首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ghodrat Torabi 《Island Arc》2010,19(2):277-291
The Jandaq lamprophyres occur as eight mostly parallel dykes, which cross‐cut Eocene volcanic and sedimentary rocks of the Pis‐Kuh Formation in dominant north to south direction. These lamprophyres are mainly composed of kaersutite, clinopyroxene, olivine, feldspar, ilmenite, and spinel as primary minerals. The rocks studied here are enriched in alkalis, TiO2, large ion lithophile elements, and light rare‐earth elements (LREE), with SiO2 content between 41.7 and 46.2 wt%, and are classified as camptonite and alkaline lamprophyre according to the mineralogical and chemical characteristics. These rocks exhibit positive Eu anomalies (Eu/Eu* = 1.08–1.39) and are characterized by strong enrichment in LREE relative to heavy REEs, and also by varied Zr/Hf ratios. The geochemical features of the rocks suggest that the lamprophyre magmas were derived from low‐degree melting of an amphibole garnet lherzolite that experienced strong metasomatism by carbonate‐rich fluids in response to dehydration melting from the subducted slab. The Jandaq lamprophyric magmatism has been attributed to the former subduction of the Central–East Iranian microcontinent confining oceanic crust from the Triassic to Eocene, and decompression melting induced by the extensional basin of the Jandaq area in the early Oligocene.  相似文献   

2.
Abstract Volcanism in the back-arc side region of Central Luzon, Philippines, with respect to the Manila Trench is characterized by fewer and smaller volume volcanic centers compared to the adjacent forearc side-main volcanic arc igneous rocks. The back-arc side volcanic rocks which include basalts, basaltic andesites, andesites and dacites also contain more hydrous minerals (ie, hornblende and biotite). Adakite-like geochemical characteristics of these back-arc lavas, including elevated Sr, depleted heavy rare earth elements and high Sr/Y ratios, are unlikely to have formed by slab melting, be related to incipient subduction, slab window magmatism or plagioclase accumulation. Field and geochemical evidence show that these adakitic lavas were most probably formed by the partial melting of a garnet-bearing amphibolitic lower crust. Adakitic lavas are not necessarily arc–trench gap region slab melts.  相似文献   

3.
Two volcanic cycles can be distinguished, in the Pontid magmatic arc. They comprise an Upper Cretaceous, Lower Volcanic Cycle of which only the waning stage contains abundant pyroclastic rocks. The latter show spatial association to the fault pattern and are closely related to mineralisation. The overlying, early Tertiary, Upper Volcanic Cycle shows evidence of explosive vulcanicity in the Upper Basic Series. Dacites and rhyodacites are only locally developed and again show spatial association with the faulting.Comparison of the major and minor element chemistries of the two cycles demonstrates the clear separation into a lower tholeiitic and an upper calc-alkaline cycle. The rocks show similar chemistry to volcanic suites from island arcs in other areas.The origin of the tholeiitic magma is ascribed to melting of “dry” amphibolite during early subduction of Tethyan ocean floor beneath “Pontian Land”. This resulted in low K abundances and K/Rb ratios, and some Fe enrichment in the tholeiitic basalts.The calc-alkaline magma is thought to be derived from a later stage in the subduction process when melting of amphibole was joined by melting of biotite or phlogopite. The Upper Volcanic Cycle is thus enriched in K and shows no Fe enrichment due to a probable higher water content. The higher Cr and Ni contents of the Upper Volcanic Cycle, together with K, may imply some melting of lherzolite overlying the subducted slab.  相似文献   

4.
Niobium–tantalum systematics of slab-derived melts are powerful tracers that discriminate residual high-pressure rutile-bearing eclogite from low-pressure garnet-bearing amphibolite in subducting plates. Previously reported low Nb–Ta ratios in modern slab melts suggested a predominance of shallow melting in the presence of residual amphibole and that deep melting of rutile-bearing eclogitic slabs, devoid of residual amphibole, is volumetrically insignificant. This study evaluates Nb/Ta in combination with other trace element systematics of modern intra-oceanic and slab melt-related arc lavas from the south-western volcanic chain of the Solomon Islands that cover over 1000 km of the SW Pacific plate border. After a change of subduction polarity, an old subducted Pacific slab and a recently subducting Indian–Australian slab are both present beneath the arc. Solomon arc lavas show sub- to superchondritic Nb–Ta ratios (ca. 10 to 27) which is the largest range ever reported in modern island arc lavas. The large range of Nb/Ta likely results from enrichment of the depleted sub-arc mantle by two distinct slab-derived melts in addition to fluids. One minor slab melt component is derived from the shallow and recent subducting Indian–Australian plate where amphibole is still a significant residual phase. The second slab melt component is predominant in Solomon arc lavas and can be attributed to deep rutile–eclogite-controlled melting of old subducted Jurassic Pacific oceanic crust where residual amphibole is entirely absent or insignificant. The deep Pacific slab melt component is the most likely origin of the extremely high and superchondritic Nb/Ta signatures that produce the upper half of the observed range of Nb/Ta in Solomon arc lavas. The slab melt component that enriched the sub-arc mantle with an unusually high Nb/Ta signature is derived from an initially intact Pacific plate that was probably subject to a slab break-off event and subsequent melting at depths exceeding 100 km. The geochemical evidence presented here shows that old and cold subducted oceanic crust, which is initially not torn, may resist shallow melting but can melt at greater depths instead. The resulting slab melts are generated in the presence of residual rutile-bearing eclogite and significantly fractionate Nb–Ta ratios which may be of relevance at a global scale.  相似文献   

5.
Latest Oligocene and Early Miocene volcanic rocks occur on the Northland Peninsula, New Zealand, and record the inception of Cenozoic subduction-related volcanism in the North Island that eventually evolved to its present manifestation in the Taupo Volcanic Zone. This NW-striking Northland Arc is continuous with the Reinga Ridge and comprises two parallel belts of volcanic centres ca. 60 km apart. A plethora of tectonic models have been proposed for its origins. We acquired new trace element and Sr–Nd isotope data to better constrain such models. All Northland Arc rocks carry an arc-type trace element signature, however distinct differences exist between rocks of the eastern and western belt. Eastern belt rocks are typically andesites and dacites and have relatively evolved isotope ratios indicating assimilated crustal material, and commonly contain hornblende. Additionally some eastern belt rocks with highly evolved isotope compositions show fractionated REE compositions consistent with residual garnet, and some contain garnetiferous inclusions in addition to schistose crustal fragments. In contrast, western belt rocks are mostly basalts or basaltic andesites with relatively primitive Sr–Nd isotope compositions, do not contain hornblende and show no rare earth element evidence for cryptic amphibole fractionation. Eastern and western belt rocks contain comparable slab-derived fractions of fluid-mobile trace elements and invariably possess an arc signature. Therefore the difference between the belts may be best explained as due to variation in crustal thickness across the Northland Peninsula, where western belt centres erupted onto a thinner crustal section than eastern belt rocks.The consistent arc signature throughout the Northland arc favours an origin in response to an actual, if short-lived subduction event, rather than slab detachment as proposed in some models. No Northland Arc rocks possess a convincing adakite-like composition that might reflect the subduction of very young oceanic lithosphere such as that of the Oligocene South Fiji Basin. Therefore we favour a model in which subduction of old (Cretaceous) lithosphere drove subduction.  相似文献   

6.
The Iliniza Volcanic Complex (IVC) is a poorly known volcanic complex located 60 km SSW of Quito in the Western Cordillera of Ecuador. It comprises twin peaks, North Iliniza and South Iliniza, and two satellite domes, Pilongo and Tishigcuchi. The study of the IVC was undertaken in order to better constrain the role of adakitic magmas in the Ecuadorian arc evolution. The presence of volcanic rocks with an adakitic imprint or even pristine adakites in the Ecuadorian volcanic arc is known since the late 1990s. Adakitic magmas are produced by the partial melting of a basaltic source leaving a garnet rich residue. This process can be related to the melting of an overthickened crust or a subducting oceanic crust. For the last case a special geodynamic context is required, like the subduction of a young lithosphere or when the subduction angle is not very steep; both cases are possible in Ecuador. The products of the IVC, made up of medium-K basaltic andesites, andesites and dacites, have been divided in different geochemical series whose origin requires various interactions between the different magma sources involved in this subduction zone. North Iliniza is a classic calc-alkaline series that we interpret as resulting from the partial melting of the mantle wedge. For South Iliniza, a simple evolution with fractional crystallization of amphibole, plagioclase, clinopyroxene, magnetite, apatite and zircon from a parental magma, being itself the product of the mixing of 36% adakitic and 64% calc-alkaline magma, has been quantified. For the Santa Rosa rhyolites, a slab melting origin with little mantle interactions during the ascent of magmas has been established. The Pilongo series magma is the product of a moderate to high degree (26%) of partial melting of the subducting oceanic crust, which reached the surface without interaction with the mantle wedge. The Tishigcuchi series shows two stages of evolution: (1) metasomatism of the mantle wedge peridotite by slab melts, and (2) partial melting (10%) of this metasomatized source. Therefore, the relative ages of the edifices show a geochemical evolution from calc-alkaline to adakitic magmas, as is observed for several volcanoes of the Ecuadorian arc.  相似文献   

7.
Abstract On the island of Mustique, fresh and propylitized olivine–plagioclase–clinopyroxene basalt, plagioclase–clinopyroxene–orthopyroxene and plagioclase–clinopyroxene–amphibole andesite lavas and minor intrusions are interbedded with Oligocene pyroclastic and epiclastic rocks. Chemical data show that two isotopically identical, but chemically different, suites of lava are present: (i) the OPXS (87Sr/86Sr 0.70403–0.70454; 143Nd/144Nd 0.512952–0.512986; δ18Ocpx 5.49 and 5.61), comprising basalts and orthopyroxene‐bearing andesites; and (ii) the AMPHS (87Sr/86Sr 0.70401–0.70457; 143Nd/144Nd 0.512981–0.513037; δ18Ocpx 5.54), made up of basalts and amphibole‐bearing andesites. The OPXS has higher contents of TiO2, P2O5, light rare earth elements, Sm, Pb, Th, U, Zr, Y and Nb, and higher La/Yb ratios than the AMPHS. The isotopic data suggest that both suites formed from melts derived from the same subduction‐modified depleted mantle source as the volcanic rocks of nearby St Vincent and Bequia, and the northern islands of the Lesser Antilles Arc. The immobile trace element contents, and La/Yb ratios, of the OPXS are indicative of ~10% partial melting of the source, whereas those of the AMPHS are indicative of ~25% partial melting. The within‐suite chemical variation of the OPXS is consistent with ~45% fractional crystallization of its intratelluric mineral assemblages, and that of the AMPHS is consistent with the removal of ~65% of its intratelluric assemblages. Experimental evidence suggests that both suites of basalt crystallized at pressures <8 kbar from melts containing 1–2 wt% water. After extensive fractional crystallization, the andesites crystallized at pressures between approximately 5 and 2 kbar. The OPXS magmas appear to have lost more of their water content than the AMPHS magmas. Thus, the OPXS andesites formed from melts with an estimated water content of 2–3 wt%, whereas the AMPHS andesites formed from melts containing at least 4.5 wt% water.  相似文献   

8.
Late Cenozoic volcanism in Baja California records the effects of cessation of subduction at a previously convergent, plate margin. Prior to 12.5 m.y., when subduction along the margin of Baja ceased, the predominant volcanic activity had a calc-alkaline signature, ranging in composition from basalt to rhyolite. Acidic pyroclastic activity was common, and possibly represented the westermost, distal edge of the Sierra Madre Occidental province. After 12.5 m.y., however, the style and composition of the magmatic products changed dramatically. The dominant rock type within the Jaraguay and San Borja volcanic fields is a magnesian andesite, with up to 8% MgO at 57% SiO2, low Fe/Mg ratios, and high Na/K ratios. These rocks have unusual trace-element characteristics, with high abundances of Sr (up to 3000 ppm), low contents of Rb; K/Rb ratios are very high (usually over 1000, and up to 2500), and Rb/Sr ratios are low (less than 0.01). Furthermore, Lan/Ybn ratios are high, consistent with derivation from a mantle source with fractionated REE patterns. 87Sr/86Sr ratios are less than 0.7048, and usually less than 0.7040, whereas the pre-12.5 m.y. lavas have 87Sr/86Sr ratios between 0.7038 and 0.7063. We have previously termed these rocks bajaites, in order to distinguish them from other magnesian andesites. Bajaites also occur in southernmost Chile and the Aleutian Islands, areas which also have histories of attempted or successful ridge subduction.It is proposed that the bajaite series is produced during the unusual physico-chemical conditions operating during the subduction of young oceanic lithosphere, or subduction of a spreading centre. During normal subduction, the oceanic crust dehydrates, releasing volatiles (water, Rb and other large-ion lithophile elements) into the overlying wedge. Subduction of younger crust will result in a progressive decrease, and eventual cessation of the transfer of volatiles when subduction stops. Thermal rebound of the mantle may cause the slab to melt, perhaps under eclogitestable conditions. The resulting melt will be heavy-REE-depleted, perhaps dacitic, but will otherwise inherit MORB-like Rb/Sr and K/Rb ratios. The ascending melt will react with the mantle to form the source of the bajaitic rocks. Furthermore, any amphibole in the mantle, stabilised during the higher PH2O conditions of earlier subduction, will break down and contribute a high-K/Rb ratio component.The implications of this study are that firstly, the subducted slab does not contribute a highly fractionated REE component in most modern arcs (i.e. the slab does not melt); secondly, Rb has a very short residence time in the mantle, and its abundance in arc rocks is a direct reflection of the input from the dehydrating slab; and thirdly, bajaitelike rocks may provide recognition of attempted or successful ridge subduction in the geologic past.  相似文献   

9.
Whole‐rock geochemical and Sr–Nd isotopic data are presented for late Miocene volcanic rocks associated with the Chah Zard epithermal Au–Ag deposit in the Urumieh‐Dokhtar Magmatic Arc (UDMA), Iran, to investigate the magma source, petrogenesis and the geodynamic evolution of the study area. The Chah Zard andesitic to rhyolitic volcanic rocks are characterized by significant Large Ion Lithophile Element (LILE) and Light Rare Earth Element (LREE) enrichment coupled with High Field Strength Element (HFSE) depletion. Our geochemical data indicate an adakitic‐like signature for the volcanic rocks (e.g. SiO2 > 62 wt%, Al2O3 > 15 wt%, MgO < 1.5 wt%, Sr/Y > 70, La/Yb > 35, Yb < 1 ppm, and Y < 18 ppm, and no significant Eu anomalies), distinguishing them from the other volcanic rocks of the UDMA. The Chah Zard volcanic rocks have similar Sr and Nd isotopic compositions; the 87Sr/86Sr(i) ratios range from 0.704 902 to 0.705 093 and the εNd(i) values are from +2.33 to +2.70. However, the rhyolite porphyry represents the final stage of magmatism in the area and has a relatively high 87Sr/86Sr ratio (0.705 811). Our data suggest that the andesitic magmas are from a heterogeneous source and likely to result from partial melting of a metasomatized mantle wedge associated with a mixture of subducted oceanic crust and sediment. These melts subsequently underwent fractional crystallization along with minor amounts of crustal assimilation. Our study is consistent with the model that the volcanic host rocks to epithermal gold mineralization in the UDMA are genetically related to late Miocene Neo‐Tethyan slab break‐off beneath Central Iran.  相似文献   

10.
The processes that result in arc magmas are critical to understanding element recycling in subduction zones, yet little is known about how these systems evolve with time. Nicaragua provides an opportunity to reconstruct the history of a volcanic arc since the Cretaceous. Here we present the stratigraphy of the Cretaceous–Eocene volcanic units in Nicaragua and their relationship to the different tectonic units where the arc developed. We discovered an evolution from an arc‐dominated by calc‐alkaline compositions in the Cretaceous–Eocene, to transitional compositions in the Oligocene–Miocene, to finally tholeiitic magmas common in the modern volcanic front. Our petrographic studies confirm that in the Cretaceous–Eocene the olivine + clinopyroxene cotectic was followed by clinopyroxene + plagioclase ± amphibole. Given the abundance of amphibole and the lack of this mineral in the modern volcanic front, the Cretaceous–Eocene Arc melts were likely more water‐rich than modern Nicaragua, suppressing the crystallization of plagioclase after olivine. We also found temporal changes in element ratios that are sensitive to variations in sediment input. The Cretaceous–Eocene Arc is characterized by a lower Ba/Th compared to the Oligocene–Miocene and modern volcanic front samples, suggesting that the sediment input was lower in Ba, possibly analogous to old deep siliceous sediment subducting in the western Pacific. Both U/Th and U/La are higher in the modern volcanics, reflecting higher U/Th in the subducting sediments following the 'Carbonate Crash'. Finally, we found that the orientation of the arc axis also changed, from northeast‐southwest in the Cretaceous–Eocene to northwest‐southeast after the Oligocene. This change probably records variations in the location of the subduction zone as this region shaped into its current geographic configuration.  相似文献   

11.
Abstract Two new cases of association of adakites with ‘normal’ island arc lavas and transitional adakites are recognized in the islands of Batan and Negros in northern and central Philippines, respectively. The Batan lavas are related to the subduction of the middle Miocene portion of the South China Sea basin along the Manila trench; those of Negros come from the almost aseismic subduction of the middle Miocene Sulu Sea crust along the Negros trench. The occurrence of the Batan adakites is consistent with previous findings showing adakitic glass inclusions within minerals of mantle xenoliths associated with Batan arc lavas. The similarity of adakite ages (1.09 Ma) and that of the metasomatized xenoliths (1 Ma) suggests that both are linked to the same slab‐melting and metasomatic event. Earlier Sr, Pb and Nd‐isotopic studies, however, also reveal the presence of an important sediment contribution to the Batan lava geochemistry. Thus, the role played by slab melts, assumed to have mid‐ocean ridge basalts‐like (MORB) isotopic characteristics, in enriching the Batan subarc mantle is largely masked by the sediment input. The Negros adakites are present only in Mount Cuernos, the volcanic center nearest to the Negros trench. Batch partial melting calculations show that the Negros adakites could be derived from a garnet amphibolitic source with normal‐MORB (N‐MORB) geochemistry. This is supported by the MORB‐like isotopic characteristics of the Mount Cuernos lavas. The volcanic rocks from the other volcanoes consist of normal arc and transitional adakitic lavas that have slightly higher Sr‐ and Pb‐isotopic ratios, probably due to slight sediment input. Mixing of adakites and normal arc lavas to produce transitional adakites is only partly supported by trace element geochemistry and not by field evidence. The transitional adakites can be modeled as partial melts of an adakite‐enriched mantle. Trace element enrichment of non‐adakitic lavas could reflect the interaction of their mantle source with uprising slab melts, as metasomatic mantle minerals scavenge certain trace elements from the adakitic fluids. Therefore, in arcs beneath which thick (up to 2 km) continent‐derived detrital sediments are involved in subduction, like in Batan, the sediment signature can overwhelm the slab melt input. In arcs like Negros where slow subduction could cause a more efficient scraping of thinner (approximately 1 km) detrital sediments, the contribution of slab melts is easier to detect.  相似文献   

12.
Adakites are increasingly being recognized worldwide in a variety of tectonic settings. Models on the formation of this geochemically distinct class of volcanic rocks have evolved from partial melting of subducted young, hot oceanic slabs to magmatism resulting from oblique subduction, low‐angle or flat subduction, or even slab‐tearing. Some workers have also pointed to the partial melting of thickened crust to explain the generation of adakitic melts. Rare earth element ratios from adakites and adakitic rocks in the Philippines were used in this study to obtain approximations of the levels where they were generated. These were tied to available geophysical data that defines the crustal thickness of the areas where the samples were collected. High Sm/Yb and La/Yb ratios denote the involvement of amphiboles, and in some cases garnet, in the generation of adakites and adakitic magmas. The presence of amphibole and garnet as residual phases suggests high pressures corresponding to thicker crust (~30 to 45 km). Adakites and adakitic rocks formed through processes other than melting of subducted young oceanic crust would need ≥30 km to account for the heavy rare earth element signatures. If mantle fractionation is not the process involved, crustal thickness is critical to generate adakites and adakitic rocks.  相似文献   

13.
Petrochemical studies of granitoid rocks from the eastern part of Kumaun region suggest that the leading edge of India represents an active arc during Late Paleoproterozoic times. It has been observed that melt generation for granodiorite rocks from the eastern Almora Nappe and Chhiplakot klippe along with the Askot klippe was caused through a subduction‐related process involving hydrous partial melting of a Paleoproterozoic amphibole‐ and/or garnet‐bearing mafic source with the involvement of sediments from the subduction zone. The medium‐ to high‐K basic rocks, common in subduction‐related magmatic arcs, can also explain the generation of the high‐K granodiorites of the Chhiplakot klippe. The augen gneisses from the eastern Almora nappe and Chhiplakot klippe along with the Askot klippe further show geochemical similarity with the associated granodiorites, suggesting there is a genetic linkage with one another.  相似文献   

14.
The Gangdese magmatic belt is located in the southern margin of the Lhasa terrane, south Tibet. Here zircon U–Pb ages and Hf isotopic data, as well as whole‐rock geochemistry and Sr–Nd isotopes on andesites from the Bima Formation with a view to evaluating the history of the Gangdese magmatism and the evolution of the Neotethys Ocean. Zircon U–Pb dating yields an age of ca 170 Ma from six samples, representing the eruptive time of these volcanic rocks. Zircon Hf isotopes show highly positive εHf(t) values of +13 to +16 with a mean of +15.2. Whole‐rock geochemical and Sr–Nd isotopic results suggest that the magma source of these andesites was controlled by partial melting of a depleted mantle source with addition of continental‐derived sediments, similar to those in the southern arcs of the Lesser Antilles arc belt. In combination with published data, the volcanic rocks of the Bima Formation are proposed to have been generated in an intra‐oceanic arc system, closely associated with northward subduction of the Neotethyan oceanic lithosphere.  相似文献   

15.
The Taupo Volcanic Zone forms part of the Taupo-Hikurangi subduction system, and comprises five volcanic centres: Tongariro, Taupo, Maroa, Okataina and Rotorua. Tongariro Volcanic Centre is formed almost entirely of andesite while the other four centres contain predominantly rhyolitic volcanics and later fissure eruptions of high-Al basalt. Estimated total volume of each lava type are as follows: 2 km3 of high-Al basalt (< 0.1%); 260 km3 of andesite (< 2.5%); 5 km3 of dacite (< 0.1%); > 10,000 km3 of rhyolite and ignimbrite (> 97.4%).The location of the andesites and vent alignments suggest a source from a subduction zone underlying the area. However, the lavas differ chemically from island-arc andesites such as those of Tonga; in particular by having higher contents of the alkali elements, light REE and Sr and Pb isotopes. This suggests some crustal contamination, and it is considered that this may occur beneath the wide accretionary prism of the subduction system. Amphibolite of the subduction zone will break down between 80 and 100 km and a partial melt will rise. A multi-stage process of magma genesis is then likely to occur. High-Al basalts are thought to be derived from partial melting of a garnet-free peridotite near the top of the mantle wedge overlying the subduction zone, locations of the vents controlled largely by faults within the crust. Rhyolites and ignimbrites were probably derived from partial melting of Mesozoic greywacke and argillite under the Taupo Volcanic Zone. Initial partial melting may have been due to hydration of the base of the crust; the “water” having come from dehydration of the downgoing slab. The partial melts would rise to form granodiorite plutons and final release of the magma to form rhyolites and ignimbrites was allowed because of extension within the Taupo graben.Dacites of the Bay of Plenty probably resulted from mixing of andesitic magma with small amounts of rhyolitic magma, but those on the eastern side of the Rotorua-Taupo area were more likely formed by a higher degree of partial melting of the Mesozoic greywacke-argillite basement. This may be due to intrusion of andesite magma on this side of the Taupo volcanic zone.  相似文献   

16.
Abstract   The silicic volcanic rocks in Central Luzon show a temporal and spatial relationship with its geochemistry. Volcanic centers dated to approximately 5 Ma are silicic in geochemical composition whereas those between <5–1 Ma expose basaltic to andesitic rocks. Volcanic centers dated <1 Ma are characterized by a wide range of geochemistry encompassing basaltic through andesitic to dacitic signatures. Aside from changes in geochemistry through time, the areas (i.e. fore-arc to back-arc region) where the volcanic centers are formed also vary. The shift in the location of the volcanic centers in Central Luzon is attributed to changes in the dip of subduction of the South China Sea crust along the Manila Trench. Flat subduction resulted from the subduction of the Scarborough Seamount Chain, an oceanic bathymetric high along the Manila Trench west of northern Luzon. However, collision of Luzon with Taiwan in the north and Palawan in the south resulted in steepening of the subduction angle. The silicic volcanic centers in the forearc (Ce/Yb = 20–140) and back-arc (Ce/Yb = 20–60) regions are generally characterized by higher Ce/Yb compared to the basaltic-andesitic volcanic rocks in the main volcanic arc (Ce/Yb = 20) and back-arc (Ce/Yb = 20–30) regions. This across-arc geochemical variation highlights the contributions from the slab, mantle and crust coupled with the effects of geochemical processes that include partial melting, fractionation, magma mixing and mantle–melt interaction.  相似文献   

17.
The study of the geochemical compositions and K-Ar or Ar-Ar ages of ca. 350 Neogene and Quaternary lavas from Baja California, the Gulf of California and Sonora allows us to discuss the nature of their mantle or crustal sources, the conditions of their melting and the tectonic regime prevailing during their genesis and emplacement. Nine petrographic/geochemical groups are distinguished: ??regular?? calc-alkaline lavas; adakites; magnesian andesites and related basalts and basaltic andesites; niobium-enriched basalts; alkali basalts and trachybasalts; oceanic (MORB-type) basalts; tholeiitic/transitional basalts and basaltic andesites; peralkaline rhyolites (comendites); and icelandites. We show that the spatial and temporal distribution of these lava types provides constraints on their sources and the geodynamic setting controlling their partial melting. Three successive stages are distinguished. Between 23 and 13 Ma, calc-alkaline lavas linked to the subduction of the Pacific-Farallon plate formed the Comondú and central coast of the Sonora volcanic arc. In the extensional domain of western Sonora, lithospheric mantle-derived tholeiitic to transitional basalts and basaltic andesites were emplaced within the southern extension of the Basin and Range province. The end of the Farallon subduction was marked by the emplacement of much more complex Middle to Late Miocene volcanic associations, between 13 and 7 Ma. Calc-alkaline activity became sporadic and was replaced by unusual post-subduction magma types including adakites, niobium-enriched basalts, magnesian andesites, comendites and icelandites. The spatial and temporal distribution of these lavas is consistent with the development of a slab tear, evolving into a 200-km-wide slab window sub-parallel to the trench, and extending from the Pacific coast of Baja California to coastal Sonora. Tholeiitic, transitional and alkali basalts of subslab origin ascended through this window, and adakites derived from the partial melting of its upper lip, relatively close to the trench. Calc-alkaline lavas, magnesian andesites and niobium-enriched basalts formed from hydrous melting of the supraslab mantle triggered by the uprise of hot Pacific asthenosphere through the window. During the Plio-Quaternary, the ??no-slab?? regime following the sinking of the old part of the Farallon plate within the deep mantle allowed the emplacement of alkali and tholeiitic/transitional basalts of deep asthenospheric origin in Baja California and Sonora. The lithospheric rupture connected with the opening of the Gulf of California generated a high thermal regime associated to asthenospheric uprise and emplaced Quaternary depleted MORB-type tholeiites. This thermal regime also induced partial melting of the thinned lithospheric mantle of the Gulf area, generating calc-alkaline lavas as well as adakites derived from slivers of oceanic crust incorporated within this mantle.  相似文献   

18.
The South Kitakami Massif is one of the oldest geological domains in Japan having Silurian strata with acidic pyroclastic rocks and Ordovician–Silurian granodiorite–tonalite basement, suggesting that it was matured enough to develop acidic volcanisms in the Silurian period. On the northern and western margin of the South Kitakami Massif, an Ordovician arc ophiolite (Hayachine–Miyamori Ophiolite) and high‐pressure and low‐temperature metamorphic rocks (Motai metamorphic rocks) exhumed sometime in the Ordovician–Devonian periods are distributed. Chronological, geological, and petrochemical studies on the Hayachine–Miyamori Ophiolite, Motai metamorphic rocks, and other early Paleozoic geological units of the South Kitakami Massif are reviewed for reconstruction of the South Kitakami arc system during Ordovician to Devonian times with supplementary new data. The reconstruction suggests a change in the convergence polarity from eastward‐ to westward‐dipping subduction sometime before the Late Devonian period. The Hayachine–Miyamori Ophiolite was developed above the eastward‐dipping subduction through three distinctive stages. Two separate stages of overriding plate extension inducing decompressional melting with minor involvement of slab‐derived fluid occurred before and after a stage of melting under strong influence of slab‐derived fluids. The first overriding plate extension took place in the back‐arc side forming a back‐arc basin. The second one took place immediately before the ophiolite exhumation and near the fore‐arc region. We postulate that the second decompressional melting was triggered by slab breakoff, which was preceded by slab rollback inducing trench‐parallel wedge mantle flow and non‐steady fluid and heat transport leaving exceptionally hydrous residual mantle. The formation history of the Hayachine–Miyamori Ophiolite implies that weaker plate coupling may provide preferential conditions for exhumation of very hydrous mantle. Very hydrous peridotites involved in arc magmatism have not yet been discovered except for in the Cambrian–Ordovician periods, suggesting its implications for global geodynamics, such as the thermal state and water circulation in the mantle.  相似文献   

19.
Detrital zircon multi‐chronology combined with provenance and low‐grade metamorphism analyses enables the reinterpretation of the tectonic evolution of the Cretaceous Shimanto accretionary complex in Southwest Japan. Detrital zircon U–Pb ages and provenance analysis defines the depositional age of trench‐fill turbidites associated with igneous activity in provenance. Periods of low igneous activity are recorded by youngest single grain zircon U–Pb ages (YSG) that approximate or are older than the depositional ages obtained from radiolarian fossil‐bearing mudstone. Periods of intensive igneous activity recorded by youngest cluster U–Pb ages (YC1σ) that correspond to the younger limits of radiolarian ages. The YC1σ U–Pb ages obtained from sandstones within mélange units provide more accurate younger depositional ages than radiolarian ages derived from mudstone. Determining true depositional ages requires a combination of fossil data, detrital zircon ages, and provenance information. Fission‐track ages using zircons estimated YC1σ U–Pb ages are useful for assessing depositional and annealing ages for the low‐grade metamorphosed accretionary complex. These new dating presented here indicates the following tectonic history of the accretionary wedge. Evolution of the Shimanto accretionary complex from the Albian to the Turonian was caused by the subduction of the Izanagi plate, a process that supplied sediments via the erosion of Permian and Triassic to Early Jurassic granitic rocks and the eruption of minor amounts of Early Cretaceous intermediate volcanic rocks. The complex subsequently underwent intensive igneous activity from the Coniacian to the early Paleocene as a result of the subduction of a hot and young oceanic slab, such as the Kula–Pacific plate. Finally, the major out‐of‐sequence thrusts of the Fukase Fault and the Aki Tectonic Line formed after the middle Eocene, and this reactivation of the Shimanto accretionary complex as a result of the subduction of the Pacific plate.  相似文献   

20.
The Early Andean Magmatic Province (EAMP), consists of about 150 000 km3 of volcanic and plutonic units in the Coastal Cordillera of northern Chile and southern Peru and represents a major magmatic Mesozoic event in the world, for which the precise age of the thick volcanic series was unknown.Thirty 40Ar/39Ar analyses were carried out on primary mineral phases of volcanic and plutonic rocks from northern Chile (18°30′–24°S). Reliable plateau and “mini plateau” ages were obtained on plagioclase, amphibole and biotite from volcanic and plutonic rocks, despite widespread strong alteration degree. In the Arica, Tocopilla and Antofagasta (700 km apart) regions, the ages obtained on lava flows constrain the volcanic activity between 164 and 150 Ma and no N–S migration of volcanism is observed. The uppermost lava flows of the volcanic sequence at the type locality of the La Negra Formation extruded at ca. 153–150 Ma, suggesting the end of the volcanic activity of the arc at that time. The oldest volcanic activity occurred probably at ca. 175–170 Ma in the Iquique area, although no plateau age could be obtained.The plutonic bodies of the same regions were dated between ca. 160 and 142 Ma, indicating that they were partly contemporaneous with the volcanic activity. At least one volcanic pulse around 160 Ma is evidenced over the entire investigated reach of the EAMP, according to the ages found in Arica, Tocopilla, Michilla and Mantos Blancos regions.The episodic emplacement of huge amounts of subduction related volcanism is observed throughout the whole Andean history and particularly during the Jurassic (southern Peru, northern Chile and southern Argentina). These events probably correspond to periodic extensional geodynamic episodes, as a consequence of particular subduction conditions, such as change of obliquity of the convergence, change in the subduction angle, slab roll back effect or lower convergence rate, that remain to be precisely defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号