首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thermo-hydro-mechanical behaviour of two heavily overconsolidated clays   总被引:4,自引:0,他引:4  
An experimental study on the thermo-hydro-mechanical behaviour of two heavily overconsolidated clays is presented. Laboratory tests have been conducted on a Spanish bentonite (FEBEX bentonite) and a Belgian kaolinitic/illitic clay (Boom clay), statically compacted at different initial dry densities and water contents. Volume change behaviour of the soils during suction reduction paths at different temperatures and during heating-cooling cycles at constant water content or suction have been investigated through the use of suction and temperature controlled oedometer cells. In addition, the volume change response under unconfined conditions and constant water content has been measured to determine thermal expansion coefficients. The results show similarities and differences between the observed behaviour of the two types of clays that have been interpreted on the basis of their different structures and regarding their proportion of intra-aggregate water.  相似文献   

2.
Liu  Zhang-Rong  Ye  Wei-Min  Cui  Yu-Jun  Zhu  He-Hua  Wang  Qiong  Chen  Yong-Gui 《Acta Geotechnica》2021,16(10):3145-3160

Bentonite pellets are recognized as good buffer/backfill materials for sealing technological voids in high-level radioactive waste (HLW) repository. Compared to that of a traditional compacted bentonite block, one of the most important particularities of this material is the initially discrete pellets and the inevitable heterogeneous porosity formed, leading to a distinctive water retention behaviour. In this paper, water retention and mercury intrusion porosimetry (MIP) tests were conducted on pellet mixture (constant volume), single pellet (free swelling) and compacted block (constant volume) of GMZ bentonite, water retention properties and pore structure evolutions of the specimens were comparatively investigated. Results show that the water retention properties of the three specimens are almost similar to each other in the high suction range (>?10 MPa), while the water retention capacity of pellet mixture is lower than those of the compacted block and single pellet in the low suction range (<?10 MPa). Based on the capillary water retention theory (the Young–Laplace equation), a new concept ‘saturated void ratio’ that was positively related to water content and dependent on pore size distribution of the specimen was defined. Then, according to the product of saturated void ratio and water density in saturated void, differences of water retention properties for the three specimens at low suctions were explained. Meanwhile, MIP tests indicate that as suction decreases, the micro- and macrovoid ratios of pellet mixture and compacted block decrease as the mesovoid ratio increases, while all the void ratios of single pellets increase. This could be explained that upon wetting, water is successively adsorbed into the inter-layer, inter-particle and inter-pellet voids, leading to the subdivision of particles and swelling of aggregates and pellets. Under constant volume condition, aggregates and pellets tend to swell and fill into the inter-aggregates or inter-pellets voids. While under free swelling condition, the particles and aggregates in a single pellet tend to swell outward rather than squeezing into the inter-aggregate voids, leading to the expansion of the pores and even formation of cracks. Results including the effects of initial conditions (initial dry density and fabric) and constraint conditions (constant volume or free swelling) on the water retention capacity and pore structure evolution reached in this work are of great importance in designing of engineering barrier systems for the HLW repository.

  相似文献   

3.
In this study, water retention tests under free swelling conditions were performed to investigate the water intake (or loss) behaviour of compacted GMZ bentonite. First, the water retention characteristics were investigated, and then the microscopic pore structure was observed by environmental scanning electron microscope (ESEM). The results indicate that GMZ bentonite has a strong swelling (or a limited shrinkage ability) due to water intake (loss). The suction behaviour of GMZ bentonite is similar to MX80 bentonite and FEBEX bentonite. We also find that the confinement conditions can affect the suction behaviour of the material, especially at high relative humidity (RH). Additionally, a mathematic model can fit the mass change data very well. Microscopic tests show that the granular sensation of GMZ bentonite is obvious for a sample at low RH. With the increase in RH, the surface of GMZ bentonite becomes more smooth. The differences in the porosities calculated by the macroscopic and microscopic tests can be attributed to image resolution. The inter-laminar pores and intra-aggregate pores cannot be observed by the ESEM method. In addition, ESEM observation can provide an intuitive basis for the further research of the seepage property of GMZ bentonite.  相似文献   

4.
Scaly clays are stiff and highly fissured clays often used as construction materials. This paper presents the results of triaxial compression tests carried out on saturated and unsaturated samples of a compacted scaly clay. Complementary investigation on the microstructural features and their evolution with the amount of water stored into the material are also presented in order to shed light on the evolution of the micro- and macroporosity with suction. The water retention behaviour of the compacted scaly clay is also addressed. The results from the controlled suction triaxial tests are used to discuss the applicability of a single-shear strength criterion to compacted double-structured clays when the effective stress concept for unsaturated soils is used. The choice of the degree of saturation to be included in the effective stress definition for obtaining a satisfactory representation of the shear strength is addressed. It is shown that the best results are obtained when the macropore degree of saturation is considered along with its evolution during the applied stress path.  相似文献   

5.
This paper presents a three‐dimensional elastoplastic constitutive model for predicting the hydraulic and mechanical behaviour of unsaturated soils. It is based on experimental results obtained from a series of controlled‐suction triaxial tests on unsaturated compacted clay with different initial densities. Hydraulic hysteresis in the water‐retention behaviour is modelled as an elastoplastic process, with the elastic part modelled by a series of scanning curves and the elastoplastic part modelled by the main drying and wetting curves. The effect of void ratio on the water‐retention behaviour is studied using data obtained from controlled‐suction wetting–drying cyclic tests on unsaturated compacted clay with different initial densities. The effect of the degree of saturation on the stress–strain‐strength behaviour and the effect of void ratio on the water‐retention behaviour are considered in the model, as is the effect of suction on the hydraulic and mechanical behaviour. The initial density dependency of the compacted soil behaviour is modelled by experimental relationships between the initial density and the corresponding yield stress and, thereby, between the initial density and the normal compression line. The model is generalized to three‐dimensional stress states by assuming that the shapes of the failure and yield surfaces in the deviatoric stress plane are given by the Matsuoka–Nakai criterion. Model predictions of the stress–strain and water‐retention behaviour are compared with those obtained from triaxial tests with different initial densities under isotropic compression, triaxial compression and triaxial extension, with or without variation in suction. The comparisons indicate that the model accurately predicts the hydraulic and mechanical behaviour of unsaturated compacted soils with different initial densities using the same material constant. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
7.
In this study, a solid–liquid–gas coupled equation was established to simulate water retention characteristics of highly compacted GMZ bentonite. Then, modelling results were compared with laboratory test results. Results indicate that GMZ bentonite has a strong moisture expansion (or a limit drying shrinkage) characteristic. The control equation can simulate the water absorption and deformation characteristics very well at high relative humidity (or low suction). Environmental scanning electron microscope (ESEM) observation reveals the course grain soil texture of the surface under low relative humidity (RH), while the surface of GMZ bentonite becomes smooth (more fine-grained soil texture) as RH increases. Differences were found between the porosities calculated by macroexperiment results and microscopic observations with ESEM method. This is because only the interaggregate pores can be observed by ESEM photographs. Additionally, we find that the simulated effective porosities are close to the results calculated by microscopic tests, while the effective porosity is considered as the main flow channel of flow. Further, the intrinsic permeability, the effective water and gas permeability are calculated based on the proposed model. The modelling results coincide well with the laboratory experimental results and support the reliability of the proposed model.  相似文献   

8.
As one of the most important properties of compacted bentonite used as buffer/backfill materials, hydraulic conductivity is influenced by various factors including temperature, microstructure and suction (or degree of saturation), etc. Based on the readily available results of both temperature-controlled water-retention tests and unsaturated infiltration tests under confined (constant volume) conditions, influences of temperature and microstructure variations on unsaturated hydraulic conductivity of the compacted Gaomiaozi (GMZ01) bentonite were analyzed. Then, a revised unsaturated hydraulic conductivity model considering temperature effects and microstructure changes was developed. With this proposed model, prediction and comparison were made on the unsaturated hydraulic conductivity of the compacted GMZ01 bentonite at 20 °C. Results show that water-retention capacity of compacted GMZ01 bentonite decreases as temperature increases and the degree of the temperature influence depends on suction. Under confined conditions, influence of hydration on microstructure of compacted GMZ01 bentonite depends on pore size. The proposed model can well describe the variations of unsaturated hydraulic conductivity with suction at different temperatures. However, further improvement of the proposed model is needed to account for the phenomenon of inter-aggregate pores clogging that occurred at the initial stage of hydration of compacted GMZ01 bentonite under confined conditions.  相似文献   

9.
在高放废弃物深地质处置库复杂的地下水环境影响下,缓冲/回填材料微观孔隙结构的改变通常会大大影响其水力性质.为探究这种影响,众多学者从不同理论出发,建立了相应的土水特征模型.然而,针对这些模型的对比研究较少,且缺少将模型应用于考虑化学影响的情况.在压实膨润土微观结构分析的基础上,基于分形理论和双孔理论,分别构建了压实膨润...  相似文献   

10.
Li  Zhenze  Su  Grant  Zheng  Quinn  Nguyen  Thanh Son 《Acta Geotechnica》2020,15(3):635-653

Significant chemical influence on the swelling potential of MX-80 bentonite was observed during swelling tests where specimens were hydrated with highly concentrated brine. The maximum swelling pressure for specimens hydrated with brine was about 30% of the maximum swelling pressure for the same specimens hydrated with de-ionized water. The maximum swelling pressure was attained within tens of hours of brine infiltration and further decreased by half within a year. A fully coupled hydro–mechanical–chemical (HMC) dual-porosity model is proposed in this paper to interpret the swelling behaviour of MX-80 when infiltrated with brine. The dependence of hydraulic and mechanical properties on such factors as porosity, salinity and water content was investigated. A nonlinear elastic constitutive model was proposed to correlate the swelling pressure with the variation in the microporosity. The chemical effects on the mechanical behaviour were coupled at the micropore level. A number of relationships have been developed for MX-80, i.e. micropore permeability as a function of void ratio, water retention characteristics of micropores and macropores, micropore dependence on water content and the diffusion coefficients of the two types of pore structure. The proposed model was successful in reproducing both quantitatively and qualitatively the experimental results from two sets of infiltration experiments on compacted MX-80 bentonite.

  相似文献   

11.
蔡国庆  吴天驰  王亚南  刘祎  李舰  赵成刚 《岩土力学》2020,41(11):3583-3590
在最优含水率干侧压实的黏土一般具有明显的双孔结构,其集聚体间孔隙(又称宏观孔隙)和集聚体内孔隙(又称微观孔隙)对土体宏观水力和力学特性影响差异显著,同时,水-力耦合作用下两种孔隙的演化规律也存在明显不同。双孔结构非饱和土对应的孔径分布函数为双峰孔径分布形式,该分布函数可通过叠加宏观孔隙和微观孔隙的单峰孔径分布曲线得到,并通过平移量、缩放量和分散度3个演化参数对双孔结构土的孔隙演化规律进行描述。通过构建在力学及水力加、卸载过程中演化参数与孔隙比之间的关系,提出了适用于描述变吸力下非饱和压实土的微观结构演化模型。分别基于所开展的桂林红黏土压汞试验数据和文献中的米尼亚卢博瓦膨胀土试验数据,对所建立的微观结构演化模型进行参数标定,并通过模型预测结果与试验结果的对比,验证了所建立模型的适用性。  相似文献   

12.
13.
Engineered barriers are basic elements in the design of repositories for the isolation of high‐level radioactive waste. This paper presents the thermo‐hydro‐mechanical (THM) analysis of a clay barrier subjected to heating and hydration. The study focuses on an ongoing large‐scale heating test, at almost full scale, which is being carried out at the CIEMAT laboratory under well‐controlled boundary conditions. The test is intensely instrumented and it has provided the opportunity to study in detail the evolution of the main THM variables over a long period of time. Comprehensive laboratory tests carried out in the context of the FEBEX and NF‐PRO projects have allowed the identification of the model parameters to describe the THM behaviour of the compacted expansive clay. A conventional THM approach that assumes the swelling clay as a single porosity medium has been initially adopted to analyse the evolution of the test. The model was able to predict correctly the global THM behaviour of the clay barrier in the short term (i.e. for times shorter than three years), but some model limitations were detected concerning the prediction of the long‐term hydration rate. An additional analysis of the test has been carried out using a double structure model to describe the actual behaviour of expansive clays. The double structure model explicitly considers the two dominant pore levels that actually exist in the FEBEX bentonite and it is able to account for the evolution of the material fabric. The simulation of the experiment using this enhanced model provides a more satisfactory reproduction of the long‐term experimental results. It also contributes to a better understanding of the observed test behaviour and it provides a physically based explanation for the very slow hydration of the barrier. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
饱和膨润土及其与砂混合物的压缩变形特性   总被引:1,自引:0,他引:1  
孙文静  孙德安  孟德林 《岩土力学》2009,30(11):3249-3255
对用不同制样方法得到的饱和膨润土及其与砂混合物进行了压缩试验。试验结果表明,饱和膨润土的压缩曲线呈双线性,不同于普通黏土的压缩曲线。压缩试验中量测了侧向应力,由此得到的饱和膨润土的静止侧向压力系数值较一般黏土的数值要大。对膨润土与砂混合物的击实样进行了由非饱和到饱和状态的浸水试验,并得出试验过程中侧向应力的变化规律。由于浸水饱和的试样和抽真空饱和的试样在较高压力时压缩曲线趋于一致,可采用快速抽真空饱和的方法进行试验研究,以缩短非饱和混合物击实样浸水饱和所需时间。引入骨架孔隙比的概念,用来判断膨润土与砂混合物中砂骨架是否形成,得出影响混合物压缩特性的决定因素。  相似文献   

15.
Temperature effects on the hydraulic behaviour of an unsaturated clay   总被引:2,自引:2,他引:2  
The influence of temperature on the hydraulic properties of unsaturated clays is of major concern in the design of engineered barriers in underground repositories for high-level radioactive waste disposal. This paper presents an experimental study centred on the investigation of the influence of temperature on soil hydraulic properties related to water retention and permeability. Laboratory tests were conducted on artificially prepared unsaturated fabrics obtained from a natural kaolinitic-illitic clay. Special attention is given to the testing procedures involving controlled suction and temperature oedometer cells and the application of the vapour equilibrium technique at high temperatures. Retention curves at different temperatures show that total suction tends to reduce with increasing temperatures at constant water content. Temperature influence on water permeability is more relevant at low matric suctions corresponding to bulk water preponderance (inter-aggregate zone). Below a degree of saturation of 75% no clear effect is detected. Experimental data show that temperature dependence on permeability at constant degree of saturation and constant void ratio is smaller than what could be expected from the thermal change in water viscosity. This behaviour suggests that phenomena such as porosity redistribution and thermo-chemical interactions, which alter clay fabric and pore fluid, can be relevant.  相似文献   

16.
Liu  Zhang-Rong  Cui  Yu-Jun  Ye  Wei-Min  Chen  Bao  Wang  Qiong  Chen  Yong-Gui 《Acta Geotechnica》2020,15(10):2865-2875

Bentonite pellet mixtures are considered as one of the candidate sealing materials for deep geological disposals of radioactive waste. One of the particularities of this material is the initial heterogeneous distribution of pellets and porosity within the mixture, leading to complex hydro-mechanical behaviour. In this paper, the hydro-mechanical properties of GMZ bentonite pellet mixtures were investigated in the laboratory by carrying out water retention tests on pellet mixtures under constant-volume condition and single pellets under free swelling condition, as well as a infiltration test on a column specimen of pellet mixture. In the infiltration test, the relative humidity and radial swelling pressure were monitored at five heights, the axial swelling pressure was also recorded. The instantaneous profile method was applied to determine the unsaturated hydraulic conductivities. Results show that, in high suction range (>?10 MPa) the water retention curve of pellet mixture under constant-volume condition was comparable to that of a single pellet under free swelling condition, while in low suction range (<?10 MPa) the latter exhibits a much higher water retention capacity. Due to clogging of large pores, the unsaturated hydraulic conductivity decreases as suction decreases to around 25 MPa. However, with further suction decrease, the hydraulic conductivity increases continuously until the value at saturated state, as in the case of most unsaturated soils. The radial swelling pressure at different heights develops with local sudden increase and decrease, which was attributed to local rearrangement of pellets upon wetting. By contrast, as the axial swelling pressure was measured on the global surface of the specimen, it develops in a more regular fashion.

  相似文献   

17.
A constitutive model, accounting for multiphase and multiscale coupling, is proposed for the water retention domain and the stress–strain response of compacted clayey soils. The model is based on a conceptual interpretation of the microfabric evolution of compacted soils along generalised hydromechanical paths, detected by means of mercury intrusion porosimeter tests. Multiphase coupling is provided by the mutual interaction between the mechanical and the hydraulic states. Multiscale coupling is introduced by a measure of the size of the aggregates, which influences both the retention and the stress–strain response, in the phenomenological constitutive equations. Model capabilities are verified by comparison with relevant experimental data from laboratory tests on compacted Boom clay and other selected experimental data on different compacted clayey soils. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
开展了湿干循环作用下压实黏土的开裂试验和微观结构特性研究,分析了湿干循环作用对黏土开裂和孔隙结构的影响,将压汞试验(MIP)和扫描电镜(SEM)的结果与宏观开裂进行比较。结果表明:湿干循环作用显著影响了压实黏土的开裂,用开裂因子表征黏土的开裂程度,开裂因子随含水率减小而增大并明显大于湿干循环作用前; 随湿干循环次数的增加,黏土孔隙的总体积、中间孔径、平均孔径、平均孔隙率和团粒内孔隙均在增加,而黏土的颗粒内孔隙、颗粒间孔隙和团粒间孔隙却在减小。湿干循环作用使黏土体从大团粒逐渐转化为小颗粒,并增大了土颗粒的凸凹性,分析SEM二值化图像得知土体孔隙率均在增加; 用压汞法和扫描电镜法分析和解释土体开裂是可行的,所得的微观孔隙特征与宏观开裂规律基本相符。  相似文献   

19.
Pouragha  Mehdi  Eghbalian  Mahdad  Wan  Richard  Wong  Tai 《Acta Geotechnica》2021,16(4):1147-1160

Water retention of clayey soils with wide particle size distributions involves a combination of capillary and adsorbed layers effects that result into suction–saturation relations spanning over multiple decades of matric suction values. The present study provides a physics-based analysis to reproduce the water retention curve of such soils based solely on particle size distribution and porosity. The distribution of inter-particle pore sizes is inferred through a probabilistic treatment of the particle size distribution, which is then used, together with an assigned pore entry pressure, to estimate the inter-particle water volume at a given suction. The contribution to water content from adsorbed layers is also taken into account by considering the balance of electrochemical forces between water and clay material. The total water content is therefore found by summing up the contribution of inter-particle water, as well as adsorbed layers that form around clay particles and around the individual clay platelets. Comparisons with experimental results on nine different soil samples verify the capability of the model in accurately predicting the wide water retention curves without any prior calibration. Additional to capturing the essential features of the water retention curve with remarkable detail, the analytical model also provides insights into the relative contributions of capillary and adsorbed waters to the overall saturation at different suction regimes. Being based upon easily accessible information such as particle size distribution and void ratio, the model can therefore be considered as a substitute for costly and lengthy laboratory and in situ measurements of water retention curve.

  相似文献   

20.
This paper presents a study on osmotic suction of compacted highly plastic clays. Two different types of bentonite (i.e. Calcigel and a bentonite from India called herein as Indian bentonite) were used. Squeezing technique was utilized to obtain soil pore-water of the specimen. Using relationship between electric conductivity and osmotic pressure of salt solution, osmotic suction of soil pore-water was obtained. Additional tests (i.e. total and matric suction using filter paper method and swelling pressure using constant volume swelling pressure test) were performed. The results show that osmotic pressure of soil pore-water obtained decreases by increasing squeezing pressure. Based on experimental result, osmotic suction of the specimen is osmotic pressure of the first drop of extracted soil pore-water. An empirical method was suggested to determine the squeezing pressure in squeezing technique. In addition, roles of osmotic suction in thermo-hydro-mechanical behavior of highly plastic clays were presented and discussed in the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号