首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Formulae containing the elements of the variational matrix are obtained which determine the linear iso-energetic stability parameters of periodic orbits of the general three-body problem. This requires the numerical integration of the variational equations but produces the stability parameters with the effective accuracy of the numerical integration. The procedure is applied for the determination of horizontally critical orbits among the members of sets of vertical-critical periodic orbits of the threebody problem. These critical-critical orbits have special importance as they delimit the regions in the space of initial conditions which correspond to possibly stable three-dimensional periodic motion of low inclination.  相似文献   

2.
Altrock  Richard C. 《Solar physics》2003,213(1):23-37
Synoptic photoelectric observations of the coronal Fexiv and Fex emission lines at 530.3 nm and 637.4 nm, respectively, are analyzed to study the rotational behavior of the solar corona as a function of latitude, height, time and temperature between 1976 (1983 for Fex) and 2001. An earlier similar analysis of the Fexiv data at 1.15 R over only one 11-year solar activity cycle (Sime, Fisher, and Altrock, 1989, Astrophys. J. 336, 454) found suggestions of solar-cycle variations in the differential (latitude-dependent) rotation. These results are tested over the longer epoch now available. In addition, the new Fexiv 1.15 R results are compared with those at 1.25 R and with results from the Fex line. I find that for long-term averages, both ions show a weakly-differential rotation period that may peak near 80° latitude and then decrease to the poles. However, this high-latitude peak may be due to sensing low-latitude streamers at higher latitudes. There is an indication that the Fexiv rotation period may increase with height between 40° and 70° latitude. There is also some indication that Fex may be rotating slower than Fexiv in the mid-latitude range. This could indicate that structures with lower temperatures rotate at a slower rate. As found in the earlier study, there is very good evidence for solar-cycle-related variation in the rotation of Fexiv. At latitudes up to about 60°, the rotation varies from essentially rigid (latitude-independent) near solar minimum to differential in the rising phase of the cycle at both 1.15 R and 1.25 R . At latitudes above 60°, the rotation at 1.15 R appears to be nearly rigid in the rising phase and strongly differential near solar minimum, almost exactly out of phase with the low-latitude variation.  相似文献   

3.
The original temporal analysis of a 12 night spectral timeseries of WR-134 has been found to be flawed and a re-analysis shows that the line profile variations are indeed periodic. When combined with a 4 night timeseries taken 45 days earlier, a period near 2.27 d is found in periodograms of the Heii 5412 line centroid,rms line width, and line skew variations. When the emission line residuals are ordered as a function of phase, a sinuous feature appears to snake about the line center with an amplitude of ± 500 km s–1. This is 20 larger than the line centroid amplitude; the calculation of which is heavily weighted by static portions of the line profile. In addition to the snake, emission residuals appear that move away from line center on unbound trajectories and are thought to result from the interaction of a periodic driver with the unstable flow of the radiation driven wind. The nature of the periodic driver is a topic for discussion.  相似文献   

4.
When solar wind plasma in the trailing (eastern) edge of a high-speed stream is mapped back to its estimated source in the high corona using the constant radial velocity (EQRH) approximation, a large range of velocities appears to come from a restricted range in longitude, often only a few degrees. This actually constitutes a sharp eastern coronal boundary for the solar wind stream source, and demands that the boundary have a three-dimensional structure. Using interplanetary data, we infer a systematic variation in source altitude (identified approximately with the Alfvén point), with faster solar wind attaining its interplanetary characteristics at lower altitudes. This also affects the accuracy of the source longitude estimates, so that we infer a width in the high corona of 4–6° for the source of the trailing edges of streams which appear to originate from a single longitude. We demonstrate that the possible systematic interplanetary effects (in at least some cases) are not large ( 2° in heliocentric longitude). The relatively sharp boundaries imply that high-speed streams are well-defined structures all the way down to their low coronal sources, and that the magnetic field structure controls the propagation of the plasma through the corona out to the vicinity of the Alfvén point ( 20 R ).  相似文献   

5.
Perturbations in the motion of the Moon are computed for the effect by the oblateness of the Earth and for the indirect effect of planets. Based on Delaunay's analytical solution of the main problem, the computations are performed by a method of Fourier series operation. The effect of the oblateness of the Earth is obtained to the second order, partly adopting an analytical evaluation. Both in longitude and latitude are found a few terms whose coefficient differs from the current lunar ephemeris based on Brown's theory by about 0.01. While, concerning the indirect effect of planets, several periodic terms in the current ephemeris seem to have errors reaching 0.05.As for the secular variations of and due to the figure of the Earth and the indirect effect of planets, the newly-computed values agree within 1/cy with Brown's results reduced to the same values of the parameters. Further, the accelerations in the mean longitude, and caused by the secular changes in the eccentricity of the Earth's orbite and in the obliquity of the ecliptic are obtained. The comparison with Brown shows an agreement within 0.3/cy2 for the former cause and 0.02/cy2 for the latter. An error is found in the argument of the principal term for the perturbations due to the ecliptic motion in the current ephemeris.Proceedings of the Conference on Analytical Methods and Ephemerides: Theory and Observations of the Moon and Planets. Facultés universitaires Notre Dame de la Paix, Namur, Belgium, 28–31 July, 1980.  相似文献   

6.
Infinite series expansions are obtained for the doubly averaged effects of the Moon and Sun on a high altitude Earth satellite, and the results used to interpret numerically integrated examples. New in this paper are: (1) both sublunar and translunar satellites are considered; (2) analytic expansions include all powers in the satellite and perturbing body semi-major axes; (3) the fact that retrograde orbits have more benign eccentricity behavior than direct orbits should be exploited for high altitude satellite systems; and (4) near circular orbits can be maintained with small expenditures of fuel in the face of an exponential driving force one forI ab, whereI b=180°–I a andI a is somewhat less than 39.2° for sublunar orbits and somewhat greater than 39.2° for translunar orbits.Nomenclature a semi-major axis - A lk coefficient defined in Equation (11) - B lk coefficient defined in Equation (24) - C km coefficient defined in Equation (25) - D, E, F coefficients in Equations (38), (39) - e eccentricity - H k expression defined in Equation (34) - expression defined in Equation (35) - I inclination of satellite orbit on lunar (or solar) ring plane - J 2 coefficient of second harmonic of Earth's gravitational potential (1082.637×10–6 R E 2 ) - K k, Lk, Mk expressions in Section 4 - expressions in Section 4 - p=a(1–e 2) semi-latus rectum - P l Legendre polynomial of degreel - q argument of Legendre polynomial - radial distance of satellite - R E Earth equatorial radius (6378.16 km) - R, S, W perturbing accelerations in the radial, tangential and orbit normal directions - syn synchronous orbit radius (42 164.2 km=6.6107R E) - t time - T satellite orbital period - T orbital period of perturbing body (Moon) - T e period of long periodic oscillations ine for |I|<I a - T s synodic period - U gravitational potential of lunar (or solar) ring - x, y, z Cartesian coordinates of a satellite with (x, y) being the ring plane - coefficient defined in Equation (20) - average change in orbital element over one orbit (=a, e, I, , ) - 1,23 unit vectors in thex, y, z coordinate directions - r , s , w unit vectors in the radial, tangential and orbit normal directions - =+ angle along the orbital plane from the ascending node on the ring plane to the true position of the satellite - angle around the ring - gravitational constant times mass of Earth (3.986 013×105 km s–2) - gravitational constant times mass of Moon (or Sun) - m gravitational constant times mass of Moon (/81.301) - s gravitational constant time mass of Sun (332 946 ) - ratio of the circumference of a circle to its diameter - radius of lunar (or solar) ring - m radius of lunar ring (60.2665R E) - s radius of solar ring (23455R E) - true anomaly - argument of perigee - 0 initial value of - i critical value of in quadranti(i=1, 2, 3, 4) - longitude of ascending node on ring plane This work was sponsored by the Department of the Air Force.  相似文献   

7.
On the Dynamics of Weak Stability Boundary Lunar Transfers   总被引:1,自引:1,他引:0  
Recent studies demonstrate that lunar and solar gravitational assists can offer a good reduction of total variation of velocity Vneeded in lunar transfer trajectories. In particular the spacecraft, crossing regions of unstable equilibrium in the Earth—Moon—Sun system, can be guided by the Sun towards the lunar orbit with the energy needed to be captured ballistically by the Moon. The dynamics of these transfers, called weak stability boundary (WSB) transfers, will be studied here in some detail. The crucial Earth—Moon—Sun configurations allowing such transfers will be defined. The Sun's gravitational effect and lunar gravitational capture will be analyzed in terms of variations of the Jacobi constants in the Earth—Sun and Earth—Moon systems. Many examples will be presented, supporting the understanding of the dynamical mechanism of WSB transfers and analytical formulas will be obtained in the case of quasi ballistic captures.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

8.
The resonance C1 occurs when the longitude of the perigee measured from the equinox becomes a slow angle in the doubly averaged equations of motion. This resonance is one of the critical inclination family with I 46°. For prograde Earth satellite orbits, up to five critical points can be identified. Only simple pitchfork bifurcations occur for the single resonance C1. A two degrees of freedom system is studied to check how a coupling of two lunisolar resonances affects the results furnished by the analysis of an isolated resonance case. In the system with two critical angles (g+h and h,+2 , seven types of critical points have been identified. The critical points arise and change their stability through 11 bifurcations. If the initial conditions are selected close to the critical points, the system becomes chaotic as shown in Poincaré maps.  相似文献   

9.
We prove that Hill's lunar problem does not possess a second analytic integral of motion, independent of the Hamiltonian. In order to obtain this result, we avoid the usual normalization in which the angular velocity of the rotating reference frame is put equal to unit. We construct an artificial Hamiltonian that includes an arbitrary parameter b and show that this Hamiltonian does not possess an analytic integral of motion for in an open interval around zero. Then, by selecting suitable values of , b and using the invariance of the Hamiltonian under scaling in the units of length and time, we show that the Hamiltonian of Hill's problem does not possess an integral of motion, analytically continued from the integrable two–body problem in a rotating frame.  相似文献   

10.
We study some simple periodic orbits and their bifurcations in the Hamiltonian . We give the forms of the orbits, the characteristics of the main families, and some existence diagrams and stability diagrams. The existence diagram of the family 1a contains regions that are stable (S), simply unstable (U), doubly unstable (DU) and complex unstable (). In the regionsS andU there are lines of equal rotation numberm/n. Along these lines we have bifurcations of families of periodic orbits of multiplicityn. When these lines reach the boundary of the complex unstable region, they are tangent to it. Inside the region there are linesm/n, along which the orbits 1a, describedn-times, are doubly unstable; however, along these lines there are no bifurcations ofn-ple periodic orbits. The families bifurcating from 1a exist only in certain regions of the parameter space (, ). The limiting lines of these regions join at particular points representing collisions of bifurcations. These collisions of bifurcations produce a nonuniqueness of the various families of periodic orbits. The complicated structure of the various bifurcations can be understood by constructing appropriate stability diagrams.  相似文献   

11.
The general conception of the critical inclinations and eccentricities for theN-planet problem is introduced. The connection of this conception with the existence and stability of particular solutions is established. In the restricted circular problem of three bodies the existence of the critical inclinations is proved for any values of the ratio of semiaxes . The asymptotic behaviour of the critical inclinations as 1 is investigated.
. . . 1.
  相似文献   

12.
13.
14.
15.
16.
An essential part in the mechanics under study is taking into consideration the effect of motions of the Universe objects upon that of an individual one surrounded by them including those infinitely far from it. Only macro-objects of the Universe are meant here.
Zusammenfassung Ein wesentlicher Bestandteil der Mechanik unter unserer Betrachtung ist die Berechnung des Einflusses auf die Bewegung eines individuellen Objektes von Bewegungen der Universum Objekte die es umringen einschließlich jene Objekte, die unendlich entfernt sind. Nur Makroobjekte des Weltalles sind in der Absicht dabei.

, . .
  相似文献   

17.
In this paper we introduce a new parameter, the shear angle of vector magnetic fields, , to describe the non-potentiality of magnetic fields in active regions, which is defined as the angle between the observed vector magnetic field and its corresponding current-free field. In the case of highly inclined field configurations, this angle is approximately equal to the angular shear, , defined by Hagyardet al. (1984). The angular shear, , can be considered as the projection of the shear angle, , on the photosphere. For the active region studied, the shear angle, , seems to have a better and neater correspondence with flare activity than does . The shear angle, , gives a clearer explanation of the non-potentiality of magnetic fields. It is a better measure of the deviation of the observed magnetic field from a potential field, and is directly related to the magnetic free energy stored in non-potential fields.  相似文献   

18.
In this paper two sets of improved approximate expressions of emissivity , absorptivity , effective temperature Teff, and frequency of peak brightness _p of gyrosynchrotron radiation are presented respectively for the ranges from 5 to 10 and 10 to 100 of harmonic numbers s(= /_B). The expressions are designed for the range from 20° to 80° of viewing angle , and the range 2 to 7 of electron energy spectral index . They are expressed by a power-law function in which the indexes are fitted by polynomial expressions of . Their statistical errors are, respectively, 24% and 32% for and for and 28% for . Their accuracies are much better than those of linear fitting of the power-law index.  相似文献   

19.
A comparison is made between the stability criteria of Hill and that of Laplace to determine the stability of outer planetary orbits encircling binary stars. The restricted, analytically determined results of Hill's method by Szebehely and co-workers and the general, numerically integrated results of Laplace's method by Graziani and Black are compared for varying values of the mass parameter =m 2/(m 1+m 2). For 00.15, the closest orbit (lower limit of radius) an outer planet in a binary system can have and still remain stable is determined by Hill's stability criterion. For >0.15, the critical radius is determined by Laplace's stability criterion. It appears that the Graziani-Black stability criterion describes the critical orbit within a few percent for all values of .  相似文献   

20.
In the framework of non-linear fluid theory we use a lower hybrid (LH) wave of the form as a pump which interacts with the small fluctuations with the low-frequency vibrations i or =0, where i , is the hydrogen ion-cyclotron (HIC) gyrofrequency. The ponderomotive force generated by the beating of the high-frequency pump wave 0 and the sideband LH waves (±0) produces a non-linear coupling between the high- and low-frequency motions of electrons and ions. Under certain conditions the HIC waves and the zero-frequency waves both become parametrically unstable and start to grow. These excited waves then heat the ions by stochastic acceleration in the transverse direction, thus explaining the formation of ion comics along the auroral field lines. Electrons would be heated in the parallel direction directly by the pump field as well as by low-frequency waves. Thus a single mechanism can explain the existence of ion-cyclotron waves, zero-frequency waves, ion conics, and energetic electrons along the auroral field lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号