首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
开展了湿干循环作用下压实黏土的开裂试验和微观结构特性研究,分析了湿干循环作用对黏土开裂和孔隙结构的影响,将压汞试验(MIP)和扫描电镜(SEM)的结果与宏观开裂进行比较。结果表明:湿干循环作用显著影响了压实黏土的开裂,用开裂因子表征黏土的开裂程度,开裂因子随含水率减小而增大并明显大于湿干循环作用前; 随湿干循环次数的增加,黏土孔隙的总体积、中间孔径、平均孔径、平均孔隙率和团粒内孔隙均在增加,而黏土的颗粒内孔隙、颗粒间孔隙和团粒间孔隙却在减小。湿干循环作用使黏土体从大团粒逐渐转化为小颗粒,并增大了土颗粒的凸凹性,分析SEM二值化图像得知土体孔隙率均在增加; 用压汞法和扫描电镜法分析和解释土体开裂是可行的,所得的微观孔隙特征与宏观开裂规律基本相符。  相似文献   

3.
蔡国庆  吴天驰  王亚南  刘祎  李舰  赵成刚 《岩土力学》2020,41(11):3583-3590
在最优含水率干侧压实的黏土一般具有明显的双孔结构,其集聚体间孔隙(又称宏观孔隙)和集聚体内孔隙(又称微观孔隙)对土体宏观水力和力学特性影响差异显著,同时,水-力耦合作用下两种孔隙的演化规律也存在明显不同。双孔结构非饱和土对应的孔径分布函数为双峰孔径分布形式,该分布函数可通过叠加宏观孔隙和微观孔隙的单峰孔径分布曲线得到,并通过平移量、缩放量和分散度3个演化参数对双孔结构土的孔隙演化规律进行描述。通过构建在力学及水力加、卸载过程中演化参数与孔隙比之间的关系,提出了适用于描述变吸力下非饱和压实土的微观结构演化模型。分别基于所开展的桂林红黏土压汞试验数据和文献中的米尼亚卢博瓦膨胀土试验数据,对所建立的微观结构演化模型进行参数标定,并通过模型预测结果与试验结果的对比,验证了所建立模型的适用性。  相似文献   

4.
This paper presents an analytical study of fluid flow in a porous medium presenting pores of two different length scales: at the smallest or microscopic scale, the presence of connected voids confers a porous medium structure to the material investigated, while at the upper or mesoscopic scale, macro-pores are present. This microstructure is employed to represent the progressive opening of inter-aggregate pore spaces observed in natural compacted montmorillonites polluted by heavy metal ions. Three-dimensional analytical expressions are rigorously derived for pore fluid velocity and excess pore fluid pressure within the porous matrix, around an occluded ellipsoidal inter-aggregate void. The eccentricity ratio is employed to characterize the geometrical shape of the ellipsoidal void, while its orientation with respect to the inflow in the far field is determined by the dip angle θ. As an application, we investigate the flow focusing effect for varying eccentricity ratios and dip angles.  相似文献   

5.
This paper presents an analytical study of fluid flow in a porous medium presenting pores of two different length scales: at the smallest or microscopic scale, the presence of connected voids confers a porous medium structure to the material investigated, while at the upper or mesoscopic scale, macro-pores are present. This microstructure is employed to represent the progressive opening of inter-aggregate pore spaces observed in natural compacted montmorillonites polluted by heavy metal ions. Three-dimensional analytical expressions are rigorously derived for pore fluid velocity and excess pore fluid pressure within the porous matrix, around an occluded ellipsoidal inter-aggregate void. The eccentricity ratio is employed to characterize the geometrical shape of the ellipsoidal void, while its orientation with respect to the inflow in the far field is determined by the dip angle θ. As an application, we investigate the flow focusing effect for varying eccentricity ratios and dip angles.  相似文献   

6.
Fluid flow during permeation grouting of fine sands with a microcement-based grout is studied by assuming that the heterogeneous medium composed of the initial granular skeleton, filtered cement and the interstitial fluid phase can be replaced by a continuous equivalent medium at the macroscopic level. Consequently, the method of Homogenization of Periodic Structures (HPS) is used to identify the effective permeability tensor evolution under the effect of cement filtration. The expression of the macroscopic permeability tensor derived through the HPS procedure is shown to depend on the permeating fluid viscosity and the geometrical arrangement of the sand grains and cement deposit within the microstructure. Numerical computations are made using various two-dimensional and three-dimensional microstructures, and the model results are confronted with grouting experiments performed on small scale columns in the laboratory.  相似文献   

7.
This paper is concerned with the application of a multi-scale model of permeability evolution to the simulation of permeation tests of lead nitrate solutions in a compacted natural bentonite. In a previous work, the weathered hydraulic conductivity has been measured for different pollutant concentrations. Textural and structural evolutions induced by heavy metal sorption have also been investigated, therefore giving us information about the various pore spaces that may be encountered during the process of pollutant leaching. Such knowledge has been exploited during the construction of the numerical microstructures. First of all, pure water permeability tests have been simulated, this has allowed us to ascertain the representation of compacted clay before pollutant permeation. For both Prrenjas and Wyoming clays, permeation tests after pollutant permeation have then been simulated, using connected and non-connected macro-voids configurations. Different conclusions have been drawn based on simulation results for the two different clays investigated, which are supported by experimental evidence.  相似文献   

8.
利用岩石薄片和扫描电镜分析等测试技术, 可以将济阳坳陷罗家地区古近系沙河街组页岩段储集空间分为孔隙和裂缝两大类。孔隙又可以分为黏土矿物晶间孔、碳酸盐矿物晶间孔、黄铁矿晶间微孔、碎屑颗粒溶孔和砂质粒间微孔5个亚类;裂缝分为成岩裂缝和构造裂缝两大类, 成岩裂缝又可以分为层间裂缝和粒缘裂缝两类。裂缝与基质孔隙之间, 存在一个微米尺度的重合带, 反映了储集空间发育继承性的特点, 油气聚集在以层间裂缝为中心, 粒缘裂缝等次级裂缝和较大的碳酸盐晶间孔为骨架, 以各类晶间孔隙、黏土微孔和溶蚀孔隙为基质的储集空间网络中。储集空间发育与岩性关系密切, 纹层状泥质灰岩物性较好, 相应的页岩物性具有基质渗透率极低和裂缝导流能力较强的特点。  相似文献   

9.
苟启洋  徐尚  郝芳  舒志国 《沉积学报》2022,40(5):1419-1426
页岩孔隙连通性直接影响油气分子在储层内的运移,从而控制页岩气产出的难易程度,是评价页岩气勘探开发潜力的重要参数之一。以焦石坝地区两口关键井(JYA井和JYB井)五峰组—龙马溪组主力层段页岩为例,开展柱塞样的氦气孔隙度与饱和盐水后的核磁共振孔隙度实验,确定页岩储层孔隙连通性特征,探讨孔隙连通性对页岩气开发的影响。研究结果显示:1)氦气膨胀法主要识别页岩储层中的连通孔隙,而核磁共振法可有效反映样品整体的孔隙空间,两者的比值可量化表征页岩孔隙连通性;2)JYA井氦气孔隙度和核磁孔隙度差异较小,具有强烈的正相关关系,页岩样品整体以连通孔隙为主,连通孔隙占比为69.13%~94.94%,平均为85.12%;3)JYB井页岩孔隙连通性相对较差,连通孔隙占比为36.15%~81.71%,均值为58.19%,仅依靠连通孔隙无法充分反映页岩样品的真实孔隙度,导致氦气孔隙度和核磁孔隙度无明显线性关系。纳米CT三维成像技术模拟的孔隙连通性特征及研究样品的脉冲渗透率差异证实了研究结果的有效性。  相似文献   

10.
龙马溪组页岩作为贵州页岩气的主要储气层位,勘探及钻井均证实其具有良好的页岩气成藏条件和资源开发潜力。为揭示贵州龙马溪组页岩微观孔隙结构及其物性对酸化作用的响应规律,基于X射线衍射分析(XRD)、压汞、低温氮吸附及核磁共振(NMR)等实验手段,定量表征页岩酸化作用前后的孔隙体积、孔隙率、比表面积、孔径分布等页岩微观结构物性参数的差异性,分析酸化作用前后页岩孔裂隙的结构特征。研究表明:酸化作用增大了页岩的孔隙体积、孔隙率、比表面积和孔径,酸化作用后页岩进-退汞曲线及低温氮吸/脱附曲线的滞后环明显增大,酸化作用增大了墨水瓶孔的孔隙体积;受到酸化作用影响,页岩优势孔隙由介孔和110 nm左右大中孔向介孔与2 800 nm左右宏孔发展,介孔数量减少,宏孔数量增加,页岩孔隙的连通性明显变好;酸化对页岩孔裂隙中矿物质及黏土成分具有明显的化学溶解和刻蚀作用,对页岩孔裂隙体积的改造效果显著,增加了页岩储层的渗透性,进而提高了页岩气的运移与渗流能力;酸化作用下伴随的水化作用对页岩孔裂隙沿层理面起裂、扩展延伸起促进作用,但是页岩酸化作用下的水化作用机制尚需进一步研究。   相似文献   

11.
Houba oil sand in frontier Longmenshan Mountain is one of the most typically important unconventional resources. The basic reservoir characteristics of oil sand and the main factors affecting reservoir quality were examined in this article based on porosity, permeability, and mercury porosimetry measurements; thin section analyses; SEM observation; and X-ray diffraction analysis. This study shows that the oil-bearing sandstone reservoir is mainly medium?coarse-grained sublitharenite and litharenite. The main pore type is intergranular pores, including residual primary intergranular pores, dissolved intergranular pores, and dissolved intragranular pores; fractures are common in this study area. The quality of sandstone reservoir is of high porosity and high permeability with a high oil saturation of 89.84 %. It is indicated that the main controlling factors of the reservoir in the study area include deposition, diagenesis, and tectonism. Deposition laid a foundation to porosity evolution, and channel sand is the most favorable depositional facies for the reservoir. Diagenetic alterations are the keys to reservoir evolution; dissolution and chlorite coatings cementation play an effective role in the generation and preservation of pores. Compaction, carbonate cementation, and quartz overgrowth cause many damages to the reservoir porosity. Fractures caused by structural breakages can improve the reservoir permeability and they also can provide fluid migration pathways to the late corrosion, which formed a lot of corroded fissures as reservoir and percolation spaces.  相似文献   

12.

This paper presents a constitutive model that predicts the water retention behaviour of compacted clays with evolving bimodal pore size distributions. In line with previous research, the model differentiates between the water present inside the saturated pores of the clay aggregates (the microstructure) and the water present inside the pores between clay aggregates (the macrostructure). A new formulation is then introduced to account for the effect of the macrostructural porosity changes on the retention behaviour of the soil, which results in a consistent evolution of the air-entry value of suction with volumetric deformations. Data from wetting tests on three different active clays (i.e. MX-80 bentonite, FEBEX bentonite, and Boom clay), subjected to distinct mechanical restraints, were used to formulate, calibrate, and validate the proposed model. Results from free swelling tests were also modelled by using both the proposed double porosity model and a published single porosity model, which confirmed the improvement in the predictions of degree of saturation by the present approach. The proposed retention model might be applied, for example, to the simulation of the hydromechanical behaviour of engineered bentonite barriers in underground nuclear waste repositories, where compacted active clays are subjected to changes of both suction and porosity structure under restrained volume conditions.

  相似文献   

13.
The goal in this research was to analyze the effects of decompression and suction on the formation of cracks in a clay rock from the Andra (French National Radioactive Waste Management Agency) site at Bure (Meuse–Haute-Marne, France). The article investigates the relationship between the changes in the hydromechanical properties and the changes in microstructure and porosity. Concerning the effect of decompression, at the macroscopic scale, the study highlighted an important effect on the elastic modulus and permeability, but little effect at the microscopic scale except an evolution of mineralogy related to the oxidation of pyrite often present in layers where cracks develop. Concerning the effect of suction, at the macroscopic level, the results showed that, on drying path, the change in the properties of the material was very small, whereas, on wetting path, a large decrease in tensile strength and gas permeability was observed. At the microscopic level, observations with SEM and ESEM, and measurements with MIP, highlighted the evolution of microstructural organization as a function of suction, and the propagation and enlargement of cracks on wetting path, rather than on drying path.  相似文献   

14.
鄂尔多斯盆地富县地区延长组沉积特征及物性分析   总被引:5,自引:3,他引:2  
从沉积相、成岩作用角度研究了三叠系延长组储层的物性特征和主控因素, 认为延长组主要发育有水下分流河道、河口坝、席状砂及分流间湾等沉积微相, 三角洲前缘水下分流河道是最佳储层, 平均孔隙度10.85% , 平均渗透率0.613 ×10-3μm2。储层所经历的成岩作用中, 压实作用对砂岩物性的影响较大, 水下分流河道砂体压实后, 其原始孔隙度损失13.6%; 胶结作用对储层物性有一定的破坏性, 但早期胶结物可使剩余原生粒间孔隙得以保存, 其中的易溶组分又为次生粒间孔隙的形成奠定了物质基础; 溶蚀作用可大大改善储层的物性; 构造微裂缝仅在局部起沟通喉道的作用。整体属于低孔、低渗型储层, 并以粒间溶孔和粒内溶孔为主要孔隙类型。沉积相在宏观上控制了砂体的类型、规模、原始物性条件及空间分布, 成岩作用在微观上影响了储层孔隙演化与储层物性的变化, 而构造裂缝可以在局部改善储层的物性。  相似文献   

15.
不整合运移通道类型及输导油气特征   总被引:12,自引:1,他引:11  
高长海  查明 《地质学报》2008,82(8):1113-1120
在对不整合空间结构特征研究的基础上,提出了油气沿不整合运移的通道类型:宏观上,存在由不整合面之上底砾岩和不整合面之下半风化岩石两种高效运载层组合成的双运移通道型和单运移通道型两种通道类型;微观上,底砾岩连通孔隙、半风化岩石构造卸荷风化裂缝系统及溶蚀孔洞系统可作为油气运移的主要通道。通过对不整合面上、下岩石物性分析,认为半风化岩石“孔洞缝”系统较底砾岩连通孔隙有更高的输导油气的能力。研究结果表明,不同的运移通道类型具有不同的输导油气特征。在地史时期,构造裂缝系统和溶蚀孔洞系统一直是不整合输导油气的主要通道;对于软地层构成的不整合来说,开始应是卸荷、风化裂缝系统和底砾岩连通孔隙共同构成不整合输导油气的主要通道,当上覆沉积载荷达到一定程度后,主要是底砾岩连通孔隙起输导油气通道作用;对于脆硬地层构成的不整合来说,卸荷、风化裂缝系统和底砾岩连通孔隙一直是不整合输导油气的主要通道。  相似文献   

16.
目前关于自生粘土矿物对深层孔隙结构及油气运聚的影响方面的研究十分薄弱.综合利用铸体薄片、全岩XRD、扫描电镜、恒速压汞等测试手段,分析自生粘土矿物对孔隙连通性、孔喉直径及其分布的影响,并结合埋藏史和生烃史探讨了低渗透砂岩不同孔隙结构类型的油气差异富集条件.珠海组深部储层压实作用较强,自生粘土矿物含量较高.碎屑颗粒以线接触-凹凸接触为主,识别出"孔隙+粗喉道"和"喉道主控"2种孔隙结构类型,前者孔隙体积和粗喉道占比较高,后者主要以细喉道为主;自生粘土矿物分割占据大量孔喉空间,自生伊利石主要为孔喉充填型,自生绿泥石主要为颗粒包壳型;珠海组储层与下渐新统恩平组烃源岩不整合接触形成纵向"下生上储"、横向连续分布的有利源储组合,烃源岩持续生烃.珠海组是典型的深埋藏碎屑岩低渗储层,仍具备良好的储集条件,储层发育受机械压实作用和自生粘土矿物共同控制;压实作用是原生孔隙损失的初始因素,以绿泥石和伊利石为代表的自生粘土矿物高度发育是制约优质储层发育的关键因素.   相似文献   

17.
张莉  邹华耀  郝芳  李平平  杨烁  宋钰 《地质学报》2017,91(9):2105-2118
元坝地区须家河组砂岩的致密化程度极高,以超低孔、超低渗储层为主,属于超致密砂岩。本文基于铸体薄片、阴极发光、扫描电镜和物性等资料,在对砂岩的岩石组分、孔隙类型及物性特征分析的基础上,通过与国内外典型致密砂岩对比,揭示研究区砂岩较其他砂岩致密化程度高的原因,分析超致密砂岩的勘探潜能。结果表明,研究区砂岩具有较高的塑性岩屑、碳酸盐岩岩屑和黏土杂基含量;填隙物以黏土杂基和钙质胶结物为主,较强的硅质胶结作用仅发育于石英砂岩中。孔隙多为黏土杂基晶间微孔,喉道呈窄缝状或不发育,孔喉分选差,偏细歪度。砂岩致密化程度高主要有两方面的原因:一是原始组构差,成分成熟度低,含有较高的塑性岩屑、碳酸盐岩岩屑和黏土杂基含量,导致砂岩在早成岩阶段既已经历了很强的压实作用和钙质胶结作用,致密化时间早,溶蚀作用不发育;二是成岩演化阶段高,砂岩经历了中成岩阶段的压溶及进一步的钙质/硅质胶结,使得砂岩超致密化。与国内外典型致密砂岩气藏对比表明,超致密砂岩有效孔隙少,对天然气的富集能力有限。元坝地区须家河组只有孔隙度近于8%(如长石岩屑砂岩)的砂岩才可成为有利的致密气储层。  相似文献   

18.
This paper is aimed towards investigating the filtration law of an incompressible viscous Newtonian fluid through a rigid non-inertial porous medium (e.g. a porous medium placed in a centrifuge basket). The filtration law is obtained by upscaling the flow equations at the pore scale. The upscaling technique is the homogenization method of multiple scale expansions which rigorously gives the macroscopic behaviour and the effective properties without any prerequisite on the form of the macroscopic equations. The derived filtration law is similar to Darcy's law, but the tensor of permeability presents the following remarkable properties: it depends upon the angular velocity of the porous matrix, it verifies Hall–Onsager's relationship and it is a non-symmetric tensor. We thus deduce that, under rotation, an isotropic porous medium leads to a non-isotropic effective permeability. In this paper, we present the results of numerical simulations of the flow through rotating porous media. This allows us to highlight the deviations of the flow due to Coriolis effects at both the microscopic scale (i.e. the pore scale), and the macroscopic scale (i.e. the sample scale). The above results confirm that for an isotropic medium, phenomenological laws already proposed in the literature fails at reproducing three-dimensional Coriolis effects in all types of pores geometry. We show that Coriolis effects may lead to significant variations of the permeability measured during centrifuge tests when the inverse Ekman number Ek−1 is 𝒪(1). These variations are estimated to be less than 5% if Ek−1<0.2, which is the case of classical geotechnical centrifuge tests. We finally conclude by showing that available experimental data from tests carried out in centrifuges are not sufficient to determining the effective tensor of permeability of rotating porous media. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Deeply buried Lower Cretaceous Bashijiqike sandstones are important gas exploration targets in the Kelasu thrust belt, Kuqa Depression of Tarim Basin in China. The sandstones are characterized by low porosity, low permeability and strong microscopic heterogeneity due to diagenesis during their geologic history. Mineralogical, petrographic, and geochemical analyses combined with high‐pressure mercury injection analysis have been used to investigate the diagenesis, diagenetic minerals, and their impact on reservoir quality. This article addresses the controls exerted by depositional parameters and diagenetic modifications on pore‐network characteristics (porosity, pore types, sizes, shapes, and distribution), with the aim to unravel the formation mechanisms of this complex pore structures, and to improve the characterization and classification evaluation for the Bashijiqike sandstone reservoirs. The Bashijiqike sandstones are dominated by lithic arkoses and feldspathic litharenite. The pore system consists of intergranular macropores, intergranular micropores, and intragranular pores. Framework grains are generally heavily compacted. Authigenic quartz, authigenic feldspar, clay minerals and carbonates are the major pore‐filling constituents. The pore structure is characterized by small pore radius and poor interconnectivity. Entry pressure reflects the microscopic pore network and macroscopic reservoir property characteristics. Pore structure characteristics are linked to the depositional parameters, type and degree of diagenesis. Clays do not control reservoir pore networks alone, and pores and pore throats are wider in coarser grained sandstones. Entry pressure decreases with the content of the rigid quartz. Compaction and cementation continue to decrease the pore‐throat size, while dissolution enlarges pores and pore‐throats radius. Considerable amounts of microporosity associated with clay minerals and altered grains contribute to the high entry pressure. Comprehensive Coefficient of Diagenesis (CCD), which considers the integrative effect of diagenesis, shows strong statistical correlations with entry pressure. CCD is an integrative modulus of diagenesis and physical property, and generally the higher the values are, the better the pore structure. It is suitable for quantitatively characterizing pore structure in tight gas sandstones. The results of this work can help assess pore‐network characteristics like the Bashijiqike sandstones which had experienced strong diagenetic modifications during their geological history.  相似文献   

20.
CCL吸附特性及孔隙率降低对污染物运移的影响   总被引:1,自引:0,他引:1  
张金利  栾茂田  杨庆 《岩土力学》2008,29(5):1181-1187
假定孔隙均匀地分布于土体的物质空间内和土骨架对污染物的吸附特性服从平衡线性,对基本体积质量关系进行分析,提出了由于土体对污染物的吸附而引起的孔隙率降低的估算公式。在考虑土体孔隙率变化的条件下,建立了污染物一维运移的控制方程,并考虑垃圾生物降解效应、压实黏土衬里(CCL)防渗层、下覆有限厚度含水层等实际情况,确定了初始条件和边界条件。对所建立的初边值问题进行了数值求解,且对某假想填埋场情况进行了变动参数与对比计算,结果表明,由于土颗粒对污染物的吸附所引起的孔隙率降低,显著地降低了污染物对压实黏土衬里的穿透能力。与常孔隙率情况相比,CCL中污染物的峰值浓度降低近10 %,含水层中污染物浓度降低更显著。当考虑土体孔隙率变化时,弥散对污染物运移具有控制作用,分布系数对污染物的运移具有重要影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号