首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutral gas composition and ionospheric measurements taken by the Dynamic Explorer 2 satellite at F2-region heights (280–300 km) during an intense geomagnetic storm (peak Dst=−187 nT) were used to analyze the role of some possible physical mechanisms responsible for the changes of electron density at high and middle latitudes. The storm considered in this study occurred on 26 September 1982. The main features observed were increases of electron density during the initial stages of the storm at middle latitudes; followed by decreases of electron density at high and mid-high latitudes during the main phase of the storm and the first phase of the recovery. Delayed increases of electron density during the recovery phase have also been observed at mid-high latitudes (50–60°). Several mechanisms were discussed in explaining the features observed for the electron density variations.  相似文献   

2.
The dynamic picture of the response of the high- and mid-latitude ionosphere to the strong geomagnetic disturbances on March 17–18, 2015, has been studied with ground-based and satellite observations, mainly, by transionospheric measurements of delays of GPS (Global Positioning System) signals. The advantages of the joint use of ground-based GPS measurements and GPS measurements on board of the Swarm Low-Earth-Orbit satellite mission for monitoring of the appearance of ionospheric irregularities over the territory of Russia are shown for the first time. The results of analysis of ground-based and space-borne GPS observations, as well as satellite, in situ measurements, revealed large-scale ionospheric plasma irregularities observed over the territory of Russia in the latitude range of 50°–85° N during the main phase of the geomagnetic storm. The most intense ionospheric irregularities were detected in the auroral zone and in the region of the main ionospheric trough (MIT). It has been found that sharp changes in the phase of the carrier frequency of the navigation signal from all tracked satellites were recorded at all GPS stations located to the North from 55° MLAT. The development of a deep MIT was related to dynamic processes in the subauroral ionosphere, in particular, with electric fields of the intense subauroral polarization stream. Analysis of the electron and ion density values obtained by instruments on board of the Swarm and DMSP satellites showed that the zone of highly structured auroral ionosphere extended at least to heights of 850–900 km.  相似文献   

3.
Neutral gas composition and ionospheric measurements taken by the Dynamic Explorer 2 satellite at F2-region heights during two geomagnetic storms are used to analyze the role of some possible physical mechanisms responsible for the changes of electron density at equatorial and low geomagnetic latitudes. The storms considered occurred on October 2, 1981 (storm 1) and July 13, 1982 (storm 2). During storm 1 (weak), vertical plasma drifts and equatorward storm-time winds operated increasing of the electron density at the trough of equatorial anomaly and the decreases at the crest region. During storm 2 (intense) changes of composition (increase of molecular nitrogen and atomic oxygen) played a fundamental role for the changes of electron density observed at low latitudes in summer hemisphere. It is concluded that different physical processes seem to have varying degrees of importance depending on the intensity of the storm.  相似文献   

4.
The latitudinal position of subauroral proton spots (special proton auroras observed from the IMAGE satellite) has been compared with the Pc1 pulsation intensity distribution determined using the data from the Finnish meridional network of induction magnetometers. It has been indicated that a Pc1 intensity maximum is always observed at the station that is closer to the proton aurora projection. Two Pc1 bands were registered in the event when two proton auroral spots were simultaneously observed at different latitudes. In this case, the Pc1 intensity distribution maximum at lower frequencies was related to a proton auroral spot at a higher latitude and vice versa. Such a spatial correlation between Pc1 pulsations and proton auroral spots, together with the previously established time correlation between these phenomena, demonstrates that subauroral proton spots reflect the region of ion cyclotron instability in the equatorial magnetosphere at the level of the ionosphere.  相似文献   

5.
The latitudinal distributions of horizontal geomagnetic variations, ΔH, and their time derivatives, ∂H/∂t, were analysed statistically over the three-year period 2003–2005. It appears that the amplitude distributions of horizontal geomagnetic variations and their time derivatives differ systematically between different geomagnetic latitudes and storm intensity levels. We show that the magnetic field variations observed at auroral and polar cap latitudes are under all geomagnetic storm levels comparable in amplitude (in a statistical sense) while they are smaller at subauroral latitudes. In contrast, their time derivatives are clearly the largest at auroral latitudes at all storm levels. These distributions determine in a general sense where and with which probability technological systems and operational procedures may be affected by geomagnetic storms. However, one observes in individual cases that the peak ∂H/∂t (the largest in all horizontal directions) is not necessarily the one which triggers a power system blackout.  相似文献   

6.
High-resolution measurements by the double probe electric field instrument on the Freja satellite are presented. The observations show that extremely intense (up to 1 V m−1) and fine-structured (<1 km) electric fields exist at auroral latitudes within the altitude regime explored by Freja (up to 1700 km). The intense field events typically occur within the early morning sector of the auroral oval (01-07 MLT) during times of geomagnetic activity. In contrast to the observations within the auroral acceleration region characterized by intense converging electric fields associated with electron precipitation, upward ion beams and upward field-aligned currents, the intense electric fields observed by Freja are often found to be diverging and located within regions of downward field-aligned currents outside the electron aurora. Moreover, the intense fields are observed in conjunction with precipitating and transversely energized ions of energies 0.5-1 keV and may play an important role in the ion heating. The observations suggest that the intense electric field events are associated with small-scale low-conductivity ionospheric regions void of auroral emissions such as east-west aligned dark filaments or vortex streets of black auroral curls located between or adjacent to auroral arcs within the morningside diffuse auroral region. We suggest that these intense fields also exist at ionospheric altitudes although no such observations have yet been made. This is possible since the height-integrated conductivity associated with the dark filaments may be as low as 0.1 S or less. In addition, Freja electric field data collected outside the auroral region are discussed with particular emphasis on subauroral electric fields which are observed within the 19–01 MLT sector between the equatorward edge of the auroral oval and the inner edge of the ring current.  相似文献   

7.
中国地区电离层TEC暴扰动研究   总被引:12,自引:2,他引:10       下载免费PDF全文
电离层总电子含量(TEC)是空间天气研究和监测预报的重要参量.本文引入了电离层TEC扰动指数DI, 对青岛等6个台站的DI数据进行分析,选取DI>0.35(DI≤-0.30)作为正(负)相电离层TEC扰动的强度标准,并以连续6 h及以上的DI满足该值来判定电离层TEC暴扰动事件.对电离层TEC暴扰动事件的统计分析表明,在地方时日落后至子夜前为发生高峰时段,正(负)相暴扰动事件平均持续时间约为10.9 h(10.5 h),正相暴发生率以冬季为多,夏季为少,而负相暴则以夏季略高.发现位于赤道异常驼峰区的广州站和位于高中纬度的海拉尔站比典型中纬地区的北京站电离层TEC暴扰动更易发生,且低纬地区以正相暴扰动为主.分析表明,约有70%的电离层TEC暴扰动伴随着有地磁扰动,但是电离层TEC暴扰动并不完全由地磁扰动所引起,强烈气象活动等局地环境因素也可能对电离层TEC暴扰动有着重要影响.  相似文献   

8.
Current theories of F-layer storms are discussed using numerical simulations with the Upper Atmosphere Model, a global self-consistent, time dependent numerical model of the thermosphere-ionosphere-plasmasphere-magnetosphere system including electrodynamical coupling effects. A case study of a moderate geomagnetic storm at low solar activity during the northern winter solstice exemplifies the complex storm phenomena. The study focuses on positive ionospheric storm effects in relation to thermospheric disturbances in general and thermospheric composition changes in particular. It investigates the dynamical effects of both neutral meridional winds and electric fields caused by the disturbance dynamo effect. The penetration of short-time electric fields of magnetospheric origin during storm intensification phases is shown for the first time in this model study. Comparisons of the calculated thermospheric composition changes with satellite observations of AE-C and ESRO-4 during storm time show a good agreement. The empirical MSISE90 model, however, is less consistent with the simulations. It does not show the equatorward propagation of the disturbances and predicts that they have a gentler latitudinal gradient. Both theoretical and experimental data reveal that although the ratio of [O]/[N2] at high latitudes decreases significantly during the magnetic storm compared with the quiet time level, at mid to low latitudes it does not increase (at fixed altitudes) above the quiet reference level. Meanwhile, the ionospheric storm is positive there. We conclude that the positive phase of the ionospheric storm is mainly due to uplifting of ionospheric F2-region plasma at mid latitudes and its equatorward movement at low latitudes along geomagnetic field lines caused by large-scale neutral wind circulation and the passage of travelling atmospheric disturbances (TADs). The calculated zonal electric field disturbances also help to create the positive ionospheric disturbances both at middle and low latitudes. Minor contributions arise from the general density enhancement of all constituents during geomagnetic storms, which favours ion production processes above ion losses at fixed height under day-light conditions.  相似文献   

9.
Tomographic imaging provides a powerful technique for obtaining images of the spatial distribution of ionospheric electron density at polar latitudes. The method, which involves monitoring radio transmissions from the Navy Navigation Satellite System at a meridional chain of ground receivers, has particular potential for complementing temporal measurements by other observing techniques such as the EISCAT incoherent-scatter radar facility. Tomographic reconstructions are presented here from a two-week campaign in November 1995 that show large-scale structuring of the polar ionosphere. Measurements by the EISCAT radar confirm the authenticity of the technique and provide additional information of the plasma electron and ion temperatures. The dayside trough, persistently observed at high latitudes during a geomagnetically quiet period but migrating to lower latitudes with increasing activity, is discussed in relationship to the pattern of the polarcap convection.  相似文献   

10.
This paper studies the role of magnetospheric factors, such as convection and energetic electron precipitation during the formation of positive disturbances in the total electron content under the conditions of the summer evening ionosphere. à numerical model of the ionosphere and plasmasphere, where time variations in the magnetospheric convection velocity and electron precipitation parameters correspond to the main phase of a magnetic storm, has been used for this purpose. It has been indicated that the total electron content sharply increases (the “dusk effect”) in the eastern and western sectors at approximately the same geomagnetic latitudes corresponding to the subauroral zone provided that a sudden storm commencement is registered in the morning hours. local time. This peak of the total electron content is formed as a result of joint reconstruction of the magnetospheric convection pattern and energetic electron precipitation during the main phase of a storm. In this case, magnetospheric convection plays the main role, raising the F2 layer by 40–80 km into the region with a lower recombination rate.  相似文献   

11.
We present the results of studies of the subauroral and mid-latitude ionosphere variations in the north-eastern region of Asia. We used the data from network of vertical and oblique-incidence sounding ionosondes and optical measurements. Long-term experiments on the radio paths Magadan–Irkutsk and Norilsk–Irkutsk were carried out within the period 2005–2007. Vertical sounding stations operated in standard regime. Observation of airglow near Irkutsk was provided by the zenith photometer that measured intensities of 557.7 and 630.0 nm atomic oxygen emissions. The results may be summarized as follows. (1) Large daytime negative disturbances are observed during the main and recovery phases mainly at high latitudes, whereas the positive disturbances observed during the main phase at mid latitudes. The disturbances changed their sign between Yakutsk and Irkutsk. (2) During the main and recovery storm phases the fall of foF2 associated with the equatorward wall of the main ionospheric trough is observed in the afternoon and evening. (3) Fluctuations of the electron density more intensive at mid latitudes during the storm main phase are observed during all considered periods. They are classed as traveling ionospheric disturbances (TID). Such sharp gradients of electron density are responsible for the strong changes in the characteristics of the radio wave propagation, particularity MOF. (4) A large-scale ionospheric disturbance is noted at the meridional chain of ionosonds in December 2006 as the sharp increase of foF2. It appears in the evening in the minimum of Dst at high latitude and propagate to equator. (5) A maximum of 630 nm emission above Irkutsk corresponds to the foF2 increase. (6) The obtained experimental data on the net of vertical and oblique-incidence sounding with high time resolution show that such net is the effective facility to study the conditions of the radio wave propagation and can be used for the diagnostic of the ionosphere.  相似文献   

12.
联合利用EISCAT和E-Svalbard非相干散射雷达数据,研究l997年5月强磁暴期间向阳侧极盖与极光椭圆区电离层F区负暴.发现在磁暴主相和恢复相初期,极光椭圆和极盖区电离层都在大约l90km高度出现类似F1的峰,F2主峰完全消失,F区电子密度大幅度下降.但离子温度的变化在两个区域很不相同,在极光椭圆区大幅度升高,而在极盖区没有显著变化,反映出引起F区负暴的主要机制在两个区域不尽相同.强对流电场引起大气焦耳加热与离子增温而使O+离子消失的化学反应速率增大所导致的电离损失,对极光椭圆区负暴起主要作用;而输运过程,特别是持续长达数小时的沿场上行离子流,对极盖区负暴起重要作用.磁暴主相期间,当EISCAT雷达位于等离子体对流涡旋转换区下方时,在无焦耳加热与离子摩擦增温的情况下,观测到由顶部电离层O+离子沿场高速外流引起的F区电子密度耗空.  相似文献   

13.
亚极光区极化流(Subauroral Polarization Streams, SAPS)为快速流动的西向等离子体流,位于昏侧-子夜前亚极光区,是磁层-电离层-热层耦合的重要过程之一.本文利用密西根大学的RAM (Ring current-Atmosphere Interaction Model)模型对一次典型磁暴期间发生的SAPS事件进行了模拟,并与DMSP卫星观测值进行了比较.结果表明:模拟结果能大致反映观测现象;模拟得到的SAPS峰值速度所在纬度随磁暴时间的变化与观测值有较大差别;SAPS速度观测值在约18∶00 UT和约20∶00 UT左右出现两个峰值,而模拟值只有一个峰值,出现在约18∶00 UT,主要原因是模型对亚暴过程的模拟存在不足.  相似文献   

14.
GPS data from the International GNSS Service (IGS) network were used to study the development of the severe geomagnetic storm of November 7–12, 2004, in the total electron content (TEC) on a global scale. The TEC maps were produced for analyzing the storm. For producing the maps over European and North American sectors, GPS measurements from more than 100 stations were used. The dense network of GPS stations provided TEC measurements with a high temporal and spatial resolution. To present the temporal and spatial variation of TEC during the storm, differential TEC maps relative to a quiet day (November 6, 2004) were created. The features of geomagnetic storm attributed to the complex development of ionospheric storm depend on latitude, longitude and local time. The positive, as well as negative effects were detected in TEC variations as a consequence of the evolution of the geomagnetic storm. The maximal effect was registered in the subauroral/auroral ionosphere during substorm activity in the evening and night period. The latitudinal profiles obtained from TEC maps for Europe gave rise to the storm-time dynamic of the ionospheric trough, which was detected on November 7 and 9 at latitudes below 50°N. In the report, features of the response of TEC to the storm for European and North American sectors are analyzed.  相似文献   

15.
In-situ measurments of the topside F-region ionospheric electron and ion temperatures are very few over the low and equatorial latitudes during the last two solar cycles, particularly in the Indian sector. The SROSS C2 satellite has provided some valuable data on the thermal structure of the topside ionosphere over the Indian region. This article reports a typical evening enhancement in the topside F-region electron temperatures around 18:00 IST observed in the subtropical latitudes of 15–20°N. These enhancements that are seen during the low sunspot activity periods show a latitudinal difference with an early and sharp peak at higher latitudes (23°N). The observed features are explained on the basis of equatorial plasma dynamics associated with the Appleton ionization anomaly.  相似文献   

16.
Examples of data from DE-2 satellite instruments are presented. These illustrate the behaviour of plasma parameters in the F-region and adjacent topside ionosphere during rapid sub-auroral ion drift (SAID) events. In particular, a variety of behaviours of the electron temperature (Te) is demonstrated, both within and equatorward of the SAID region. The Sheffield University plasmasphere-ionosphere model (SUPIM) is used to perform calculations in which a model SAID is applied to a plasma flux tube. The model results indicate that strongly elevated ion temperature (a recognised signature of SAID events) is on occasion sufficient to raise Te to observed values by ion-electron heat transfer. On other occasions, an additional heat source is required. It is suggested that such a source for the electron gas may be due to interaction between the ring current and the plasmasphere at high altitudes. The magnitude of the downward heat flux is consistent with that necessary to produce sub-auroral red arcs. The resulting strongly heated electron gas causes vibrational excitation of molecular nitrogen in the thermosphere.  相似文献   

17.
The magnetospheric ion composition spectrometer MICS on the Swedish Viking satellite provided measurements of the ion composition in the energy range 10.1 keV/e\leqE/Q\leq326.0 keV/e. Data obtained during orbit 842 were used to investigate the ion distribution in the northern polar cusp and its vicinity. The satellite traversed the outer ring current, boundary region, cusp proper and plasma mantle during its poleward movement. H+ and He++ ions were encountered in all of these regions. He+ ions were present only in the ring current. The number of O+ and O++ ions was very small. Heavy high-charge state ions typical for the solar wind were observed for the first time, most of them in the poleward part of the boundary region and in the cusp proper. The H+ ions exhibited two periods with high intensities. One of them, called the BR/CP event, appeared at energies up to 50 keV. It started at the equatorward limit of the boundary region and continued into the cusp proper. Energy spectra indicate a ring current origin for the BR/CP event. Pitch angle distributions show downward streaming of H+ ions at its equatorward limit and upward streaming on the poleward side. This event is interpreted as the result of pitch angle scattering of ring current ions by fluctuations in the magnetopause current layer in combination with poleward convection. The other of the two periods with high H+ ion intensities, called the accelerated ion event, was superimposed on the BR/CP event. It was restricted to energies \leq15 keV and occurred in the poleward part of the boundary region. This event is regarded as the high-energy tail of magnetosheath ions that were accelerated while penetrating into the magnetosphere. The cusp region thus contains ions of magnetospheric as well as of magnetosheath origin. The appearance of the ions depends, in addition to the ion source, on the magnetic field configuration and dynamic processes inside and close to the cusp.  相似文献   

18.
Vertical and horizontal plasma drifts are investigated during the polarization jet (PJ) detection in the F2 ionospheric layer based on the Doppler measurements at the Yakutsk meridian chain of subauroral ionospheric stations. It is shown that the velocities of vertical and horizontal drifts are significantly higher than the background motion during PJ observation periods. The ionospheric plasma motion direction changes from upward to downward on the polar edge of the main ionospheric trough. Doppler measurements on the DPS-4 ionosondes are compared with the simultaneous measurements of the plasma drift on the DMSP satellites during their passage near the Yakutsk meridian. The two kinds of measurements are in good agreement with each other. During the magnetic storm of June 23, 2005, by measurements of the DMSP satellites, the velocities of upward plasma flows were 1.0–1.4 km/s at a satellite altitude of 850 km. In the ionospheric F region, this speed corresponds to 150 m/s. According to satellite measurements, the westward drift velocity reached 2.5 km/s. The development of the polarization jet in the ionosphere was accompanied by a tenfold decrease in the electron density in 15–30 min.  相似文献   

19.
The complex geophysical pattern of the development of geomagnetic storm in VLF emissions has been studied based on the satellite data. It has been established that the variations in the LF noise emission intensity (0.1–20.0 kHz) and the energetic electron (E ≥ 40 keV) flux density reflect the processes of magnetospheric plasma reconstruction during geomagnetic disturbances. It has been indicated that a distinct structure of the inner and outer radiation belts is observed under quiet conditions, and the VLF emission maximum was registered at L = 4–5. The inner boundary of the outer radiation belt shifted to lower latitudes, the intensity of the noise VLF emissions increased, and the intensity maximum was displaced to L = 2.5–3.5 during the geomagnetic storm, when the energetic electron flux density increased. The VLF noise spectrum widened toward higher frequencies. The VLF noise level continued increasing, the noise maximum shifted to L = 4–5, and the fluxes of precipitating electrons abruptly increased during the storm recovery phase, when the density of the flux of quasitrapped electrons remained increased for a long time.  相似文献   

20.
Wave observation in the marginal ice zone with the TerraSAR-X satellite   总被引:1,自引:1,他引:0  
This article investigates the penetration of ocean waves into the marginal ice zone (MIZ), observed by satellite, and likewise provides a basis for the future cross-validation of respective models. To this end, synthetic aperture radar images from the TerraSAR-X satellite (TS-X) and numerical simulations of the European Centre for Medium-Range Weather Forecasts (ECMWF) are used. The focus is an event of swell waves, developed during a storm passage in the Atlantic, penetrating deeply into the MIZ off the coast of Eastern Greenland in February 2013. The TS-X scene which is the basis for this investigation extends from the ice-free open ocean to solid ice. The variation of the peak wavelength is analysed and potential sources of variability are discussed. We find an increase in wavelength which is consistent with the spatial dispersion of deep water waves, even within the ice-covered region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号