首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modern weather prediction models use relatively high grid resolutions as well as sophisticated parametrization schemes for microphysical and other subgrid-scale atmospheric processes. Nonetheless, with these models it remains a difficult task to perform successful numerical fog forecasts since many factors controlling a particular fog event are not yet sufficiently simulated. Here we describe our efforts to create a mechanism that produces successful predictions of fog in the territory located on the north coast of the Arabian Peninsula. Our approach consists in the coupling of the one-dimensional PAFOG fog model with the three-dimensional WRF 3.0 (Weather Research and Forecast) modelling system. The proposed method allows us to construct an efficient operative road traffic warning system for the occurrence of fog in the investigated region. In total 84 historical situations were studied during the period 2008?C2009. Moreover, results of operative day-by-day fog forecasting during January and February 2010 are presented. For the investigated arid and hot climate region the land-sea breeze circulation seems to be the major factor affecting the diurnal variations of the meteorological conditions, frequently resulting in the formation of fog.  相似文献   

2.
Data from several cases of radiation fog occurring at the Met Office field site at Cardington, Bedfordshire, UK have been analyzed with a view to elucidating the typical evolution in its static stability from formation to dissipation. Typically the early stages of radiation fog are characterized by a stable thermal profile and a relatively shallow depth. However, when the fog reached approximately 100 m depth it was observed to become optically thick (to longwave radiation), with a subsequent change over several hours to a saturated adiabatic stability profile. At this time turbulence levels were seen to increase significantly. The mechanisms involved appear to be radiative cooling from fog top and a positive heat flux to the atmosphere from the soil. The importance of this change in stability for numerical modelling of fog episodes is discussed. Several case studies are made to gain some insight into how common this transition is. Droplet spectra were measured at 2-m height for many of the cases considered, and their evolution is discussed. It is found that distributions fall into an initial phase with small drop sizes (approximately ≤ 10 μm diameter) and concentration, and a mature phase with the appearance of much larger drop sizes with a mean diameter of approximately 15−20 μm. It is found that the appearance of the mature phase does not coincide with the change in stability from stable to saturated adiabatic, but there is some evidence that once a saturated adiabatic profile is established, the droplet spectra variations are significantly less than for the stable period. The observed evolution of these spectra brings into question the suitability of microphysical schemes that assume constant spectral shape, drop diameter, and number density.  相似文献   

3.
A two-dimensional boundary-layer model is described. The model is designed to predict and study the effects of meteorological changes on the formation and dissipation of fog and stratus. Radiational heat loss along with the transport of static energy, moisture and momentum are treated. Cloud droplet distributions are parameterized using a gamma distribution from which radiative properties and droplet fall velocities are computed. Turbulent exchange coefficients are calculated using the Monin-Obukhov theory of similitude which accounts for variations in atmospheric stability. Although the boundary-layer depth depends only on turbulent intensity during stable atmospheric conditions, its growth during unstable conditions is determined from the capping inversion's intensity and the amount of turbulence generated at the surface.Several experiments are presented which demonstrate the effects of various meteorological parameters on the formation and duration of stratus and fog. Energy-budget analyses show the importance of each of the physical processes being modeled.Although not new, radiative transfer processes are shown to be extremely important in the transfer of heat from the boundary layer and in the process of fog formation. Fog formation location is highly sensitive to the moisture content upstream, whereas changes in wind speed had much less effect in the variance of fog location.Numerical experiments with other processes such as back radiation from the atmosphere, haze and cloud droplet population, are described and shown to have smaller effects.  相似文献   

4.
A suite of active and passive remote sensing instruments and in-situ sensors deployed at the SIRTA Observatory (Instrumented Site for Atmospheric Remote Sensing Research), near Paris, France, for a period of six months (October 2006–March 2007) document simultaneously radiative, microphysical and dynamic processes driving the continental-fog life cycle. The study focuses on a 6-day period between 23 and 29 December 2006 characterized by several stratus-cloud lowering and lifting events and almost 18 h of visibility below 1 km. Conceptual models and different possible scenarios are presented here to explain the formation, the development and the dissipation phases of three major stratus–fog events and to quantify the impact of each driving process. For example, slowly evolving large-scale conditions characterized by a slow continuous cloud-base lowering, followed by a rapid transient period conductive to fog formation and dissipation, are observed for cases 1 and 3. During this stable period, continuous cloud-top radiative cooling (≈ −160 Wm−2) induces a progressive and slow lowering of the cloud base: larger droplets at cloud top (cloud reflectivity approximately equals to −20 dBZ) induce slow droplet fall to and beyond cloud base (Doppler velocity ≈ −0.1 ms−1), cooling the sub-cloud layer by evaporation and lowering the saturation level to 100 m (case 1) or to the surface (cases 2 and 3). Suddenly, a significant increase in Doppler velocity magnitude ≈ −0.6 ms−1 and of turbulent kinetic energy dissipation rate around 10−3 m2s−3 occurs at cloud base (case 1). These larger cloud droplets reach the surface leading to fog formation over 1.5 h. The Doppler velocity continues to increase over the entire cloud depth with a maximum value of around −1 ms−1 due to the collection of fog droplets by the drizzle drops with high collection efficiency. As particles become larger, they fall to the ground and lead to fog dissipation. Hence, falling particles play a major role in both the formation and also in the dissipation of the fog. These roles co-exist and the balance is driven by the characteristics of the falling particles, such as the concentration of drizzle drops, the size distribution of drizzle drops compared to fog droplets, Doppler velocity and thermodynamic state close to the surface.  相似文献   

5.
A series of numerical simulations is conducted to understand the formation, evolution, and dissipation of an advection fog event over Shanghai Pudong International Airport (ZSPD) with the Weather Research and Forecasting (WRF) model. Using the current operational settings at the Meteorological Center of East China Air Traffic Management Bureau, the WRF model successfully predicts the fog event at ZSPD. Additional numerical experiments are performed to examine the physical processes associated with the fog event. The results indicate that prediction of this particular fog event is sensitive to microphysical schemes for the time of fog dissipation but not for the time of fog onset. The simulated timing of the arrival and dissipation of the fog, as well as the cloud distribution, is substantially sensitive to the planetary boundary layer and radiation (both longwave and shortwave) processes. Moreover, varying forecast lead times also produces different simulation results for the fog event regarding its onset and duration, suggesting a trade-off between more accurate initial conditions and a proper forecast lead time that allows model physical processes to spin up adequately during the fog simulation. The overall outcomes from this study imply that the complexity of physical processes and their interactions within the WRF model during fog evolution and dissipation is a key area of future research.  相似文献   

6.
Wang  S.  Fernando  H. J. S.  Dorman  C.  Creegan  E.  Krishnamurthy  R.  Wainwright  C.  Wagh  S.  Yamaguchi  R. 《Boundary-Layer Meteorology》2021,181(2-3):365-393

This work presents ship-based measurements of fog off St John’s, Newfoundland, on 13 September 2018 during the Coastal Fog field campaign. The measurements included cloud-particle spectra, cloud-base height and aerosol backscatter, radiation, turbulence, visibility, and sea-surface temperature. Radiosonde soundings were made at intervals of less than 2 h. Fog occurred in two episodes during the passage of an eastward-moving synoptic low-pressure system. The boundary-layer structure during the first fog episode consisted of three layers, separated by two saturated temperature inversions, and capped by a subsidence inversion. The lowest layer was fog, and the upper layers were cloud. The second fog episode consisted of one well-mixed fog layer capped by a subsidence inversion. Low wind speeds and stable stratification maintained low surface-layer turbulence during fog. Droplet size distributions had typical bimodal distributions. The visibility correlated with the droplet number concentration and liquid water content. The air temperature was higher than the sea-surface temperature for the first 30 min of the first fog episode but was lower than the sea for the remainder of all fog. The sensible heat flux was upward, from sea to air, for the first 62% of the first fog episode and then reversed to downward, from air to sea, for the remainder of the first fog episode and the second fog episode. The counter-gradient heat fluxes observed (i.e., opposite to what is expected from the instantaneous air–sea temperature difference) appear to be related to turbulence, entrainment, and stratification in the fog layer that overwhelmed the influence of the air–sea temperature difference. While the synoptic-scale dynamics preconditioned the area for fog formation, the final step of fog appearance in this case was nuanced by stratification–turbulence interactions, local advective processes, and microphysical environment.

  相似文献   

7.
Turbulence, Radiation and fog in Dutch Stable Boundary Layers   总被引:5,自引:1,他引:4  
The effect of longwave radiation on the structure the clear stable boundary layer (SBL) is examined. Special emphasis is given to radiative cooling near the surface and the top of the boundary layer and its impact on the heat flux profile. Further, the formation, growth and dissipation of fog in the SBL are studied both from observations and from a one-dimensional ensemble averaged turbulence closure model. The model is compared with detailed observations that were made for both a shallow (about 30 m) radiation fog and a deep (about 200 m) fog layer at the 200-m tower at Cabauw in the Netherlands. The model describes adequately the most important mechanisms occurring during the fog evolution. In this study special attention is given to the parameterization of the vegetation, which is important for a good representation of the (minimum) air temperature. The influence of turbulence transport, longwave radiative cooling and gravitational droplet settling on the fog evolution is described. The study demonstrates the need for more accurate measurements of turbulence quantities, especially the master length scale, in a variety of SBLs.  相似文献   

8.
济南一次雾过程的数值模拟试验和成因分析   总被引:2,自引:0,他引:2  
夏凡  杨晓霞 《气象科技》2017,45(1):165-171
基于中尺度天气研究与预报(Weather Research and Forecast,WRF)模式并选取T639模式数据作为初始条件和边界条件,对2015年11月13日至14日发生在济南的一次大雾天气进行数值模拟试验。利用常规观测资料对模拟效果进行检验分析,从不同方面分析这次雾的成因。结果表明:1稳定的大气层结、微弱的风速、较小的温度露点差为雾的形成提供了有利的气象条件;2WRF模式能够较好地模拟出雾形成和发展过程并且可以较为准确地模拟出能见度的强度;3近地层中性层结和较为充足的水汽对雾的形成和发展有重要作用;低云的存在推迟了白天雾的消散;4在雾形成和发展阶段,925hPa以下为辐合上升运动,之上为辐散下沉运动,这使得水汽集中在近地层,有利于雾的生成;5近地层的冷平流会增大相对湿度,是雾形成的有利条件;非绝热因子对这次雾的形成发展并没有起到关键作用。  相似文献   

9.
An experimental campaign, Study of the Atmospheric Boundary Layer Environmental at Dome C, was held during 2005 at the French-Italian station of Concordia at Dome C. Ground-based remote sensors, as well as in situ instrumentation, were used during the experimental campaign. The measurements allowed the direct estimation of the polar atmospheric boundary-layer height and the test of several parametrizations for the unstable and stable boundary layers. During the months of January and February, weak convection was observed while, during the polar night, a long-lived stable boundary layer occurred continuously. Under unstable stratification the mixing-layer height was determined using the sodar backscattered echoes and potential temperature profiles. The two estimations are highly correlated, with the mixing height ranging between 30 and 350 m. A simple prognostic one-dimensional model was used to estimate the convective mixing-layer height, with the correlation coefficient between observations and model results being 0.66. The boundary-layer height under stable conditions was estimated from radiosounding profiles as the height where the critical Richardson number is reached; values between 10 and 150 m were found. A visual inspection of potential temperature profiles was also used as further confirmation of the experimental height; the results of the two methods are in good agreement. Six parametrizations from the literature for the stable boundary-layer height were tested. Only the parametrization that considers the long-lived stable boundary layer and takes into account the interaction of the stable layer with the free atmosphere is in agreement with the observations.  相似文献   

10.
云南辐射雾的气候分布特征及天气成因   总被引:7,自引:3,他引:4  
应用1976~2005年云南126个气象站观测资料及2001~2005年的高空探测资料,统计分析了云南辐射雾的时空分布气候特征、形成雾的天气环流背景及要素成因.结果发现:云南雾H数逐年呈现波状变化,总体趋势上呈下降趋势,但雾的日变化规律较为稳定;形成雾的天气形势有偏西气流型和偏北气流型,其中偏北气流型成雾重、持续时间长.成雾物理机制分析表明,近地层良好的水汽条件、静风或弱的风力条件、晴空少云、地面变性冷高压后部的均压场环境、低层大气弱的上升运动、中高层大气较强的下沉运动、低层暖平流、中高层冷平流以及边界层存在逆温层等特征是形成雾的重要条件.  相似文献   

11.
华北平原一次持续性大雾过程的动力和热力特征   总被引:32,自引:5,他引:32       下载免费PDF全文
利用台站加密观测资料和NCEP/NCAR再分析资料对2004年11月29日—12月3日华北平原一次罕见的持续性大雾天气过程进行了研究, 通过对本次过程动力和热力特征的深入分析, 揭示了其成因和维持机制。结果表明:对流层中低层暖性高压脊及地面变性冷高压的稳定维持为持续性大雾过程提供了良好的背景条件; 地表净辐射引起的近地层冷却是大雾的触发和加强机制; 中低空下沉气流的存在有助于近地层的弱风条件和稳定层结的建立; 低层暖平流的输入和边界层的浅层抬升有利于大雾的长时间维持; 伴随负温度平流南下的偏北风的爆发是使大雾消散的动力因子。  相似文献   

12.
Radiative fog formation is a complex phenomenon involving local physical and microphysical processes that take place when particular meteorological conditions occur. This study aims at quantifying the ability of a regional numerical weather model to analyze and forecast the conditions favourable to radiative fog formation at an instrumental site in the Paris area. Data from the ParisFog campaign have been used in order to quantify the meteorological conditions favorable to radiative fog formation (pre-fog conditions) by setting threshold values on the key meteorological variables driving this process: 2-m temperature tendency, 10-m wind speed, 2-m relative humidity and net infrared flux. Data from the ParisFog observation periods of November 2011 indicate that use of these thresholds leads to the detection of 87 % of cases in which radiative fog formation was observed. In order to evaluate the ability of a regional weather model to reproduce adequately these conditions, the same thresholds are applied to meteorological model fields in both analysis and forecast mode. It is shown that, with this simple methodology, the model detects 74 % of the meteorological conditions finally leading to observed radiative fog, and 48 % 2 days in advance. Finally, sensitivity tests are conducted in order to evaluate the impact of using larger time or space windows on the forecasting skills.  相似文献   

13.
贵州山区一次锋面雾的数值模拟及形成条件诊断分析   总被引:1,自引:0,他引:1  
杨静  汪超 《贵州气象》2010,34(2):3-9
利用中尺度模式系统WRF对2008-02-20—21贵州山区出现的一次锋面大雾进行了数值模拟研究,模拟大雾出现的区域与实况比较一致。利用数值模拟的高分辨率产品对锋面雾的形成条件进行了分析,结果表明:WRF模式对此次大雾的发生区域以及生成过程具有较好的数值模拟能力;贵州处在南支槽前西南气流控制下,中低层偏南气流强盛,为大雾的发生提供了有利的背景;静止锋的稳定维持和贴地逆温层的存在是雾发生的关键因素。  相似文献   

14.
A ubiquitous feature of the Yellow Sea (YS) is the frequent occurrence of the sea fog in spring and summer season. An extremely dense sea fog event was observed around the Shandong Peninsula in the morning of 11 April 2004. This fog patch, with a spatial scale of several hundreds kilometers and lasted about 20 h, reduced the horizontal visibility to be less than 20 m in some locations, and caused a series of traffic collisions and 12 injuries on the coastal stretch of a major highway. In this paper, almost all available observational data, including Geostationary Operational Environmental Satellite (GOES)-9 visible satellite imagery, objectively reanalyzed data of final run analysis (FNL) issued by the National Center for Environmental Prediction (NCEP) and the sounding data of Qingdao and Dalian, as well as the latest 4.4 version of Regional Atmospheric Modeling System (RAMS) model, were employed to investigate this sea fog case. Its evolutionary process and the environmental conditions that led to the fog formation were examined by using GOES-9 visible satellite imagery and sounding observations. In order to better understand the fog formation mechanism, a high-resolution RAMS modeling of 4 km × 4 km was designed. The modeling was initialized and validated by FNL data. A 30-h modeling that started from 18 UTC 10 April 2004 reproduced the main characteristics of this fog event. The simulated lower horizontal visibility area agreed reasonably well with the sea fog region identified from the satellite imagery. Advection cooling effect seemed to play a significant role for the fog formation.  相似文献   

15.
北京地区一次平流雾过程的分析和数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
2007年2月21日北京地区发生了一次严重的平流雾, 对广大群众的出行和交通影响甚大, 属高影响天气事件。该文利用首都机场地面观测、北京市自动气象站观测以及NCEP分析场等资料对该过程进行分析, 同时利用MM5模式对该过程进行数值模拟研究。分析表明:造成北京地区此次平流雾的主要天气形势是弱低压辐合型。平流雾发生前, 北京地区没有明显冷空气侵入, 大气层结相对稳定, 地面观测到中尺度辐合线, 其南侧的东南气流向北京地区输送了水汽, 为夜间雾的形成提供了良好的基础条件。模拟结果表明:模拟的雾区范围及其移动基本与实况吻合, 显示了中尺度模式预报平流雾的潜在能力。进一步分析表明:雾区的边缘具有明显的水平温度梯度; 在贴地面层东南气流被雾区阻挡偏向西, 在雾区前沿辐合; 雾区的逆温区前沿930 hPa以下存在一个明显的垂直热力环流, 雾区下沉, 雾区前沿上升。  相似文献   

16.
利用宁夏972个地面自动站的10 m风场、2 m温度及露点温度,银川、大武口、平罗、贺兰4个常规地面观测站的能见度、温度及相对湿度逐时观测资料和欧洲中期天气预报中心(ECMWF)ERA-Interim逐6 h再分析资料(0.125°×0.125°),对2018年8月22日宁夏北部局地突发浓雾天气过程的环流形势、逆温结构及其热力、动力条件和形成维持机制进行分析。结果表明:8月22日宁夏北部局地浓雾发生在地面冷高压、高空暖脊及近地面微风的静稳天气条件下;较为深厚的暖平流和近地面冷空气侵入所形成的稳定大气层结,是大雾形成的必要条件;弱上升运动使混合层扩展至840 hPa左右,是该地区雾的发展和维持的重要原因。在本次过程中,深厚的弱水汽辐合较水汽自身的饱和与否更为重要,是大武口站浓雾形成的关键性因素。浓雾呈现平流-辐射雾特征,地面热通量在过程前期促进浓雾的发生,后期对浓雾起到抑制作用。  相似文献   

17.
北京市一次大雾过程边界层结构的模拟研究   总被引:11,自引:1,他引:11  
利用一个包括土壤 植被 大气相互作用的一维边界层模式 ,对 1999年 11月发生在北京的一次大雾过程的边界层特征进行了数值模拟。通过与相应时段边界层观测资料的对比表明 ,模式能较好地模拟出雾的大气边界层结构特征 ,以及雾的发生、消散时间和持续过程。由于模式中包括了辐射和平流物理过程 ,因此 ,模拟结果进一步证实相应的雾属于平流辐射雾。另外 ,对模式模拟结果的不足之处和可能原因也进行了分析。  相似文献   

18.
This paper examines the springtime cloud properties in the Taiwan Strait (TS), with emphases on their dependence on synoptic controls and local processes, using a suite of in situ and remote sensing observations. Cloud properties in the TS are inferred from a combination of MODIS and in situ observations and further classified into two synoptic conditions: continental cold air surge and frontal system. The study reveals a predominance of synoptic-scale controls in regulating the cloud properties in the TS. The sensitivity of clouds to the local thermodynamic mechanisms as well as the underlying surface conditions is fundamentally dependent on synoptic-scale flow patterns. The springtime clouds over the TS are commonly a mixture of stratocumulus and alto clouds. More precisely, there is a preponderance of stratocumulus over the strait. A preferential occupancy of stratiform alto clouds is recognized during cold air surge, whereas vertical development of cloud layers (mostly the stratocumulus) is commonly observed with frontal passage. The most distinct difference between the local clouds formation associated with the two synoptic conditions is the suppression of very low cloud and fog along with cold air surge. Stratus clouds and fog are present within the northward prefrontal airflow from warmer to colder water sites, along with an increase in stability relating to lower altitudes of boundary layer clouds. Although the rainfall occurrences are about the same for both synoptic conditions, the frontal rain amounts are larger on average.  相似文献   

19.
通过对1971-2008年贵州省08:00能见度资料及地面天气图的普查,选取382次区域性辐射大雾天气过程,分析了贵州区域性辐射大雾的时空特征.并利用1999-2008年93次辐射雾08:00地面和高空天气图,进行天气环流条件分析;并进一步利用地面站及高空资料,研究了形成辐射雾的气象条件.研究表明,贵州区域性辐射大雾主要集中在仲秋到隆冬时段,呈现“东多西少”的分布特征,均压场是区域性辐射大雾的地面环流条件,区域性辐射大雾的四种高空环流条件为西北气流、西南气流、副热带高压、平直西风气流.地面风速小、湿度大、夜间辐射降温显著及近地层有逆温、整层“上干下湿”是形成区域性辐射雾的气象条件.  相似文献   

20.
2017年1月1—5日,山东出现了一次大范围的平流辐射雾过程。利用山东地区自动气象站观测资料、青岛探空站资料、风廓线雷达资料和NCEP/NCAR再分析资料,通过分析此次连续大雾过程的大尺度环流背景场、温湿场特征,地面、高空气象要素条件,揭示了其形成原因、维持机制和消散机理。结果表明:中高纬度平直的大气环流、静稳的垂直结构是此次大雾形成的背景条件;水汽输送阶段变化造成的低层水汽浓度变化是大雾阶段变化的原因;两次弱低槽冷锋过程显著增加了雾的强度和范围,也使雾的性质由平流雾变为辐射雾。当低层水汽持续减少,中低层东风气流增强并破坏了大气的稳定层结时,大雾逐渐消散。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号