation is usually complex, so that seismicity in a given region cannot be predicted in a straightforward manner from the activity in other region(s). We present a new statistical method for seismic hazard evaluation based on modeling the transition probabilities of seismicity patterns in the regions of a geographic area during a time interval, as a Markov chain. Application of the method to the Japan area renders good results, considering the occurrence of a high probability transition as a successful forecast. For magnitudes M5.5 and time intervals t=0.10 year, the method yields a 78% aftcast (forecast of data already used to evaluate the hazard) success rate for the entire catalog, and an indicative 80% forecast success rate for the last 10 transitions in the catalog. A byproduct of the method, regional occurrence probabilities determined from the transition probabilities, also provides good results; aftcasts of regional activity have a 98% success rate, and those of activity in the highest probability region about 80.5% success rate. All results are superior to those from the null hypotheses (a memory-less Poissonian, fixed-rate, or uniform system) and have vanishingly small probabilities of resulting from purely random guessing.  相似文献   

20.
We examine the nature of the seismogenetic system along the San Andreas Fault (SAF), California, USA, by searching for evidence of complexity and non-extensivity in the earthquake record. We use accurate, complete and homogeneous earthquake catalogues in which aftershocks are included (raw catalogues), or have been removed by a stochastic declustering procedure (declustered catalogues). On the basis of Non-Extensive Statistical Physics (NESP), which generalizes the Boltzmann–Gibbs formalism to non-equilibrating (complex) systems, we investigate whether earthquakes are generated by an extensive self-excited Poisson process or by a non-extensive complex process. We examine bivariate cumulative frequency distributions of earthquake magnitudes and interevent times and determine the size and time dependence of the respective magnitude and temporal entropic indices, which indicate the level on non-equilibrium (correlation). It is shown that the magnitude entropic index is very stable and corresponds to proxy b-values that are remarkably consistent with the b-values computed by conventional means. The temporal entropic index computed from the raw catalogues indicate moderately to highly correlated states during the aftershock sequences of large earthquakes, progressing to quasi-uncorrelated states as these die out and before the next large event. Conversely, the analysis of the declustered catalogues shows that background seismicity exhibits moderate to high correlation that varies significantly albeit smoothly with time. This indicates a persistent sub-extensive seismogenetic system. The degree of correlation is generally higher in the southern SAF segment, which is consistent with the observation of shorter return periods for large earthquakes. A plausible explanation is that because aftershock sequences are localized in space and time, their efficient removal unveils long-range background interactions which are obscured by their presence! Our results indicate complexity in the expression of background seismicity along the San Andreas Fault, with criticality being a very likely mechanism as a consequence of the persistent non-equilibrium inferred from the temporal entropic index. However, definite conclusions cannot be drawn until the earthquake record is exhaustively studied in all its forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号