首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
This article investigates whether the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived global terrestrial Drought Severity Index (DSI) had the capability of detecting regional drought over subtropical southwestern China. Monthly, remotely sensed DSI data with 0.05° spatial resolution were used to characterize the extent, duration, and severity of drought from 2000 to 2010. We reported that southwestern China suffered from incipient to extreme droughts from November 2009 to March 2010 (referred to as the “drought period”). The area affected by drought occupied approximately 74 % of the total area of the study region, in which a moderate drought, severe drought, and an extreme drought accounted for 20, 12.7, and 13.2 % of the total area, respectively; particularly in March 2010, droughts of severe and extreme intensity covered the largest areas of drought, which were 16.1 and 18.6 %, respectively. Spatially, eastern Yunnan, western Guizhou, and Guangxi suffered from persistent droughts whose intensities ranged from mild to extreme during the drought period. Pearson’s correlation analyses were performed between DSI and the in situ meteorological station-based Standardized Precipitation Index (SPI) for validating the monitoring results of the DSI. The results showed that the DSI corresponded favorably with the time scales of the SPI; meanwhile, the DSI showed its highest correlation (mean: r = 0.58) with a three-month SPI. Furthermore, similar spatial patterns and temporal variations were found between the DSI and the three-month SPI, as well as the agro-meteorological drought observation data, when monitoring drought. Our analysis suggests that the DSI can be used for near-real-time drought monitoring with fine resolution across subtropical southwestern China, or other similar regions, based solely on MODIS-derived evapotranspiration/potential evapotranspiration and Normalized Difference Vegetation Index data.  相似文献   

2.
基于HJ-1B卫星数据的积雪面积制图算法研究   总被引:2,自引:0,他引:2  
积雪是影响气候变化的重要因子, 采用更高时空分辨率的环境减灾卫星遥感数据进行积雪制图算法的研究, 对推进我国自主遥感卫星在积雪监测领域的应用具有重要意义. 采用环境减灾HJ-1B卫星数据, 以青海省果洛藏族自治州达日县为研究区, 应用归一化差值积雪指数(NDSI)法建立了基于HJ-1B卫星数据的积雪面积制图算法, 并比较MODIS与HJ-1B积雪图精度. 结果表明: 研究区HJ-1B积雪制图合理的NDSI阈值为0.37, 总分类精度达到97.97%; 与"真值"影像比较, HJ-1B积雪图Khat系数为0.911, 高于MODIS的0.817. 说明该研究建立的基于HJ-1B积雪制图算法精度可靠, 适合对研究区积雪进行实时动态监测. HJ-1B更高的空间分辨率对提高研究区积雪覆盖面积监测精度具有重要的使用价值, 但是地形因素是影响HJ-1B数据积雪分类精度的一个重要原因, 随着坡度的增加, 分类误差也随之增大, 尤其是多测误差增加比较显著.  相似文献   

3.
Mikaili  Omidreza  Rahimzadegan  Majid 《Natural Hazards》2022,111(3):2511-2529

As drought occurs in different climates, assessment of drought impacts on parameters such as vegetation cover is of utmost importance. Satellite remote sensing images with various spectral and spatial resolutions represent information about different land covers such as vegetation cover. Hence, the purpose of this study was to investigate the performance of satellite vegetation indices to monitor the agricultural drought on a local scale. In this regard, satellite images including Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) data were used to evaluate vegetation cover and their gradual changes effects on agricultural drought. Fars province in Iran with relatively low precipitation values was selected as the study area. Modified Perpendicular Drought Index (MPDI), MPDI1, Vegetation Condition Index (VCI), Normalized Difference Vegetation Index Anomalies (NDVIA), and Standardized Vegetation Index (SVI), were evaluated to select the remote sensing based index with the best performance in drought monitoring. The performance of such indices were investigated during 13 years (2000–2013) for MODIS and 29 years (1985–2013) for AVHRR. To assess the efficiency of the satellite indices in drought investigation, Standardized Precipitation Index (SPI) data of five selected stations were used for 3, 6, and 9 month periods on August. The results showed that NDVI-based vegetation indices had the highest correlation with SPI in cold climate and long-term timescale (6 and 9 month). The highest correlation values between remote sensing based indices and SPI were acquired, respectively, in 9-month and 6-month time-scales, with the values of 43.5% and 40%. Moreover, VCI showed the highest capability for agricultural drought investigating in different climate regions of the study area. Overall, the results proved that NDVI-based indices can be used for drought monitoring and assessment in a long-term timescale on a local time-scale.

  相似文献   

4.
藏西北地区生态环境脆弱,由于地形复杂、气候独特,该区的观测资料非常缺乏。利用遥感技术开展藏西北地区的干旱监测,能获取在空间上连续变化的地表干旱情况,对于指导该区农牧业生产具有重要的意义。基于FY-3A/VIRR的一级数据和标准旬产品(地表温度、植被指数),采用温度植被干旱指数(TVDI)进行藏西北地区的干旱监测研究,并将监测结果分别与基于EOS/MODIS数据监测的结果、同期的野外实测土壤水分数据以及气象站点的降水量数据进行了对比分析。结果表明:利用FY-3A/VIRR数据的TVDI遥感监测结果与实测土壤水分、气象站累计降水量数据均呈显著的负相关关系,通过了0.01水平的显著性检验;利用FY-3A/VIRR数据与EOS/MODIS数据估算的TVDI干旱等级空间分布特征基本一致,FY-3A/VIRR数据可以代替EOS/MODIS数据在藏西北地区开展干旱遥感监测,可为指导藏西北地区农牧业生产提供数据支持。  相似文献   

5.
Drought is a natural phenomenon posing severe implications for soil, groundwater and agricultural yield. It has been recognized as one of the most pervasive global change drivers to affect the soil. Soil being a weakly renewable resource takes a long time to form, but it takes no time to degrade. However, the response of soil to drought conditions as soil loss is not manifested in the existing literature. Thus, this study makes a concerted effort to analyze the relationship between drought conditions and soil erosion in the middle sub-basin of the Godavari River in India. MODIS remote sensing data was utilized for driving drought indices during 2000–2019. Firstly, we constricted Temperature condition index (TCI) and Vegetation Condition Index (VCI) from Land Surface Temperature (LST) and Enhanced Vegetation Index (EVI) derived from MODIS data. TCI and VCI were then integrated to determine the Vegetation Health Index (VHI). Revised Universal Soil Loss Equation (RUSLE) was utilized for estimating soil loss. The relationship between drought condition and vegetation was ascertained using the Pearson correlation. Most of the northern and southern watersheds experienced severe drought condition in the sub-basin during 2000–2019. The mean frequency of the drought occurrence was 7.95 months. The average soil erosion in the sub-basin was estimated to be 9.88 t ha?1 year?1. A positive relationship was observed between drought indices and soil erosion values (r value being 0.35). However, wide variations were observed in the distribution of spatial correlation. Among various factors, the slope length and steepness were found to be the main drivers of soil erosion in the sub-basin. Thus, the study calls for policy measures to lessen the impact of drought and soil erosion.  相似文献   

6.
7.
基于冠层温度的作物缺水研究进展   总被引:35,自引:2,他引:35  
冠导温度信息可以很好地反映作物的水分状况。自20世纪70年代以来,基于冠层温度的作物缺水指标的研究经历了三个阶段,即单纯研究冠层温度本身变化特征的第一阶段、以冠层能量平衡原理为基础的作物水分胁迫指数的第二阶段和考虑冠层和土壤的复合温度的水分亏缺指数的第三阶段。指标的局长也由使用手持式红外辐射仪信息扩大到使用航空和卫星遥感信息。这一类指标在点和区域尺度上均可应用。加强这一类指标的研究对于我国北方地区农作物的有效灌溉和区域水资源的管理都有重要意义。  相似文献   

8.
扎西央宗  陈军  李林  叶帮苹 《冰川冻土》2014,36(5):1245-1250
干旱是一种危害较大的自然灾害, 影响范围大、持续时间长. 随着经济发展和人口的增加, 水资源短缺现象日益严重, 这也导致了干旱范围的扩大和干旱化程度加重. 为降低业务人员负担, 提高业务工作效率, 探讨了基于MODIS遥感数据的西藏干旱监测系统实现的关键技术. 首先, 阐述了MODIS 轨道数据快速投影处理的正向投影处理技术原理, 然后分析了温度植被干旱指数算法(TVDI)及其实现, 最后, 将干旱监测方法集成到业务系统软件, 最终实现西藏全区的干旱遥感监测业务工作. 通过与传统手工干旱监测方法进行对比, 发现干旱自动监测系统具有速度快、自动化等优点, 具有十分重要的实践意义.  相似文献   

9.
The aim of the present research is to monitor changes in herbage production during the grazing season in the Semirom and Brojen regions, Iran, using multitemporal Moderate Resolution Imaging Spectroradiometer (MODIS) data. At first, various preprocessing steps were applied to a topography map. The atmospheric and topographic corrections were applied using subtraction of the dark object method and the Lambert method. Image processing, including false-color composite, principal component analysis, and vegetation indices were employed to produce land use and pasture production maps. Vegetation sampling was carried out over a period of 4 months during June–September 2008, using a stratified random sampling method. Twenty random sampling points were selected, and herbage production was estimated and verified with the double-checking method. Four MODIS data sets were used in this study. The models for image processing and integrating ground data with satellite images were processed, and the resulting images were categorized into seven classes. Finally, the land covers were verified for accuracy. A postclassification analysis was carried out to verify the seven class change detections. The results confirmed that Normalized Difference Vegetation Index (NDVI) and Soil-Adjusted Vegetation Index (SAVI) maps had a close relationship with the field data. The indices produced with shortwave infrared bands had a close relationship with field data where the ground cover and yields were high. The R 2 value observed was 0.85. The changes in the pasture vegetation were high during the growing season in more than 90 % of the pastures. During the growing season, most changes in the pastures belonged to class 5 and 2 in the NDVI and SAVI index maps, respectively.  相似文献   

10.
利用MODIS和AMSR-E进行积雪制图的比较分析   总被引:21,自引:2,他引:19  
延昊 《冰川冻土》2005,27(4):515-519
MODIS和被动微波辐射计AMSR-E提供了识别积雪的不同方法.MODIS首先计算反映积雪在1.6μm强吸收特性的归一化差值积雪指数NDSI,在剔除卷云的影响后,得到MODIS积雪分布.AMSR-E则根据积雪在微波波段的差异性散射特性识别积雪.通过案例分析比较了MODIS和AMSR-E积雪分布,发现由于云的遮蔽使MODIS积雪分布面积会比实际小,但由于MODIS的空间分辨率很高,得到的积雪边界线轮廓清晰.而微波由于不受云的影响,得到的AMSR-E积雪分布比较符合实际,但积雪的边界线较粗.  相似文献   

11.
长江流域陆地水储量与多源水文数据对比分析   总被引:1,自引:0,他引:1       下载免费PDF全文
王文  王鹏  崔巍 《水科学进展》2015,26(6):759-768
从趋势性、滞后性及相关性三方面,对2002—2013年间GRACE重力卫星反演的长江上游与中游陆地水储量与模型模拟土壤含水量、实测降水和实测径流数据进行了对比分析,并从干旱强度及发展时间两方面评估了标准化陆地水储量指数SWSI、标准化降水指数SPI、标准化径流指数SRI和标准化土壤含水量指数SSMI对区域性干旱的表征能力.结果表明:长江上游地区陆地水储量与降水、径流和土壤水蓄量均无显著变化,而中游地区陆地水储量则与水库蓄量同样具有显著性增加,反映人类活动对中游地区陆地水储量变化有很大影响;各指标指示的各等级干旱月份数量基本相当,但各指标反映的特旱具体月份有较大差别,基于GRACE数据构建的SWSI指标对特大干旱的指示性不好;对比各指标对上游与中游地区干旱事件发展时间,体现出水文干旱、农业干旱对气象干旱存在一定的迟滞关系.  相似文献   

12.
In arid to semi-arid climates, monitoring drought is very complicated because of different hydrometeorology variables effect on it. It is proposed in this paper to develop Fuzzy Integrated Drought Index (FIDI) which combines most important effective factors in developing drought. At first, Variable Infiltration Capacity (VIC) model calibrated simulated runoff to outlet basin runoff data for years 1993–1995. Results represent high performance of model in simulating runoff of outlet basin. Then, Precipitation Anomaly Percentage Index (PAPI), actual Evapotranspiration Anomaly Percentage Index (EAPI), Runoff Anomaly Percentage Index (RAPI), and Soil Moisture Anomaly Percentage Index (SMAPI) were constructed. FIDI was compared with the PAPI, RAPI and SMAPI for the period of 1985 to 2014. The results indicate that (1) the FIDI has more ability in determining start and persistence of drought event compared with PAPI, RAPI, and SMAPI; (2) in the low time scales, PAPI and SMAPI have high correlation with FIDI, and in the higher time scales, RAPI has the high correlation with FIDI; (3) spatially, the middle, west, and portion of north have higher drought risk in the Neyshabour basin.  相似文献   

13.
基于HJ-1B卫星数据的疏勒河上游流域地表温度反演   总被引:3,自引:3,他引:0  
地表温度是描述地表和大气之间物质交换和能量平衡的关键参数之一. 利用疏勒河上游流域2010年7月25日过境的HJ-1B卫星数据, 采用修正的Jimenez-Mufloz&Sobrino普适性单通道算法反演了疏勒河上游流域的地表温度. 与MODIS LST产品的对比验证表明, 该算法在研究区有较高的精度. 同时, 对不同土地利用类型的地表温度的分析表明, 土地利用类型不同, 其地表温度存在一定的差异, 其中, 稀疏草地的地表温度最高, 裸岩次之. 研究发现, 在河流和冰川区, 修正的单通道算法可能高估了表面温度. 同时, 对模型反演所需的关键地表参数的敏感性分析发现, 算法在一定范围(0~0.01)内对比辐射率不太敏感, 但超过该范围则变得非常敏感, 而对大气水汽含量比较敏感. 因此, 一定程度上, 地表比辐射率和大气水汽含量的精度对HJ-1B卫星数据反演地表温度的准确性起主要作用.  相似文献   

14.
Karamoja is notoriously food insecure and has been in need of food aid for most years during the last two decades. One of the main factors causing food insecurity is drought. Reliable, area-wide, long-term data for detecting and monitoring drought conditions are critical for timely, life-saving interventions and the long-term development of the region, yet such data are sparse or unavailable. Due to advances in satellite remote sensing, characterizing drought in data-sparse regions like Karamoja has become possible. This study characterizes agricultural drought in Karamoja to enable a comprehensive understanding of drought, concomitantly evaluating the suitability of NDVI-based drought monitoring. We found that in comparison with the existing data, NDVI data currently provide the best, consistent, and spatially explicit information for operational drought monitoring in Karamoja. Results indicate that the most extreme agricultural drought in recent years occurred in 2009 followed by 2004 and 2002 and suggest that in Karamoja, moderate to severe droughts (e.g., 2008) often have the same impact on crops and human needs (e.g., food aid) as extreme droughts (e.g., 2009). We present in a proof-of-concept frame, a method to estimate the number of people needing food assistance and the population likely to fall under the integrated food security phase classification (IPC) Phase 3 (crisis) due to drought severity. Our model indicates that 90.7% of the variation in the number of people needing aid can be explained by NDVI data and NDVI data can augment these estimates. We conclude that the biggest drivers of food insecurity are the cultivation of crops on marginal land with insignificant inputs, the lack of irrigation and previous systematic incapacitation of livestock (pastoral) alternatives through government programming. Further research is needed to bridge empirical results with social–economic studies on drought impacts on communities in the region to better understand additional factors that will need to be addressed to ensure livelihood resilience.  相似文献   

15.
"全球农情遥感速报系统(CropWatch)"新进展   总被引:5,自引:0,他引:5  
目前由中国科学院遥感应用研究所建设和运行的"全球农情遥感速报系统",是世界上开展全球尺度农情遥感业务监测的主要运行系统之一,可以在中国和全球尺度提供作物长势、单产、种植面积、产量和旱情等农情信息.自1998年建设至今,已经发展成为一个独立运行、监测内容全面、技术先进、监测结果可靠,并具有快速响应能力的系统.2004年,<遥感学报>(第8卷第6期)对该系统的主要技术方法进行了系统介绍.2005-2009年,通过对CropWatch的不断完善,提高了系统的独立性和运行效率,并在2008年春季雪灾、汶川地震、2009年冬小麦种植区春季干旱、2010年西南大旱等关键时期发挥了重要作用.详细介绍了2005-2009年间在系统化建设、监测的独立性和系统的应用推广等方面的进展,并对系统在"十二五"期间的发展重点进行了展望.  相似文献   

16.
The present study is carried out to examine the impact of temperature and humidity profiles from moderate resolution imaging spectroradiometer (MODIS) or/and atmospheric infrared sounder (AIRS) on the numerical simulation of heavy rainfall events over the India. The Pennsylvania State University–National Centre for Atmospheric Research fifth-generation mesoscale model (MM5) and its three-dimensional variational (3D-Var) assimilation technique is used for the numerical simulations. The heavy rainfall events occurred during October 26–29, 2005, and October 27–30, 2006, were chosen for the numerical simulations. The results showed that there were large differences observed in the initial meteorological fields from control experiment (CNT; without satellite data) and assimilation experiments (MODIS (assimilating MODIS data), AIRS; (assimilating AIRS data); BOTH (assimilating MODIS and AIRS data together)). The assimilation of satellite data (MODIS, AIRS, and BOTH) improved the predicted thermal and moisture structure of the atmosphere when compared to CNT. Among the experiments, the predicted track of tropical depressions from MODIS was closer to the observed track. Assimilation of MODIS data also showed positive impact on the spatial distribution and intensity of predicted rainfall associated with the depressions. The statistical skill scores obtained for different experiments showed that assimilation of satellite data (MODIS, AIRS, and BOTH) improved the rainfall prediction skill when compared to CNT. Root mean square error in quantitative rainfall prediction is less in the experiment which assimilated MODIS data when compared to other experiments.  相似文献   

17.
Typhoons are one of the major natural hazards occurring frequently in Shanghai. The comprehensive assessment of drought relief by typhoon has become a major concern of scientists and government agencies in Shanghai, China. In this article, with the support of remote sensing data and the available data from local meteorological stations, the regional drought relief was investigated and the change of drought intensity was quantified by the typhoon “Saomai” between 5 and 8 August 2005. The precipitation anomaly calculated on the basis of recorded rainfall was adopted to analyze drought condition changes before and after the typhoon. Then, vegetation supply water index (VSWI) and normalized difference vegetation index (NDVI) were used to monitor the drought relief due to the consecutive shortage of summer rainfall. Impact of typhoon on drought was compared by VSWI before and after typhoon Saomei. The results showed that the typhoon alleviated the drought of the vegetation by more than 70 %, based on the spatial and temporal distribution of precipitation, the ground temperature, relative humidity, high temperature, NDVI from Shanghai area. The result shows that MODIS remote sensing data are a useful quantitative monitoring tool in drought relief by local typhoons. More strategies are necessary to be adopted for prevention and mitigation of meteorological disaster in Shanghai in recent years.  相似文献   

18.
基于重轨InSAR的积雪深度反演方法   总被引:1,自引:0,他引:1  
利用合成孔径雷达(Synthetic Aperture Radar,SAR)反演积雪深度是流域尺度积雪遥感监测的热点之一, SAR的干涉测量(Interferometic SAR, InSAR)扩展了其在积雪研究中的应用. 微波能够穿透干雪,并在雪-空气界面发生折射,导致传播路径变化;根据InSAR原理,降雪前后的SAR像对会形成由于干雪覆盖导致的干涉相位差. 基于此,提出了基于重轨InSAR技术的积雪深度反演方法:首先,结合气象、水文、野外观测数据,判断积雪状态,以选择最佳干涉像对(无雪和干雪覆盖);然后,优化干涉处理过程,利用差分原理,获得由于干雪覆盖导致的相位差;最后,基于雪深与相位差的几何关系,反演积雪深度,并探讨反演结果精度的影响因素. 以新疆玛纳斯河流域山前平原为研究区,利用Envisat ASAR数据,实现积雪深度的反演. 结果表明:2009年2月份研究区大部分地区雪深为20 cm左右,与野外观测结果相符;与同时期HJ-1光学影像比较,所获得的积雪覆盖范围吻合. 同时指出,失相干和输入参数(入射角、雪密度)误差是反演结果误差的主要来源.  相似文献   

19.
基于大范围地面墒情监测的鄱阳湖流域农业干旱   总被引:1,自引:0,他引:1       下载免费PDF全文
以鄱阳湖流域为研究区, 基于2011—2020年22个墒情站的逐日地面墒情监测数据、1956—2020年49个雨量站的日降雨数据及2016—2019年墒情站所在灌区的气象数据, 采用考虑植被生理状态的土壤水分亏缺指数(SWDI)表征农业干旱, 分析不同尺度下墒情、包气带缺水量和降水量的时空分布, 评估SWDI在鄱阳湖流域农业干旱监测中的适用性, 揭示该流域农业干旱时空演变特征及其对气象干旱的响应规律, 初步探讨土壤质地与农业干旱强度的相关性。结果表明: ① SWDI对鄱阳湖流域农业干旱诊断具有较好的适用性; ②近10 a该流域农业干旱呈显著加重趋势, 其中2019—2020年发生流域性重度农业干旱, 且夏、秋、冬连旱, 是近10 a的主导季节性农业干旱, 对水稻、油菜等粮食产量影响显著; ③相较于气象干旱, 农业干旱发生、结束时间分别平均约晚2.5周和3周, 历时长10.1周, 频次更低, 干旱等级更小; ④砂土持水性最差, 易发生特大农业干旱, 黏土、黏壤土保水性最好, 轻旱和中旱发生概率较大, 壤土、砂壤土和壤砂土则介于二者之间。  相似文献   

20.
Dongting Lake is the second largest freshwater lake in China, and its water surface area varied very significantly during last decade. Remote sensing technology has more advantages in macro monitoring of lake water surface area than the traditional methods. In the paper, an integrated threshold method of water body extraction based on MODIS data is given, which synthesizes several factors, including vegetation index—NDVI, spectrum characters of water body, cloud and shadow, and the SRTM digital elevation information. With this method and 356 scenes MODIS 8-Day composite (MOD09Q1) image, water surface area of Dongting Lake was dynamically monitored from 2000 to 2009. The result shows that during 1 year, the water area variation in Dongting Lake area had a typical seasonal (monsoon) behavior, and during last decade, the water area decreased gradually and obviously. Based on variation monitoring, yearly max-submersion time index has been suggested to analyze flood hazard in study area. With the support of ArcGIS software, authors estimated the yearly submersion time of the Dongting Lake for each year separately and average submersion time from 2000 to 2009. The result shows 67.46% of study area is being with high flood hazard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号