首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary. Palaeomagnetic results are presented from the c . 160 km2 Caledonian synorogenic layered Fongen-Hyllingen gabbro complex (of probable late Silurian age) located about 75 km SE of Trondheim, Norway, in the allochthonous Seve-Kdli Nappe Complex. A total of 80 oriented samples from eight sites in the northern part of the gabbro were investigated. After detailed af demagnetization two stable high coercivity components emerge: one with a well defined NW direction with D =325°, I =−21° (α95=8°, N =8), and another, less well defined, probably younger, SW direction with D = 237°, I = 6° (α95= 9°, N = 8). Correction for dip of these two directions gives D = 329°, I =−7° (α95= 10°) and D = 238°, I =−11° (α95= 12°), respectively. The corresponding pole positions are P 1 : 19° N, 225° E and P 2: 19° S, 308° E, respectively. The reversed pole -P 2 of the SW direction lies close to other NW European palaeomagnetic poles of Caledonian, Upper Silurian-Lower Devonian age. However, the dominant pole PI is far away from these, and could be due to a late Caledonian geomagnetic excursion of considerable duration; or it could record a c . 90° rotation around a vertical axis of a crustal block within the Scandinavian Caledonides. Block rotation could have been related to nappe translation, although geological observations do not at present appear to support the occurrence of such an event.  相似文献   

2.
A palaeomagnetic study of 115 samples (328 specimens) from 22 sites of the Mid- to Upper Cretaceous Bagh Group underlying the Deccan Traps in the Man valley (22°  20'N, 75°  5'E) of the Narmada Basin is reported. A characteristic magnetization of dominantly reverse polarity has been isolated from the entire rock succession, whose depositional age is constrained within the Cretaceous Normal Superchron. Only a few samples in the uppermost strata have yielded either normal or mixed polarity directions. The overall mean of reverse magnetization is D m=144°, I m=47° ( α 95=2.8°, k =152, N =18 sites) with the corresponding S-pole position 28.7°S, 111.2°E ( A 95=3.1°) and a palaeolatitude of 28°S±3°. The characteristic remanence is carried dominantly by magnetite. Similar magnetizations of reverse polarity are also exhibited by Deccan basalt samples and a mafic dyke in the study area. This pole position falls near the Late Cretaceous segment of the Indian APWP and is concordant with poles reported from the Deccan basalt flows and dated DSDP cores (75–65  Ma) of the Indian Ocean. It is therefore concluded that the Bagh Group in the eastern part of the Narmada Basin has been pervasively remagnetized by the igneous activity of Deccan basalt effusion. This overprinted palaeomagnetic signature in the Bagh Group indicates a counter-clockwise rotation by 13°±3° and a latitudinal drift northwards by 3°±3° of the Indian subcontinent during Deccan volcanism.  相似文献   

3.
Summary. One hundred and fifty oriented samples were collected from 12 sites from the Tertiary basalts of Wadi Abu Tereifiya (30.0°N, 32.1° E). After alternating field demagnetization the mean direction of the natural remanent magnetization is, D = 187.9°, I = -20.8° with α95= 5.8°. This yields a palaeopole at 69.4°N, 188.3° E.
Also, 30 oriented samples were collected from two sites from Mandisha in Bahariya Oasis (28.4°N, 28.9° E). After cleaning, the mean direction of the NRM is D = 191.0°, I = 5.2° with α95= 9.9°. This yields a palaeopole position at 58.2°N, 186.7° E.
Besides, the NRM of 70 oriented samples collected from seven dioritic dykes from Wadi Abu Shihat (26.3°N, 33.2° E) was found to have a mean direction, D = 142.0°, I = -0.3°, which leads to a palaeopole position at, 44.9°N, 273.0° E. This agrees with other Mesozoic pole positions from Africa.  相似文献   

4.
Magnetic fabric was determined by applying the anisotropy from the low-field magnetic susceptibility (AMS) technique in 62 mafic dykes from the Mesozoic Florianópolis (Santa Catarina Island) dyke swarm, southern Brazil. These dykes cut the crystalline basement rocks, which are mainly Proterozoic. They are vertical or subvertical in dip and trend mainly NE, although NW-trending dykes are also found. Dykes are tholeiitic in composition and are geochemically similar to those from the Ponta Grossa swarm. Thicknesses vary from 0.3 to 60 m. Polished sections show that titanomagnetites carry the AMS in these dykes. Hysteresis parameters show that the magnetic minerals fall in the PSD range. Two types of magnetic fabric are recognized. Type I is characterized by K 1- K 2 parallel to the dyke wall, representing magma flow within the dykes; type II, with K 1- K 3 parallel to the dyke wall, was found in four dykes. Type I is found in 94 per cent of the dykes, and approximately 20 per cent of these have K 1 inclinations of less than 30°, suggesting horizontal or subhorizontal flow. About 80 per cent have K 1 inclinations of greater than 30°, due to inclined to vertical flow. The comparison of AMS studies from both the Florianópolis and the Ponta Grossa dykes suggests a source position closer to Santa Catarina Island than the Ponta Grossa arch.  相似文献   

5.
New palaeomagnetic data from the Lower and Middle Cambrian sedimentary rocks of northern Siberia are presented. During stepwise thermal demagnetization the stable characteristic remanence (ChRM) directions have been isolated for three Cambrian formations. Both polarities have been observed, and mean ChRM directions (for normal polarity) are: Kessyusa Formation (Lower Cambrian) D = 145°, I = -40°, N = 12, α95= 12.8°; pole position: φ= 38°S, A = 165°E; Erkeket Formation (Lower Cambrian, stratigraphically highly) D = 152°, I = - 47°, N = 23, α95= 6.8°; pole position: φ= 45°S, A = 159°E; Yunkyulyabit-Yuryakh Formation (Middle Cambrian) D = 166°, I = - 33°, N = 38, α95= 4.6°; pole position: φ= 36°S, L = 140°E. These poles are in good agreement with the apparent polar wander path based on the bulk of existing Cambrian palaeomagnetic data from the Siberian platform. In Cambrian times, the Siberian platform probably occupied southerly latitudes stretching from about 35° to 0°, and was oriented 'reversely' with respect to its present position. Siberia moved northwards during the Cambrian by about 10° of latitude. This movement was accompanied by anticlockwise rotation of about 30°. The magnetostratigraphic results show the predominance of reversed polarity in the Early Cambrian and an approximately equal occurrence of both polarities in the part of the Middle Cambrian studied. These results are in good agreement with the palaeomagnetic polarity timescale for the Cambrian of the Siberian platform constructed previously by Khramov et al. (1987).  相似文献   

6.
Summary Nine basic dykes were sampled near Angmagssalik, east Greenland. Specimens have been treated by alternating field demagnetization in 11 steps up to 3000 (peak) oersted (300 ml). The 'cleaned' direction at all sites is recognized after treatment at 150 oersted. All specimens are reversely magnetized. The mean of the site mean directions has declination = 182°.0, inclination =−66°.9, it = 45, α95= 7°.7. This direction yields a palaeomagnetic pole (reversed) at 73°.4N, 139°.5E ( dp = 10°.7, dm = 12°.9) which is near, but significantly different from, that derived from lower Tertiary rocks in Greenland, namely 63°.2N, 184°.6E ( A 95= 4°.5). K-Ar ages of the nine dykes, based upon whole-rock and mineral separates, range from mid-Tertiary to Cambrian. It is impossible to reconcile these ages with the palaeomagnetic results. The palaeomagnetic evidence, supported by geological inference, suggests that all nine dykes are members of the east Greenland lower Tertiary dyke swarm, designated THOL1, of probable age c. 52 Ma.
The difference between the poles given above can be explained by supposing that the sampling area has tipped about a horizontal axis directed along 013°/193°, the angle of rotation being 13° (± 11°) anti-clockwise, when the axis is viewed along 013°. This local effect could have been due to block faulting when the north-east Atlantic started to open, or may be attributed to upwarping of the coast due to the weight of the ice-cap inland.  相似文献   

7.
Summary. The Cordova gabbro of southern Ontario intrudes 1300 Myr old volcanic rocks of the Hastings Lowlands in the Grenville Structural Province. Three distinct vector magnetizations (A, B and C) have been isolated, using a combination of stable endpoints, subtracted vectors from orthogonal vector plots and converging remagnetization circles. The A magnetization, with mean direction D = 294° I =– 55.5° ( k = 42, α95= 5.5°, N = 18 sites), is a high coercivity, high blocking temperature remanence recorded by 49 samples. The B magnetization was isolated in 33 samples and has a mean direction D = 305.5° I =– 1.5° ( k = 24, α95, N = 11 sites). B has lower coercivities and blocking temperatures than A where the two are superimposed. The A and B palaeopoles, 151°E, 10.5°S ( dp = 6°, dm = 8°) and 165.5°E, 24°N ( dp = 5°, dm = 9.5°), fall on the Grenville Track around 900 and 820 Ma respectively. The A and B magnetizations thus date from uplift and cooling following the Grenvillian orogeny. The third magnetization, the C component, has been isolated in 23 samples. Its mean direction is D = 180° I = 27.5° ( k = 18, α95= 10.5°, N = 12 sites). The C is a low coercivity, low blocking temperature overprint of A and B. Its palaeopole, 102°E, 31°N ( dp = 6.5°, dm = 12°), is unlike post-1300 Precambrian poles for cratonic North America but matches Silurian and late Ordovician poles. 40Ar/39Ar plateau ages of 446 and 447 Ma determined by Lopez-Martinez and York for plagioclases from one of the Cordova samples confirm this age assignment. The C magnetization therefore records a previously unrecognized mild thermal or hydrothermal event that occurred in Palaeozoic time, long after the Grenvillian orogeny.  相似文献   

8.
Upper Jurassic red sandstones and red siltstones were collected from 67 layers at 12 localities in the Penglaizhen formation. This formation is in the north of Bazhong county (31.8°N, 106.7°E) in the Sichuan basin, which is located in the northern part of the Yangtze craton. Thermal demagnetization isolated a high-temperature magnetic component with a maximum unblocking temperature of about 690 °C from 45 layers. The primary nature of the magnetization acquisition is ascertained through the presence of magnetostratigraphic sequences with normal and reversed polarities, as well as positive fold and reversal tests at the 95 per cent confidence level. The tilt-corrected mean direction of 36 layers is D = 20.0°, I = 28.8° with α 95 = 5.8°. A Late Jurassic palaeomagentic pole at 64.7°N, 236.0°E with A 95 = 7.0° is calculated from the palaeomagnetic directions of 11 localities. This pole position agrees with the two other Late Jurassic poles from the northern part of the Yangtze craton. A characteristic Late Jurassic pole is calculated from the three poles (68.6°N, 236.0°E with A 95 = 8.0°) for the northern part of the Yangtze craton. This pole position is significantly different from that for the southern part of the Yangtze craton. This suggests that the southern part of the Yangtze craton was subjected to southward extrusion by 1700 ± 1000  km with respect to the northern part. Intracraton deformation occurred within the Yangtze craton.  相似文献   

9.
Measurement of samples from 154 sites in the continental sector of the Cameroon Volcanic Line yielded six palaeomagnetic poles, at 243.6°E, 84.6°N, α 95 = 6.8°; 224.3°E, 81.2°N, α 95 = 8.4°; 176.1°E, 82.0°N, α 95 = 8.5°; 164.3°E, 86.4°N, α 95 = 3.4°; 169.4°E, 82.6°N, α 95 = 4.6° and 174.7°E, 72.8°N, α 95 = 9.5°, belonging to rocks which have been dated by the K–Ar method at 0.4–0.9  Ma, 2.6  Ma, 6.5–11  Ma, 12–17  Ma, 20–24  Ma and 28–31  Ma, respectively. The results are in general agreement with other palaeomagnetic poles from Oligocene to Recent formations in Africa.
  The first three poles for rocks formed between 0.4 and 11  Ma are not significantly different from the present geographical pole. Together with other African poles for the same period, this suggests that the African continent has moved very little relative to the pole since 11  Ma. The other three poles for rocks dated between 12 and 31  Ma are significantly different from the present geographical pole, showing a 5° polar deviation from the present pole in the Miocene and 13° in the Middle Oligocene.  相似文献   

10.
From a nunatak in central North Greenland (81.5°N, 44.7°W) nine sites of Middle Proterozoic basic dykes, cutting Archaean basement, were palaeomagnetically investigated. After AF and thermal cleaning the nine dyke sites and three adjacently baked gneiss sites give a stable characteristic remanent mean direction of D = 265°, I = 21.5° ( N = 12, α 95= 5.6°), the direction being confirmed by a detailed and positive baked contact test.
The polarity of the dykes in the nunatak area is opposite to that of the Zig-Zag Dal Basalts and the Midsommersø Dolerites in eastern North Greenland some 200–300 km away, the volcanics of which are assumed to be of similar age (about 1.25 Ga). The remanent directions of the two sets of data are antiparallel within the 95 per cent significance level of confidence.
When rotating Greenland 18° clockwise back to North America by the 'Bullard fit', the pole of the central North Greenland dolerites (NDL) falls at (14.3°N, 144.3°W). The reversed pole (14.3°S, 35.7°E) fits well on to the loop between 1.2 and 1.4 Ma on the apparent polar wander swath of Berger & York for cratonic North America.
The palaeomagnetic results from the Middle Proterozoic basic dykes from central North Greenland thus strengthen previous palaeomagnetic results from the Midsommersø Dolerites and Zig-Zag Dal Basalts from the Peary Land Region in eastern North Greenland, suggesting that Greenland was part of the North American craton at least for the period between c . 1.3 and 1 Ma (and probably up to the end of Cretaceous time). The major geographical meridian of Greenland was orientated approximately E–W, and the palaeo-latitude of Greenland was about 10°–15°.  相似文献   

11.
Summary. Palaeomagnetic investigations were carried out on nine lava flows around the Dhar region, which constitute the northern part of the Deccan traps. The stability of remanent magnetism of these specimens was analysed by an alternating magnetic field, thermal demagnetization and memory tests. Six flows exhibited characteristic components of magnetization, with a mean direction of D =143°, I =+46° ( K = 107.1, α95=5.5°). This gives a VGP located at 29° N, 67° W (δp=4.5°, δm= 7.0°). The lower site with normal magnetization and the upper five sites with reverse magnetization indicate a geomagnetic field reversal during the initial phases of Deccan volcanism in the Early Tertiary period. A rapid northward migration of about 18° in latitude and a simultaneous anticlockwise rotation of 37° is calculated for the subcontinent.  相似文献   

12.
Greenish sandstones in the Early Triassic Nogam Formation of the Ryeongnam Block, Korean Peninsula were collected at 23 sites for palaeomagnetic study. A high-temperature magnetization component with unblocking temperatures of 670–690 °C was isolated from seven sites and yielded a positive fold test at the 95 per cent confidence level. The high-temperature component is interpreted to be of primary origin because the folding age is Middle Triassic. The Early Triassic palaeomagnetic direction for the Ryeongnam Block after tilt correction is D =347.1°, I =23.8° ( α 95=5.5°). The palaeomagnetic pole (62.5°N, 336.8°E, A 95 = 4.7°) shows good agreement with the coeval pole for the North China Block, suggesting that the Ryeongnam Block has been part of the North China Block at least since Early Triassic times. A tectonic history of the Korean Peninsula includes obduction of the eastern part of the South China Block onto the central part of the Korean Peninsula in the Permian, with the Ryeongnam Block geographically isolated from the main part of the North China Block. Collision of the North and South China blocks commenced initially at the Korean Peninsula, and suturing of the two blocks progressed westwards.  相似文献   

13.
207Pb/206Pb single-grain zircon, 40Ar/39Ar single-grain hornblende and biotite, and 40Ar/39Ar bulk-sample muscovite and biotite ages from the Nelshoogte trondhjemite pluton located in eastern Transvaal, South Africa, show that this granitoid had a protracted thermal history spanning 3213±4  Ma to about 3000  Ma. Whole-rock 40Ar/39Ar ages from cross-cutting dolerite dykes indicate that these were intruded at about 1900  Ma. There is no evidence of this or other, later events significantly affecting the argon systematics of the minerals from the pluton dated by the 40Ar/39Ar method.
  The pluton has a well-defined palaeomagnetic pole which is dated at 3179±18 (2 σ ) Ma by 40Ar/39Ar dating of hornblende. This pole (18°N, 310°E, A 95=9°) yields a palaeolatitude of 0°, significantly different from other Archaean poles from the Kaapvaal Craton. The palaeolatitude difference implies that there was significant apparent polar wander during the Archaean. A second, overprinting magnetization seen in the pluton is also seen in the lower-Proterozoic dolerite dykes, and is consistent with other lower-Proterozoic (2150–1950  Ma) poles for southern Africa.  相似文献   

14.
Summary. After thermal and alternating field (AF) cleaning, the characteristic high blocking temperature A component of natural remanent magnetization (NRM) of the Tudor gabbro of southern Ontario has a mean direction D = 326°, I =–46° ( k = 132, α95= 4.8°, N = 8 sites). The corresponding palaeopole, 133°E, 12°N ( dp = 4°, dm = 6°), confirms the palaeopole 137°E, 17°N (α95= 8.4°) reported earlier by Palmer & Carmichael, based on AF cleaning only. The A NRM has unblocking temperatures > 515–525°C which exceed the estimated 500°C peak temperature reached locally during ∼ 1050 Ma Grenvillian regional metamorphism. The A NRM therefore predates metamorphism and is probably a primary thermoremanence (TRM). The age of the Tudor NRM has previously been taken to be about 675 Ma, but recent 40Ar/39Ar dating by Baksi has shown that this is the time of post-metamorphic cooling to 200–250°C. Hornblendes record initial cooling of the intrusion to 590±20°C at 1110 Ma and this is the best estimate of the age of the A remanence. Successful Thellier-type palaeointensity determinations on 11 Tudor samples confirm that the A NRM is a TRM and indicate a palaeofield at this time of 18–27 μT, about 50–70 per cent of the present field intensity at 27° magnetic latitude. The anomalous Tudor A palaeopole, which lies well to the west of both 1000–800 Ma Grenvillian palaeopoles and 1100–1050 Ma poles from Interior Laurentia, is interpreted as recording divergence between Grenvillia and Interior Laurentia just before the Grenvillian orogeny, rather than a post-metamorphic extension of the apparent polar wander path as previously assumed.  相似文献   

15.
Rocks from the Massif de la Serre in the French Jura (latitude: 47.3°N longitude: 5.6°E) belonging to an ignimbritic assemblage dominated by vitrophyric rhyolites, and whose age of formation is probably Permian (Autunian to Saxonian) have been studied by applying thermal and alternating field demagnetization. the characteristic magnetization has a mean direction derived from 89 samples of D= 170°, I = - 16°, k = 26.2°, α95= 3° and a corresponding north palaeopole at 41°N, 172°E, A 95= 5°. the pole, which is very close to the Permian European poles, can thus be considered as a new contribution. Some samples are found to carry a unique normal polarity magnetization, others carry both normal and reverse polarities. It therefore seems that, similar to Permian series in the USSR, these west European rocks have registered a normal event in the Kiaman interval. From a structural point of view, we may conclude that during the Alpine tectonic phases the Massif de la Serre has not been subjected to substantial rotation.  相似文献   

16.
A palaeomagnetic pole position, derived from a precisely dated primary remanence, with minimal uncertainties due to secular variation and structural correction, has been obtained for China's largest dyke swarm, which trends for about 1000 km in a NNW direction across the North China craton. Positive palaeomagnetic contact tests on two dykes signify that the remanent magnetization is primary and formed during initial cooling of the intrusions. The age of one of these dykes, based on U–Pb dating of primary zircon, is 1769.1 ± 2.5 Ma. The mean palaeomagnetic direction for 19 dykes, after structural correction, is D  = 36°, I  = − 5°, k  = 63, α 95 = 4°, yielding a palaeomagnetic pole at Plat=36°N, Plong=247°E, dp  = 2°, dm  = 4° and a palaeolatitude of 2.6°S. Comparison of this pole position with others of similar age from the Canadian Shield allows a continental reconstruction that is compatible with a more or less unchanged configuration of Laurentia, Siberia and the North China craton since about 1800 Ma  相似文献   

17.
Palaeomagnetic data from 182 hand samples collected in a rock sequence of about 620-m of red beds of Late Palaeozoic to Early Triassic age exposed in north-western Argentina (30.3° S 67.7° W), are given.
After cleaning, the majority of the Upper Palaeozoic samples (Middle Section of Paganzo Group) show reversed polarity and yield a palaeomagnetic pole at 78° S 249° E (α95= 3°). They also record a polarity transition which we have correlated with the Middle Permian Quebrada del Pimiento Normal Event. The position of the palaeomagnetic pole and the K-Ar age of a basalatic sill at the base of the sequence support this correlation.
Stable remanent magnetization has been isolated in the majority of samples from the Upper Section of the Paganzo Group; it is predominantly reversed and reveals three normal events and also three geomagnetic excursions suggesting an Illawarra Zone age (post Kiaman, Late Tatarian-Early Scythian). The palaeomagnetic pole of the reversely magnetized samples is located at 75° S 285° E(α95= 13°).
The red beds involved in this study are correlated with red beds from the Corumbataí Formation (State of Paraná, Brazil) and with igneous rocks from the Quebrada del Pimiento Formation (Province of Mendoza, Argentina).
The South American Middle and Upper Permian, Upper Permian—Lower Triassic, Lower, Middle and Upper Triassic and Middle Jurassic palaeomagnetic poles reflect a quasistatic period with mean pole at 82° S 244° E, (α95= 4°) which followed the South American Late Palaeozoic polar shift.  相似文献   

18.
Summary. A palaeomagnetic study of Middle to late Cretaceous redbeds from Linzhou basin (Lhasa block), north of the Yarlung Zangbo suture zone, gives a stable palaeomagnetic direction of magnetization with a positive fold-test: six sites, 57 samples, D = 333°, I = 38°, k = 78, α95= 8°, pole 64°N, 348°E. We discuss the problem of a possible remagnetization but consider that this direction of magnetization gives a good approximation for the palaeolatitude of the Lhasa block during Middle to late Cretaceous time. Results from more recent Tibetan formations are also presented: late Cretaceous to Palaeocene sediments and volcanics give a lower palaeolatitude of 10° N and but more recent andesites have emplaced about 30°N, close to the present-day latitude. An interpretation is proposed whereby the Lhasa block, which was a part of Asia in the early Cretaceous, has undergone first a southward motion accompanied by an anticlockwise rotation and then, after the Palaeocene, a northward motion under the constraint of the colliding India.  相似文献   

19.
We evaluate the stress field in and around the southern Korean Peninsula with focal mechanism solutions, using the data collected from 71 earthquakes ( ML = 1.9–5.2) between 1999 and 2004. For this, the hypocentres were relocated and well-constrained fault plane solutions were obtained from the data set of 1270 clear P -wave polarities and 46 SH / P amplitude ratios. The focal mechanism solutions indicate that the prevailing faulting types in South Korea are strike-slip-dominant-oblique-slip faultings with minor reverse-slip component. The maximum principal stresses (σ1) estimated from fault-slip inversion analysis of the focal mechanism solutions show a similar orientation with E–W trend (269°–275°) and low-angle plunge (10°–25°) for all tectonic provinces in South Korea, consistent with the E–W trending maximum horizontal stress (σHmax) of the Amurian microplate reported from in situ stress measurements and earthquake focal mechanisms. The directions of the intermediate (σ2) and minimum (σ3) principal stresses of the Gyeongsang Basin are, however, about 90 deg off from those of the other tectonic provinces on a common σ2–σ3 plane, suggesting a permutation of σ2 and σ3. Our results incorporated with those from the kinematic studies of the Quaternary faults imply that NNW- to NE-striking faults (dextral strike-slip or oblique-slip with a reverse-slip component) are highly likely to generate earthquakes in South Korea.  相似文献   

20.
Summary. Samples from the Nexø Sandstone of the Lower Cambrian- Precambrian boundary in South Bornholm reveal a stable NRM with a direction after magnetic cleaning of D = 226°, I = - 30° (α95= 11.5°). This NRM appears to originate in the detrital hematite grains rather than in the red cement of the sandstone. The stable NRM is likely to be of primary origin and reflects a Lower Cambrian pole at 104° W, 38° N (dp = 7°, dm = 11°). Apparent discrepancies between the Bornholm pole and the few other published Early Cambrian/Late Precambrian poles from the Baltic Shield are consistent with the suggestion of large polar movements in those times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号