首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A feeding trial was conducted in a recirculating water system to investigate the effects of dietary protein levels on growth, feed utilization, hepatosomatic index and liver lipid deposition of juvenile red snapper, Lutjanus argentimaculatus (average initial wet weight 8.0 ± 0.39 g and total length 3.14 ± 0.3 cm). In the experiment, six fishmeal-based diets were formulated to contain various protein levels (20% to 45% in 5% increments), with dietary energy ranging from 2210.7kJ lOOg to 2250.2kJlOOg dry matter. The protein to energy ratios of diets ranged from 8.58 mg protein kJ−1 to 20.03 mg protein kJ−1. Diets were fed for 90d to triplicate groups of fish stocked in 0.128m3 seawater tanks, 25 individuals each. The daily ration of 2% wet body weight was offered to the fish thrice a day. The fish at the end of the study had more than ten-fold (77.0g) increase in weight compared to the initial (8.0g). Fish fed diets of 40% and 45% protein produced significantly (P<0.05) higher weight gain of 77.2g and 76.5g, and specific growth rate (SGR) of 2.65% and 2.62% than those of 67.0 g and 68.3g, and 2.49% and 2.51% of the other diets. The broken-line regression of SGR against dietary protein level yielded an optimum dietary protein requirement of 42.6% (Y=−1.6295 + 0.1114 X 2,P<0.05). Survival remained 100% among groups. Feed conversion ratio decreased from 0.45 for fish fed 20% dietary protein to 0.35 for fish fed 45% dietary protein. Nitrogen intake increased with an increase in dietary protein, which in turn resulted in an increase in nitrogen gain of fish whole body. Fish fed 40% and 45% protein diets showed higher (P<0.05) nitrogen gain (0.27g and 0.26g) than those (0.23g and 025g) fed all other diets. Gross energy intake (GEI) in fish fed 45% protein was lower (600.67kJ) than that (607.97 kJ) of 40% protein diet, though the differences were not statistically significant (P>0.05); GEI ranging from 677.31 kJ to 663.20 kJ at remaining four diets (20% to 35% protein) did not appear to differ significantly (P>0.05). The highest energy gain of 518.33 kJ was obtained with fish fed 40% protein, resulting in the highest energy retention efficiency of 85.26%. The hepatosomatic index of fish fed diets of 20%, 25%, 30% and 35% protein were significantly (P<0.05) higher (2.09% to 2.57%) than those (1.44% and 1.41%) of fish fed diets containing 40% and 45% protein. Liver lipid contents decreased from 8.72% to 7.0% in fish fed dietary protein of 20% to 45% in 5% increments. Results suggest that the diet containing 40% to 42.6% protein with a P/E ratio of 17.6 mg protein kJ−1 is required for good growth of L. argentimaculatus weighing between 8.0 g and 85.2 g under the culture conditions of the present study.  相似文献   

2.
We conducted a preliminarily study on the effects of dietary guaiacol on growth performance of abalone, Haliotis discus hannai Ino. Seven semi-purified diets were formulated with graded levels of guaiacol (0, 5, 10, 50, 100, 500, and 1 000 mg kg−1). Abalone (initial weight: 0.29 ± 0.01 g; initial shell length: 8.55 ± 0.27 mm) were fed with these diets in a re-circulated water system for 152 days. Guaiacol significantly improved the specific growth rate (SGR) (P<0.05); excessive dietary guaiacol (1 000 mg kg−1) led to significantly high mortality (P<0.05), and lipid content in the soft body increased significantly after dietary guaiacol (P<0.05). Activities of catalase and phenoloxidase (PO) in the viscera were significantly stimulated by dietary guaiacol (P<0.05). Broken-line analysis based on SGR indicated that the minimum dietary guaiacol for the optimal growth of juvenile abalone is 15.43 mg kg−1.  相似文献   

3.
Dietary leucine requirement for juvenile large yellow croaker, Pseudosciaena crocea Richardson 1846 (initial body weight 6.0 g ± 0.1 g) was determined using dose-response method. Six isonitogenous (crude protein 43%) and isoenergetic (19 kJ g−1) practical diets containing six levels of leucine (Diets 1–6) ranging from 1.23% to 4.80% (dry matter) were made at about 0.7% increment of leucine. Equal amino acid nitrogen was maintained by replacing leucine with glutamic acid. Triplicate groups of 60 individuals were fed to apparent satiation by hand twice daily (05:00 and 17:30). The water temperature was 26–32°C, salinity 26–30 and dissolved oxygen approximately 7 mg L−1 during the experimental period. Final weight (FW) of large yellow croaker initially increased with increasing level of dietary leucine but then decreased at further higher level of leucine. The highest FW was obtained in fish fed diet with 3.30% Leucine (Diet 4). FW of fish fed the diet with 4.80% Leucine (Diet 6) was significantly lower than those fed Diet 4. However, no significant differences were observed between the other dietary treatments. Feed efficiency (FE) and whole body composition were independent of dietary leucine contents (P > 0.05). The results indicated that leucine was essential for growth of juvenile large yellow croaker. On the basis of FW, the optimum dietary leucine requirement for juvenile large yellow croaker was estimated to be 2.92% of dry matter (6.79% of dietary protein).  相似文献   

4.
A 9-week feeding trial was conducted to investigate the effects of dietary carbohydrate to lipid ratio(CHO:LIP) on the growth performance and feed utilization of juvenile turbot Scophthalmus maximus(initial body weight 8.75 g ± 0.04 g). Four isonitrogenous and isoenergetic low protein level(39%) diets were formulated with increasing ratios of dietary carbohydrate to lipid(2:18, 6:18, 18:12 and 28:6). A high protein level(50%) diet with the 2:12 ratio of carbohydrate to lipid was used as the control. Results showed that the survival rate, contents of moisture, crude protein and ash in muscle were not significantly affected by dietary treatments. With the dietary CHO:LIP ratio increased from 2:18 to 18:12, weight gain rate significantly increased(P < 0.05). Higher dietary CHO:LIP ratio(28:6) resulted in the significantly decreased weight gain rate(P < 0.05). Meanwhile, this treatment also resulted in the highest daily feed intake and liver glycogen content, as well as the lowest feed efficiency(P < 0.05). Muscle glycogen content in fish fed the diet with 2:12 or 2:18 CHO:LIP ratio was significantly lower than those fed with the other three diets(P < 0.05). The present results confirmed that the juvenile turbot can utilize carbohydrate. Furthermore, the appropriate ratio of dietary carbohydrate to lipid was important to the growth and feed utilization of turbot. The proper CHO:LIP ratio based on the growth performance in the present study was determined to be 18:12 when the dietary protein level was 39%.  相似文献   

5.
研究0、300、600、900、1 200、1 500 mg/kg 6个L-肉碱添加水平对牙鲆(Paralichthys olivaceus)幼鱼生长、生化组成和血液指标的影响。结果表明:添加量为1 200 mg/kg的处理组牙鲆幼鱼的增重率和特定生长率显著提高,饲料系数显著降低(P<0.05);随着饲料中L-肉碱含量的增加,肝指数呈现下降趋势,且在添加量为900~1 500 mg/kg时,各组较对照组差异显著(P<0.05);饲料中添加L-肉碱显著降低各实验组脏体比(P<0.05),而对各处理组间存活率和肥满度均无影响(P<0.05);肌肉和肝脏中的脂肪含量与L-肉碱添加量呈负相关,当添加量为1 200~1 500 mg/kg时,较对照组差异显著(P<0.05);肌肉中的蛋白含量与L-肉碱添加量呈正相关,但各组差异不显著(P<0.05);饲料中添加L-肉碱降低血清中的谷草转氨酶、胆固醇、甘油三酯和尿素氮含量,且添加量1 200 mg/kg组各指标含量均显著低于对照组(P<0.05);各处理组的血糖含量较对照组均有所增加,其中1 200 mg/kg组血糖含量较对照组提高41.6%(P<0.05);血清中总蛋白和低密度脂蛋白均随着L-肉碱添加量的增加而呈下降趋势,高密度脂蛋白却得以提升,但差异均不显著(P<0.05)。分析认为,在本实验条件下,饲料中添加L-肉碱可促进牙鲆幼鱼生长,且降脂效果显著。建议L-肉碱最适添加量为1 200 mg/kg。  相似文献   

6.
An 8-week feeding trial was conducted to investigate the effects of dietary soy isoflavones on feeding intake,growth performance,and digestion of juvenile Japanese flounder(Paralichthys olivaceus).Four isonitrogenous(49% crude protein) and isoenergetic(20.1 MJ kg-1) diets were formulated to contain four graded levels of soy isoflavones,namely,0,1,4 and 8 g soy isoflavones in 1 kg of diet.Each diet was randomly fed to triplicate tanks of fish(Initial average weight:2.58 g ± 0.01 g),and each tank was stocked with 35 fish.No significant difference was observed among diets with levels of 0,1 and 4 g kg-1 soy isoflavones in feed intake,weight gain,feed efficiency ratio(FER),proximate composition of fish whole body and apparent digestibility coefficients(ADC) of nutrients and energy(P>0.05).However,high dietary soy isoflavones level(8 g kg-1) significantly depressed weight gain,FER,whole-body crude lipid content of fish and ADC of nutrients(P<0.05).These results indicate that high level of dietary soy isoflavones(above 4 g kg-1) significantly depresses growth responses and FER of Japanese flounder.However,as the content of soy isoflavones in soybean meal is around 1 to 3 g kg-1,the adverse effects might be neglected when soybean products are used as a fish feed ingredient.  相似文献   

7.
用添加质量分数0.00(对照组)、0.10%、0.30%、0.50%和0.70%壳寡糖的饲料饲喂初始体重(3.81±0.23)g的吉富罗非鱼幼鱼(Oreochromis niloticus)10周,研究不同浓度壳寡糖的添加对吉富罗非鱼幼鱼的生长、非特异性免疫功能以及血脂指标的影响。结果表明:与对照组相比,在4个不同浓度添加组中,添加质量分数0.50%壳寡糖能显著提高幼鱼的增重率(P<0.05)、特定生长率(P<0.05),并降低饲料系数(P<0.05);添加质量分数0.3%和0.5%壳寡糖能显著提高幼鱼抗嗜水气单胞菌感染的能力(P<0.01);添加质量分数0.10%、0.30%、0.50%壳寡糖能显著提高幼鱼血清中碱性磷酸酶活性(P<0.05)。同时,各浓度的壳寡糖均能明显提高幼鱼血清中溶菌酶和超氧化物歧化酶活性以及抗嗜水气单胞菌感染的能力(P<0.05),并降低幼鱼血清中总胆固醇和低密度脂蛋白胆固醇水平(P<0.05)。在本实验条件下,添加壳寡糖可提高吉富罗非鱼幼鱼生长性能、饲料利用率、非特异性免疫功能和调节血脂水平,添加量以质量分数0.30%~0.50%为宜。  相似文献   

8.
1Introduction The mangrove red snapper,Lutjanus argentimacu-latus(Forsskal,1775)is a carnivorous,warm-watereuryhaline fish that is considerably cultured in South-east Asia,Southern China and the Middle East(Le-ung et al.,1999;Estudillo et at.,2000;Ng et al.,2000;Catacutan et al.,2001).In Pakistan,it isknown for its good quality meat and also for its highconsumption rate.Although it fetches a premiumprice at local markets(Anonymous,2002),the in-creasing demand has generated interest towar…  相似文献   

9.
在凡纳滨对虾饲料中分别添加大黄0、0.5、1.0、5.0、10.0和20.0g/kg,研究大黄对凡纳滨对虾(初始体重为0.34±0.004g)生长及非特异性免疫指标的影响。结果表明,大黄对凡纳滨对虾成活率、增重率、特定生长率、饲料系数、蛋白质效率和蛋白质累积率的影响不显著(P>0.05),对全虾和尾肌肉的灰分、脂肪和粗蛋白含量影响显著,全虾的粗蛋白和粗脂肪含量以1.0g/kg组最高(P<0.05),对凡纳滨对虾血清碱性磷酸酶、酸性磷酸酶、酚氧化酶、超氧化物歧化酶、溶菌酶以及血清总蛋白量等的影响显著,溶菌酶活性以1.0g/kg组最高(P<0.05);细菌感染实验中以1.0g/kg组存活率最高(P<0.05)。以非特异性免疫反应指标及感染实验存活率为指标,凡纳滨对虾饲料中大黄的适宜添加量为1.0g/kg。  相似文献   

10.
Improvement in the osmoregulation capacity via nutritional supplies is vitally important in shrimp aquaculture.The effects of dietary protein levels on the osmoregulation capacity of the Pacific white shrimp(L.vannamei) were investigated.This involved an examination of growth performance,glutamate dehydrogenase(GDH) and Na+-K+ ATPase mRNA expression,,and GDH activity in muscles and gills.Three experimental diets were formulated,containing 25%,40%,and 50% dietary protein,and fed to the shrimp at a salinity of 25.After 20 days,no significant difference was observed in weight gain,though GDH and Na+-K+ ATPase gene expression and GDH activity increased with higher dietary protein levels.Subsequently,shrimp fed diets with 25% and 50% dietary protein were transferred into tanks with salinities of 38 and 5,respectively,and sampled at weeks 1 and 2.Shrimp fed with 40% protein at 25 in salinity(optimal conditions) were used as a control.Regardless of the salinities,shrimp fed with 50% dietary protein had significantly higher growth performance than other diets;no significant differences were found in comparison with the control.Shrimp fed with 25% dietary protein and maintained at salinities of 38 and 5 had significantly lower weight gain values after 2 weeks.Ambient salinity change also stimulated the hepatosomatic index,which increased in the first week and then recovered to a relatively normal level,as in the control,after 2 weeks.These findings indicate that in white shrimp,the specific protein nutrient and energy demands related to ambient salinity change are associated with protein metabolism.Increased dietary protein level could improve the osmoregulation capacity of L.vannamei with more energy resources allocated to GDH activity and expression.  相似文献   

11.
Nitrogen balance method and nitrogen-free diet were used in this study to determine nitrogen maintenance requirement (NM) and nitrogen maintenance requirement per unit metabolism body weight (NM′) of black porgy Acanthopagrus schlegeli. Fish with body weight (BW) of 50, 80, 120, 160 and 200 g were fed by the diets containing three graded levels of crude protein (380, 420 and 460 g/kg). The results from nitrogen balance experiment showed that the amount of nitrogen deposition varied from 0.15 to 0.31 mg/g BW per day, accounting for 12.2% to 21.1% of nitrogen intake. The amount of fecal nitrogen excretion varied from 0.21 to 0.32 mg/g BW per day, accounting for 16.3% to 21.6% of nitrogen intake. The endogenous nitrogen excretion, a main part of nitrogen consumption varied from 0.79 to 0.97 mg/g BW per day, accounting for 63.3 % to 68.0% of nitrogen intake. Positive correlation was found between NM and body weight, while a negative correlation was found between NM of unit body weight and the growth duration. No significant differences (p>0.05) were found in NM′ among different growth stages. The average of NM′ was 0.485 7mg/g per day. The results from nitrogen-free diet experiment showed that a negative correlation between NM and feed intake of nitrogen-free diet. NM increased with the decrease of feed intake of fish. The average of NM was 0.482 9 mg/g BW per day that was close to 0.483 8 mg/g BW obtained from fish with 120 g BW in nitrogen balance experiment. The nitrogen balance method is recommended to be a better method for determining NM in consideration of fish stress and result stability. This study also provides a calculated result of the protein content in diets, which is necessary for maintaining fish body protein at different growth stages. The calculation was based on the amount of nitrogen required for maintaining body protein per kg BW. Supported by Scientific Research Project Grant (No.2004C100059) from the city government of Ningbo, China.  相似文献   

12.
A growth experiment was conducted on cobia(Rachycentron canadum,initial weight 108.2 g ± 3.0 g) to investigate the effects of dietary corn gluten meal(CGM) levels on the fish growth,whole body composition and protein metabolism in relation to specific gene expression.Five isonitrogenous(crude protein 45%) and isoenergetic(gross energy 20 kJ g 1) practical diets were formulated by replacing 0%(the control),17.5%,35.0%,52.5%,and 70.0% of fish meal(FM) protein with CGM protein.No significant differences were observed in the survival,feed intake(FI),specific growth rate(SGR),feed efficiency(FE) and protein productive value(PPV) among fish fed diets with 0%,17.5%,35.0%,and 52.5% of CGM protein.However,these indices were significantly lower in fish fed the diet with 70.0% of CGM protein than those in fish fed the control diet(P < 0.05).The whole-body crude protein and lipid contents were significantly lower while the whole-body moisture content was significantly higher in fish fed the diet with 70.0% of CGM protein compared with the control group(P < 0.05).When 70.0% of FM protein was replaced by CGM,plasma total protein and cholesterol contents were significantly lower than those in the control group(P < 0.05).Fish fed the diet with 70.0% of CGM protein had significantly lower hepatic insulin-like growth factor I(IGF-I) expression levels than those in the control group(P < 0.05).However,no significant differences were observed in hepatic target of rapamycin(TOR),dorsal muscle IGF-I and TOR expression levels among dietary treatments.Results of the present study indicated that 52.5% of FM protein could be replaced by CGM in the diets without significant influences on the growth,feed utilization and protein metabolism of juvenile cobia.The present results might be useful for developing cost effective and sustainable cobia dietary formulations.  相似文献   

13.
Cottonseed meal (CM) was used at up to 36.95% content in the diet (replacing 60% of dietary fish meal protein) without any negative eff ects on growth performance of pre-adult grass carp (initial body weight, 761 g) under outdoor conditions. A culture trial was conducted in net cages installed in a large concrete pond. Seven isonitrogenous and isoenergetic diets containing a gradient of CM concentrations (0, 12.2%, 24.4%, 36.6%, 48.8%, 54.8%, and 61.0%) as replacement for dietary fish meal protein (0, 20%, 40%, 60%, 80%, 90%, and 100%) were formulated. Dietary non-resistant starch (from maize) was inverse to dietary CM. Growth performance and feed utilization of fish fed the diets containing CM replacing 0–40% fishmeal protein were not aff ected after the 6-week feeding trial. Accumulation of hepatopancreatic total gossypol in the hepatopancreas was significantly correlated with free gossypol content in the diets (HTG=88.6+1.5×DFG, R 2=0.89, P<0.05). Intestinal α-amylase and γ-glutamyl transpeptidase activities rose along with increasing dietary CM level. The structure of the mid-intestinal tissues and the ultrastructure of the enterocyte microvilli were normal when dietary CM was <36.6% (60% protein replacement). Increasing dietary CM content increased serum alanine aminotransferase levels but decreased serum alkaline phosphatase, cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, and albumin (P<0.05).  相似文献   

14.
Reversible protein phosphorylation, catalyzed by protein kinases and phosphatases, is an important and versatile mechanism by which eukaryotic cells regulate almost all the signaling processes. Protein phosphatase 1 (PP1) is the first and well-characterized member of the protein serine/threonine phosphatase family. In the present study, a full-length cDNA encoding the beta isoform of the catalytic subunit of protein phosphatase l(PPlcb), was for the first time isolated and sequenced from the skin tissue of flatfish turbot Scophthalmus maximus, designated SmPPlcb, by the rapid amplification of cDNA ends (RACE) technique. The cDNA sequence of SmPPlcb we obtained contains a 984 bp open reading frame (ORF), flanked by a complete 39 bp 5' untranslated region and 462 bp 3' untranslated region. The ORF encodes a putative 327 amino acid protein, and the N-terminal section of this protein is highly acidic, Met-Ala-Glu-Gly-Glu-Leu-Asp-Val-Asp, a common feature for PP1 catalytic subunit but absent in protein phosphatase 2B (PP2B). And its calculated molecular mass is 37 193 Da and pI 5.8. Sequence analysis indicated that, SmPPlcb is extremely conserved in both amino acid and nucleotide acid levels compared with the PPlcb of other vertebrates and invertebrates, and its Kozak motif contained in the 5'UTR around ATG start codon is GXXAXXGXXATGG, which is different from mammalian in two positions A6 and G3, indicating the possibility of different initiation of translation in turbot, and also the 3'UTR of SmPPlcb is highly diverse in the sequence similarity and length compared with other animals, especially zebraf'lsh. The cloning and sequencing of SmPPlcb gene lays a good foundation for the future work on the biological functions of PP1 in the flatfish turbot.  相似文献   

15.
A feeding trial was carried out to investigate the dietary vitamin E requirement of the oriental river prawn Macrobrachium nipponense (weight of 0.3–0.4 g) and its effect role on antioxidant activity. Prawns were fed with seven levels of vitamin E (0, 25, 50, 75, 100, 200, and 400 mg/kg diet) for 60 days. The results show that dietary vitamin E supplementation could significantly increased the prawn weight (P < 0.05). The activity of superoxide dismutase (SOD) in the hepatopancreas was significantly higher in prawns fed with diets supplemented with ≤75 mg/kg vitamin E than in those fed with diets supplemented with 100–400 mg/kg vitamin E (P < 0.05). The activity of catalase (CAT) in the hepatopancreas decreased significantly as dietary vitamin E supplementation increased (P < 0.05), and no significant difference was detected in glutathione peroxidase (GSH-Px) activity between different dietary groups (P >0.05). The contents of vitamin E in the hepatopancreas and in the muscle increased with increasing dietary vitamin E. There was a linear correlation between the vitamin E level in diet and that in muscle, and between the vitamin E level in diet and that in the hepatopancreas. All the above results indicated that dietary vitamin E can be stored in the hepatopancreas and muscle and lower both the activities of SOD and CAT in the hepatopancreas, suggesting that it is a potential antioxidant in M. nipponense. Broken line analysis conducted on the weight gains of prawns in each diet group showed that the dietary vitamin E requirement for maximum growth is 94.10 mg/kg.  相似文献   

16.
Limited information has been available about the influence of loading density on the performances of Scophthalmus maximus, especially in recirculating aquaculture systems (RAS). In this study, turbot (13.84±2.74 g; average weight±SD) were reared at four different initial densities (low 0.66, medium 1.26, sub-high 2.56, high 4.00 kg/m2) for 10 weeks in RAS at 23±1°C. Final densities were 4.67, 7.25, 14.16, and 17.47 kg/m2, respectively, which translate to 82, 108, 214, and 282 percent coverage of the tank bottom. Density had both negative and independent impacts on growth. The final mean weight, specific growth rate (SGR), and voluntary feed intake significantly decreased and the coefficient of variation (CV) of final body weight increased with increase in stocking density. The medium and sub-high density groups did not differ significantly in SGR, mean weight, CV, food conversion rate (FCR), feed intake, blood parameters, and digestive enzymes. The protease activities of the digestive tract at pH 7, 8.5, 9, and 10 were significantly higher for the highest density group, but tended to be lower (not significantly) at pH 4 and 8.5 for the lowest density group. The intensity of protease activity was inversely related to feed intake at the different densities. Catalase activity was higher (but not significantly) at the highest density, perhaps because high density started to induce an oxidative effect in turbot. In conclusion, turbot can be cultured in RAS at a density of less than 17.47 kg/m2. With good water quality and no feed limitation, initial density between 1.26 and 2.56 kg/m2 (final: 7.25 and 14.16 kg/m2) would not negatively affect the turbot cultured in RAS. For culture at higher density, multi-level feeding devices are suggested to ease feeding competition.  相似文献   

17.
Graded levels of manganese were supplemented to a semi-purified diet containing 45% crude protein, to provide six levels of manganese (i. e. containing 5, 25, 50, 70, 140 and 210×10−6, respectively) for two experiments with these experimental diets. The initial weight of shrimp used in the 35–day experiment I was 0.30±0.04 g, and that in the 70–day Experiment II was more than one gram. The results showed that optimum content in the semi-purified diet for the more than 1 gram shrimp ranged from 70 ×10−6, to 140×10−6, but supplementation of Mn was not necessary for the small shrimp. Contribution No. 2673 from the Institute of Oceanology, Chinese Academy of Sciences.  相似文献   

18.
An 8-week feeding trial was conducted to detect the optimal dietary protein and energy, as well as the effects of protein to energy ratio on growth, for the rare minnow (Gobiocypris rarus), which are critical to nutrition standardization for model fish. Twenty-four diets were formulated to contain three gross energy (10, 12.5, 15 kJ/g), four protein (20%, 25%, 30%, 35%), and two lipid levels (3%, 6%). The results showed that optimal dietary E/P was 41.7–50 kJ/g for maximum growth in juvenile rare minnows at 6% dietary crude lipid. At 3% dietary lipid, specific growth rate (SGR) increased markedly when E/P decreased from 62.5 kJ/g to 35.7 kJ/g and gross energy was 12.5 kJ/g, and from 75 kJ/g to 42.9 kJ/g when gross energy was 15.0 kJ/g. The optimal gross energy was estimated at 12.5 kJ/g and excess energy decreased food intake and growth. Dietary lipid exhibited an apparent protein-sparing effect. Optimal protein decreased from 35% to 25%–30% with an increase in dietary lipid from 3% to 6% without adversely effecting growth. Dietary lipid level affects the optimal dietary E/P ratio. In conclusion, recommended dietary protein and energy for rare minnow are 20%–35% and 10–12.5 kJ/g, respectively.  相似文献   

19.
Nitrogen balance method and nitrogen-free diet were used in this study to determine nitrogen maintenance requirement (NM) and nitrogen maintenance requirement per unit metabolism body weight (NM’) of black porgy Acanthopagrus schlegeli. Fish with body weight (BW) of 50, 80, 120, 160 and 200 g were fed by the diets containing three graded levels of crude protein (380, 420 and 460 g/kg). The results from nitrogen balance experiment showed that the amount of nitrogen deposition varied from 0.15 to 0.31 mg/g BW...  相似文献   

20.
The effect of dietary phosphorus on the growth and body components of juvenile Synechogobius hasta was determined. Different percentages of dietary phosphorus (0.63, 0.77, 0.93, 1.06, 1.22 and 1.36) were tested by feeding the fish (body weight, 15.81 g ± 0.32 g; 20 individuals each group; 3 groups each percentage) at a surplus of 5%–10% above satiation for 35 d. Dietary phosphorus did not significantly affect the specific growth rate, feed intake, feed conversion ratio and protein efficiency rate. Nitrogen retention was found to be the highest in fish fed the diet containing 1.06% of phosphorus; however, this was not significantly different from other diets. Fish fed the diet containing 0.93% of phosphorus showed the highest phosphorus retention; similar phosphorus retention rates were found in fish fed the diets containing 0.77% and 1.06% of phosphorus. Fish fed the diet containing the highest percentage of dietary phosphorus were found to contain the least whole body lipid, lower than fish fed other diets (P<0.05). The protein content increased from 18.59% to 19.55% (although not significant) with the decrease of body lipid content (P>0.05). The contents of the whole body ash, whole body phosphorus and vertebrae phosphorus increased with dietary phosphorus percentage up to 1.06 (P<0.05), reaching a plateau after that. Dietary phosphorus did not significantly influence the muscle components (protein, lipid and moisture). Condition factor and hepatosomatic index were the highest in fish fed the diet containing 0.63% of dietary phosphorus; however, this was not significantly different from those of other diets. The second-order polynomial regression of phosphorus retention against dietary phosphorus identified a breakpoint at 0.88% of dietary phosphorus. However, the dietary requirement of phosphorus for maintaining maximum phosphorus storage determined by broken-line analysis of the contents of whole body phosphorus, and ash and vertebrae phosphorus was 1.06% of the diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号