首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The present paper investigates the asymmetrical variability of the location of the north and the south equatorial ionization anomaly (EIA) crests in the East-Asian sector, along with their association with simultaneous observations of equatorial electrojet (EEJ) strength, geomagnetic activity index, and solar flux index during the 2002–2003 sudden stratospheric warming (SSW) event. Analysis of these observations indicates the existence of a large-scale quasi 16-day periodic meridional movement in both EIA crests, and also reveals a strong correlation between the quasi 16-day oscillation in geomagnetic latitudes of the EIA crest and EEJ strength. The latitude of the northern/southern EIA crest and the EEJ strength indicate that obvious synchronous periodic oscillations were in-phase in the northern and southern hemisphere when the SSW occurred. In addition, it is also found that both the EIA crest location and amplitude of the periodic movement of the EIA locations exhibit hemispheric asymmetry. The amplitude of the periodic movement of the EIA location in the southern hemisphere is larger than that of the northern hemisphere, and the southern EIA crest is further off from the equator than the north one. Understanding these asymmetries requires a combination of mechanisms that involve at least trans-equator meridional winds and the position of a sub-solar point; however, potential disturbances in neutral winds associated with the SSW may additionally complicate the equatorial ionospheric dynamics.  相似文献   

2.
In this work, the climatology of ionospheric scintillations at global positioning system (GPS) L-band frequency and the zonal drift velocities of scintillation-producing irregularities were depicted for the equatorial observatory of São Luis (2.33°S; 44.21°W; dip latitude 1.3°S), Brazil. This is the first time that the hourly, monthly, and seasonal variations of scintillations and irregularity zonal drifts at São Luis were characterized during periods of different solar activity levels (from December 1998 to February 2007). The percentage occurrence of scintillations at different sectors of the sky was also investigated, and the results revealed that the scintillations are more probable to be observed in the west sector of the sky above São Luis, whereas the north–south asymmetries are possibly related to asymmetries in the plasma density distribution at off-equatorial latitudes. The scintillations on GPS signals occurred more frequently around solar maximum years, but it is also clear from the results of a strong variability in the scintillation activity in the years with moderate solar flux during the descending phase of the solar cycle. The equatorial scintillations occur predominantly during pre-midnight hours with a broad maximum near the December solstice months. In general, weak level of scintillations (S 4 index between 0.2 and 0.4) dominated at all seasons; however, during the winter months around solar maximum years (although the scintillation occurrence is extremely low), stronger levels of scintillations (S 4 > 0.6) may occur at comparable rate with the weak scintillations. The irregularity zonal velocities, as estimated from the GPS spaced-receiver technique, presented a different scenario for the two seasons analyzed; during the equinoxes, the magnitude of the zonal velocities appeared not to change with the solar activity, whereas during the December solstice months, the larger magnitudes were observed around solar maximum years. Other relevant aspects of the observations are highlighted and discussed.  相似文献   

3.
赤道电离异常(Equatorial Ionization Anomaly,EIA)是低纬电离层中的一个重要现象.本文基于IGS台网提供的2001—2008年期间的电离层总电子含量(Total Electron Content,TEC)数据,分析了120°E区的EIA强度和磁南北半球不对称性在磁平静时期的变化特征,包括对地方时、季节和太阳活动的依赖.本文结果表明,(1) EIA强度表现出显著的随地方时和季节的变化特征.EIA强度在0200LT和2000LT附近分别出现一个极值,且2000LT附近的EIA强度更大;EIA强度通常在春/秋季较大,在夏/冬季较小,且冬季要大于夏季.(2) EIA南北半球不对称也表现出随地方时和季节变化特征.EIA半球不对称在0200LT和2000-2200LT附近分别出现一个极值;EIA半球不对称的季节变化特征还依赖于太阳活动,太阳活动高年期间,EIA半球不对称通常在春/秋季更显著;太阳活动低年期间,EIA半球不对称通常在冬季更显著.(3) EIA强度和半球不对称性的逐日变化和月变化表现出对太阳活动存在一定的依赖,但依赖性并不显著.2000LT (0200LT)附近的EIA强度的月变化与太阳活动整体呈正(负)相关,而2200LT (0200LT)附近的EIA半球不对称的月变化与太阳活动整体呈负(负)相关.(4)影响EIA强度变化的主要因素可归于纬圈电场和中性风场;影响EIA半球不对称变化的主要因素可归因为子午中性风场.  相似文献   

4.
2011年3月24日缅甸地震期间电离层TEC异常分析   总被引:1,自引:0,他引:1  
基于IGS提供的2011年3月全球TEC数据,利用滑动时窗进行异常识别的方法,分析电离层赤道异常区TEC在缅甸地震期间的异常情况。结果表明:在震前10 d内,地震上空电离层TEC出现了明显的异常扰动,电离层异常北驼峰在16日至18日期间出现了明显的较大区域负异常现象,且在18日时北驼峰明显向磁赤道漂移,负异常在19日时基本消失;而在地震发生的当天和震后一天出现了小范围的正异常,随后正异常消失。在地震期间地磁活动水平总体都相当平静,且太阳处于一个相对较稳定的中低活动水平,电离层出现的异常很可能与此次缅甸地震有关。  相似文献   

5.
Between 100 and 120 km height at the Earth's magnetic equator, the equatorial electrojet (EEJ) flows as an enhanced eastward current in the daytime E region ionosphere, which can induce a magnetic perturbation on the ground. Calculating the difference between the horizontal components of magnetic perturbation (H) at magnetometers near the equator and about 6–9° away from the equator, ΔH, provides us with information about the strength of the EEJ. The NCAR Thermosphere–Ionosphere–Electrodynamics General Circulation Model (TIE-GCM) is capable of simulating the EEJ current and its magnetic perturbation on the ground. The simulated diurnal, seasonal (March equinox, June solstice, December solstice), and solar activity (F10.7=80, 140 and 200 units) variations of ΔH in the Peruvian (76°W) and Philippine (121°E) sectors, and the relation of ΔH to the ionospheric vertical drift velocity, are presented in this paper. Results show the diurnal, seasonal and solar activity variations are captured well by the model. Agreements between simulated and observed magnitudes of ΔH and its linear relationship to vertical drift are improved by modifying the standard daytime E region photoionization in the TIE-GCM in order to better simulate observed E region electron densities.  相似文献   

6.
利用ZH-1卫星2019、2020年的原位电子密度观测数据,对卫星观测范围,即地理纬度南北65°之间午夜后顶部电离层的不规则结构进行研究,得到如下结果.(1)午夜后顶部电离层不规则结构集中区主要分布在地磁赤道、中纬度以及较高纬度区,白天赤道异常峰值区为不规则结构的谷值区.(2)不同纬度区不规则结构随地理经度分布呈现出明...  相似文献   

7.
This paper reports differences in the occurrence statistics of global positioning system (GPS) L-band scintillations at observational sites located in the inner regions of the northern and southern crests of the equatorial ionization anomaly. Ground-based GPS data acquired at the closed magnetically aligned stations of Manaus (3.1°S; 59.9°W; dip lat. 6.2°N) and Cuiabá (15.5°S; 56.1°W; dip. lat. 6.2°S), Brazil, from December 2001 to February 2007 are used in the analysis. The drift dynamics of Fresnel-scale ionospheric irregularities at the southern station of Cuiabá are also investigated. Only geomagnetically quiet days with the sum of daily Kp < 24 were used in the analysis statistics and in the irregularity drift studies. The results reveal a clear dependence of the scintillation occurrence with the solar activity, but there exists an asymmetry in the percentage of scintillation occurrence between the two stations throughout the period analyzed. The nocturnal occurrence of the scintillations over Cuiabá is predominantly larger than over Manaus, but this scenario seems to change with the decline in the solar activity (mainly during local post-midnight hours). A broad minimum and maximum in the scintillation occurrence appears to occur over both the stations, respectively, during the June solstice (winter) and December solstice (summer) months. The dynamics of the Fresnel-scale irregularities, as investigated from the estimations of the mean zonal drift velocities, reveals that the amplitude of the eastward drifts tends to reduce with the decline in the solar activity. The magnitude of the zonal drift velocities during the December solstice months is larger than during the equinoxes, with the differences being more pronounced at solar maximum years. Other relevant aspects of the observations, with complementary data from a low-latitude ionospheric model, are highlighted and discussed.  相似文献   

8.
The characteristics of ionospheric scintillations at Rajkot in the equatorial anomaly crest region in India are described for the years 1987–1991 by monitoring the 244-MHz transmission from the satellite FLEETSAT. This period covers the ascending phase of solar cycle 22. Scintillations occur predominantly in the pre-midnight period during equinoxes and winter seasons and in the post-midnight period during summer season. During equinoxes and winter, scintillation occurrence increases with solar activity, whilst in summer it is found to decrease with solar activity. Statistically, scintillation occurrence is suppressed by magnetic activity. The characteristics observed during winter and equinoxes are similar to those seen at the equatorial station, Trivandrum. This, coupled with the nature of the post-sunset equatorial F-region drift and hF variations, supports the view that at the anomaly crest station, scintillations are of equatorial origin during equinox and winter, whilst in summer they may be of mid-latitude type. The variations in scintillation intensity (in dB) with season and solar activity are also reported.  相似文献   

9.
EISCAT radar experiments over a full solar cycle between January 1984 and March 1995 have been used to construct meridional neutral wind patterns in the ionospheric F region. For locally geomagnetically quiet periods the neutral winds have been binned according to season, solar activity, and universal time. The diurnal and seasonal behaviors and the effect of the solar flux are described. An empirical model of the meridional neutral wind for the high latitudes at eight altitudes in the ionospheric F region over a full solar cycle is presented. Results are compared with other recent empirical models.  相似文献   

10.
利用ZH-1(CSES)卫星LAP载荷原位电子密度数据对中国及邻区(0°-54°N,70°-140°E)的顶部电离层背景分布及随季节变化进行了详细分析,研究结果显示:(1)研究区赤道异常的纬度延伸范围、随经度分布形态及它们的季节变化,具有与其他研究结果一致的规律性.(2)中纬度区,白天电子密度存在一个低值带,夜间电子密...  相似文献   

11.
南极中山站电离层F2层临界频率变化特征   总被引:10,自引:2,他引:8       下载免费PDF全文
对南极中山站数字式电离层测高仪1995~2002年观测数据的月中值进行了统计分析,揭示了中山站电离层F2层临界频率(foF2)的主要特征:foF2存在明显的日变化和年变化;日变化存在“磁中午异常”现象;年变化中中午foF2在太阳活动低年不出现“冬季异常”,在太阳活动高年出现“半年异常”,即两分点高于两至点.本文结合中山站所处的地理位置,考虑太阳辐射电离、磁层的驱动和中性大气成分变化等因素,分析了这些现象的产生机理.  相似文献   

12.
We investigate plasma density undulations in the nighttime mid-latitude topside F-region. During solar maximum years the undulations are found at CHAMP, KOMPSAT-1, and DMSP F15 altitudes. The occurrence rate is higher at KOMPSAT-1 than at DMSP F15 altitude. The undulations occur infrequently during equinoxes, and the occurrence peaks are in the Asian/Oceanian (eastern Pacific/American) region during June (December) solstice. At CHAMP altitude the undulations are observed all through the night, and the occurrence rate is anti-correlated with the solar cycle. As all these results are in general agreement with known climatology of MSTIDs, we suggest that the undulations are a topside signature of MSTIDs. The undulations are often but not always accompanied by magnetic signatures indicating the presence of field-aligned current (FAC). The partial lack in correspondence might be due to the ionospheric conductivity variation. The similar distribution is, however, in support of a connection between density undulations and FACs.  相似文献   

13.
Latitudinal variations in the nighttime plasma temperatures of the equatorial topside ionosphere during northern winter at solar maximum have been examined by using values modelled by SUPIM (Sheffield University Plasmasphere Ionosphere Model) and observations made by the DMSP F10 satellite at 21.00 LT near 800 km altitude. The modelled values confirm that the crests observed near 15° latitude in the winter hemisphere are due to adiabatic heating and the troughs observed near the magnetic equator are due to adiabatic cooling as plasma is transported along the magnetic field lines from the summer hemisphere to the winter hemisphere. The modelled values also confirm that the interhemispheric plasma transport needed to produce the required adiabatic heating/cooling can be induced by F-region neutral winds. It is shown that the longitudinal variations in the observed troughs and crests arise mainly from the longitudinal variations in the magnetic meridional wind. At longitudes where the magnetic declination angle is positive the eastward geographic zonal wind combines with the northward (summer hemisphere to winter hemisphere) geographic meridional wind to enhance the northward magnetic meridional wind. This leads to deeper troughs and enhanced crests. At longitudes where the magnetic declination angle is negative the eastward geographic zonal wind opposes the northward geographic meridional wind and the trough depth and crest values are reduced. The characteristic features of the troughs and crests depend, in a complicated manner, on the field-aligned flow of plasma, thermal conduction, and inter-gas heat transfer. At the latitudes of the troughs/crests, the low/high plasma temperatures lead to increased/decreased plasma concentrations.  相似文献   

14.
A meridional scanning OI 630.0-nm dayglow photometer was operated from Ahmedabad (17.2°N dip lat.) scanning a region towards the south in the upper atmosphere extending over \sim5° in latitude from 10.2°N to 15.2°N dip latitude. From the spatial and temporal variabilities of the dayglow intensity in the scanning region we show for the first time, evidence for the passage of the crest of the equatorial ionization anomaly (EIA) in the daytime by means of a ground-based optical technique. The relationship between the daytime eastward electric field over the dip equator in the same longitude zone as inferred from the equatorial electrojet strength and the evolutionary pattern of EIA is clearly demonstrated. The latter as inferred from the dayglow measurements is shown to be consistent with our present understanding of the electrodynamical processes in the equatorial region. The present results reveal the potential of this ground-based optical technique for the investigation of ionospheric/thermospheric phenomena with unprecedented spatial and temporal resolution.  相似文献   

15.
We performed a comparative study of geomagnetic variations, which are associated with sudden ionospheric disturbances (SIDs) caused by great X-class solar flares on July 14, 2000 (Bastille flare) and on October 28, 2003 (Halloween flare). Intense fluxes of solar X-rays and EUV radiation as well as solar energetic particles (SEP) were considered as sources of abundant ionization of the ionosphere and upper atmosphere. Flare-initiated SIDs are revealed as transient geomagnetic variations, which are generated by enhanced electric currents flowing mainly in the bottom-side ionosphere. Those so-called solar flare effects (SFEs) were studied by using of geomagnetic data from INTERMAGNET worldwide network of ground-based magnetometers. In subsolar region the SFE is mainly controlled by the flare X-rays and/or EUV radiation. We found that in the Halloween flare the contribution of X-rays was comparable with the EUV, but in the Bastille flare the EUV flux was dominant. The ionization at high latitudes is generated by the SEP, which energy flux is comparable and even exceeds the solar electromagnetic radiation in that region. It was shown that in the Halloween event the pattern of SFE is formed by a two-vortex current system, which is similar to the quiet day Sq current system. However, during the Bastille flare, the pattern of induced currents is quite different: the northern vortex shifts westward and southern vortex shifts eastward such that the electroject is substantially tilted relative to the geomagnetic equator. From numerical estimations we found that at middle latitudes the SEP-initiated geomagnetic effect becomes comparable with the effects of solar electromagnetic radiation. It was also shown that the SEP contribute to the SFE in the nightside hemisphere. The revealed features of the SEP impact to the ionosphere were found in a good agreement with the theory of energetic particle penetration to the bottom-side magnetosphere.  相似文献   

16.
日食电离层效应   总被引:7,自引:4,他引:7       下载免费PDF全文
本文分析了1987年9月23日日环食期间,我国14个电离层站和1988年3月18日日全食期间两个站的垂测仪和偏振仪记录,并综合50年代以来历次日食电离层效应的观测结果,证实:1.E层和F1层光食效应明显,F2层动力学效应显著;2.f0F2存在日食日值大于、小于或等于控制日值三种典型情况;3.TEC食变曲线有凹陷和不凹陷两种典型情况,甚至出现日食日值大于控制日值的异常现象. 本文对F2层和外电离层的动力学特征作了定性讨论,认为:空间等离子体温度急剧下降和沿场扩散是F2层和外电离层日食效应的最主要因素;而磁赤道上空等离子体的沿场扩散、“喷泉”效应,热层风和全(环)食带方位是影响位于磁赤道异常区各电离层站日食电离层效应的主要因素.  相似文献   

17.
We present the mean diurnal, seasonal and annual variations in TEC during the lowest solar activity phase from low latitude Indian zone recorded at Udaipur (Geog. Lat. 24.6°N, Geog. Long.73.7°E, Geomag. Lat. 15.6°N) using a GPS receiver. Seasonal variations in daytime TEC show a semiannual periodicity, with a minimum in winter. Results of seasonal variations have been compared with that of the IRI-2007 model. Model calculations reveal significant seasonal as well as longitudinal differences in TEC. Seasonal variations in the nighttime TEC reveal an annual periodicity. Near the crest of the EIA, TEC shows a very good correlation with the solar flux. The results also point to weakening of the anomaly crest as well as its spatial and temporal contraction with declining solar activity.  相似文献   

18.
Seasonal variations in the auroral E-region neutral wind for different solar activity periods are studied. This work is based on neutral wind data obtained over 56 days between 95–119 km altitude under geomagnetic quiet conditions (Ap<16) during one solar cycle by the European Incoherent Scatter radar located in northern Scandinavia. In general, the meridional mean wind shifts northward, and the zonal mean wind increases in eastward amplitude from winter to summer. The zonal mean wind blows eastward in the middle and lower E-region for each season and for each solar condition except for the equinox, where the zonal mean wind blows westward at and below 104 km. Solar activity dependence of the mean wind exists during the winter and equinox seasons, while in summer it is less prominent. Under high solar activity conditions, the altitude profiles of the horizontal mean winds in winter and the equinoxes tend to resemble those in summer. The horizontal diurnal tide is less sensitive to solar activity except during summer when the meridional amplitude increases by ∼10 m s−1 and the corresponding phase shifts to a later time period (1–2 h) during high solar activity. Seasonal dependence of the semidiurnal tide is complex, but is found to vary with solar activity. Under low solar activity conditions the horizontal semidiurnal amplitude shows seasonal dependence except at upper E-region heights, while under high solar activity conditions it becomes less sensitive to seasonal effects (except for the meridional component above 107 km). Comparisons of mean winds with LF and UARS observations are made, and the driving forces for the horizontal mean winds are discussed for various conditions.  相似文献   

19.
王明  吕建永  李刚 《地球物理学报》2014,57(11):3804-3811
利用全球磁流体力学(MHD)的模拟结果,研究了太阳风压力系数与上游太阳风参数和日下点磁层顶张角的相关性.在识别出日下点附近磁层顶位置后,通过拟合得到日下点附近的磁层顶张角.在考虑上游太阳风中的磁压和热压以及磁层顶外侧的太阳风动压的情况下,计算了太阳风压力系数.通过分析行星际磁场不同方向时太阳风动压在日地连线上与磁压和热压的转化关系,详细研究了太阳风参数和日下点磁层顶张角对太阳风压力系数的影响,得到以下相关结论:(1) 在北向行星际磁场较大(Bz≥5 nT)时,磁层顶外侧磁压占主导,南向行星际磁场时磁层顶外侧热压占主导;(2) 太阳风压力系数随着行星际磁场的增大而增大,随着行星际磁场时钟角的增大而减小;并且在行星际磁场大小和其他太阳风条件相同时,北向行星际磁场时的太阳风压力系数要大于南向行星际磁场时的;北向行星际磁场时,太阳风压力系数随着太阳风动压的增大而减小,南向行星际磁场时,太阳风压力系数随着太阳风动压的增大而增大;以上结论是对观测结果的扩展;(3) 最后,我们还发现太阳风压力系数随着日下点磁层顶张角的增大而增大.  相似文献   

20.
Global electron content (GEC) as a new ionospheric parameter was first proposed by Afraimovich et al. [2006]. GEC is equal to the total number of electrons in the near-Earth space. GEC better than local parameters reflects the global response to a change in solar activity. It has been indicated that, during solar cycle 23, the GEC dynamics followed similar variations in the solar UV irradiance and F 10.7 index, including the 11-year cycle and 27-day variations. The dynamics of the regional electron content (REC) has been considered for three belts: the equatorial belt and two midlatitude belts in the Northern and Southern hemispheres (±30° and 30°–65° geomagnetic latitudes, respectively). In contrast to GEC, the annual REC component is clearly defined for the northern and southern midlatitude belts; the REC amplitude is comparable with the amplitude of the seasonal variations in the Northern Hemisphere and exceeds this amplitude in the Southern Hemisphere by a factor of ~1.7. The dayside to nightside REC ratio, R(t), at the equator is a factor of 1.5 as low as such a GEC ratio, which indicates that the degree of nighttime ionization is higher, especially during the solar activity maximum. The pronounced annual cycle with the maximal R(t) value near 8.0 for the winter Southern Hemisphere and summer Northern Hemisphere is typical of midlatitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号