首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
《水文科学杂志》2013,58(6):1125-1138
Abstract

Type curves are derived analytically for radial flow in rough horizontal fractures toward a well. The basic assumptions are that there is no turbulent flow near the borehole and the well storage is ignored. The basis of the methodology is to write explicit expressions for the continuity and cubic law flow equations, which are combined using a Boltzmann transformation leading to a simple ordinary differential equation for groundwater movement. Solutions are presented as a set of type curves for different fracture apertures. It is observed that the solutions provide a method of uniquely identifying fracture hydraulic parameters when the fracture is smooth, but pose ambiguity for rough fracture parameter estimations. However, large time portions of these type curves appear as straight lines on semi-logarithmic paper, which provides a unique way for rough fracture parameter determination. Identification of the fracture parameters, namely, the aperture and relative roughness, is possible in a unique manner with the use of these lines and the dimensionless time drawdown concept. The cubic law is the asymptotic behaviour, either for large times or large fracture apertures. Prior to this asymptotic part, there is a non-cubic portion which gives rise to systematic deviations from the cubic law. The technique presented is useful, especially for evaluating pumping tests from a single major fracture isolated by packers.  相似文献   

2.
This paper proposes a basic equation of thermal radiation interaction between surface objects on the basis of the principle of heat balance in the interface. The solution of this equation takes account of the contribution of sensible heat flux and latent heat flux more completely, compared with traditional solution for surface cooling and heating processes. By the aid of the experimental data conducted in the Xiaotangshan experimental site, Beijing, both the non-applicability of Kirchoff’s law and the measurability of surface emissivity in a non-isothermal system have been highlighted. Two methods called ventilation and time-delay compensations have been proposed to reduce the error induced by change of surface temperatures of non-isothermal objects during the measurement of emissivity. Based on the solution of the basic equation, this paper has analyzed and pointed out the misunderstanding in comprehension and application of Kirchoff’s law published in literature.  相似文献   

3.
How long is a hillslope?   总被引:1,自引:0,他引:1       下载免费PDF全文
Hillslope length is a fundamental attribute of landscapes, intrinsically linked to drainage density, landslide hazard, biogeochemical cycling and hillslope sediment transport. Existing methods to estimate catchment average hillslope lengths include inversion of drainage density or identification of a break in slope–area scaling, where the hillslope domain transitions into the fluvial domain. Here we implement a technique which models flow from point sources on hilltops across pixels in a digital elevation model (DEM), based on flow directions calculated using pixel aspect, until reaching the channel network, defined using recently developed channel extraction algorithms. Through comparisons between these measurement techniques, we show that estimating hillslope length from plots of topographic slope versus drainage area, or by inverting measures of drainage density, systematically underestimates hillslope length. In addition, hillslope lengths estimated by slope–area scaling breaks show large variations between catchments of similar morphology and area. We then use hillslope length–relief structure of landscapes to explore nature of sediment flux operating on a landscape. Distinct topographic forms are predicted for end‐member sediment flux laws which constrain sediment transport on hillslopes as being linearly or nonlinearly dependent on hillslope gradient. Because our method extracts hillslope profiles originating from every ridgetop pixel in a DEM, we show that the resulting population of hillslope length–relief measurements can be used to differentiate between linear and nonlinear sediment transport laws in soil mantled landscapes. We find that across a broad range of sites across the continental United States, topography is consistent with a sediment flux law in which transport is nonlinearly proportional to topographic gradient. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

4.
Groundwater circulation is known to be one of the agents responsible for the redistribution of geothermal energy by acting as a source or sink in the course of its movement through porous media. Heat transport in groundwater systems is considered to be a coupled process and the theory based on this was used to analyse temperature profiles of 30 thermally stable observation wells in a deep, semi-confined aquifer system in the Tokyo Metropolitan area. Vertical water fluxes in the semi-confined aquifers and the associated upward heat fluxes were estimated from a heat flux equation that describes convection and conduction processes of heat transport in one dimension. The vertical downward water fluxes in Shitamachi lowland, Musashino and Tachikawa terraces were 0.69.26.91 × 10?9, 1.46-70.92 × 10?9 and 2.61.2204 × 10?9 m/s, respectively. A vertical upward water flux of 1.80-33.60 × 10?9 m/s was estimated in Shitamachi lowland. The water flux generally decreased with increasing depth for observation wells which intercepted more than one semi-confining layer. The estimated upward heat fluxes for Shitamachi lowland, Musashino and Tachikawa terraces were 0.32-1.12, 0.49-1.21 and 1.00-11.62 W/m2, respectively. The heat flux was highest in Tachikawa terrace where a major fault, the Tachikawa fault, is located. Generally, the estimated heat flux was higher in the semi-confining layers than in the aquifers. Areas with heat sources and sinks as well as groundwater flow patterns in the semi-confined aquifers were revealed by heat flux and temperature distributions in the study area.  相似文献   

5.
This paper proposes a basic equation of thermal radiation interaction between surface objects on the basis of the principle of heat balance in the interface. The solution of this equation takes account of the contribution of sensible heat flux and latent heat flux more completely, compared with traditional solution for surface cooling and heating processes. By the aid of the experimental data conducted in the Xiaotangshan experimental site, Beijing, both the non-applicability of Kirchoff's law and the measurability of surface emissivity in a non-isothermal system have been highlighted. Two methods called ventilation and time-delay compensations have been proposed to reduce the error induced by change of surface temperatures of non-isothermal objects during the measurement of emissivity. Based on the solution of the basic equation, this paper has analyzed and pointed out the misunderstanding in comprehension and application of Kirchoff's law published in literature.  相似文献   

6.
Turbulence theory has demonstrated that the log law is one of the established theoretical results for describing velocity profiles, which is in principle applicable for the near-bed overlap region, being less than about 20% of the flow depth. In comparison, the power law that is often presented in an empirical fashion could apply to larger fraction of the flow domain. However, limited information is available for evaluating the power-law exponent or index. This paper attempts to show that the power law can be derived as a first-order approximation to the log law, and its power-law index is computed as a function of the Reynolds number as well as the relative roughness height. The result obtained also coincides with the fact that the one-sixth power included in the Manning equation is of prevalent acceptance, while higher indexes would be required for flows over very rough boundaries.  相似文献   

7.
Different theoretical and laboratory studies on the propagation of elastic waves in layered hydrocarbon reservoir have shown characteristic velocity dispersion and attenuation of seismic waves. The wave‐induced fluid flow between mesoscopic‐scale heterogeneities (larger than the pore size but smaller than the predominant wavelengths) is the most important cause of attenuation for frequencies below 1 kHz. Most studies on mesoscopic wave‐induced fluid flow in the seismic frequency band are based on the representative elementary volume, which does not consider interaction of fluid flow due to the symmetrical structure of representative elementary volume. However, in strongly heterogeneous media with unsymmetrical structures, different courses of wave‐induced fluid flow may lead to the interaction of the fluid flux in the seismic band; this has not yet been explored. This paper analyses the interaction of different courses of wave‐induced fluid flow in layered porous media. We apply a one‐dimensional finite‐element numerical creep test based on Biot's theory of consolidation to obtain the fluid flux in the frequency domain. The characteristic frequency of the fluid flux and the strain rate tensor are introduced to characterise the interaction of different courses of fluid flux. We also compare the behaviours of characteristic frequencies and the strain rate tensor on two scales: the local scale and the global scale. It is shown that, at the local scale, the interaction between different courses of fluid flux is a dynamic process, and the weak fluid flux and corresponding characteristic frequencies contain detailed information about the interaction of the fluid flux. At the global scale, the averaged strain rate tensor can facilitate the identification of the interaction degree of the fluid flux for the porous medium with a random distribution of mesoscopic heterogeneities, and the characteristic frequency of the fluid flux is potentially related to that of the peak attenuation. The results are helpful for the prediction of the distribution of oil–gas patches based on the statistical properties of phase velocities and attenuation in layered porous media with random disorder.  相似文献   

8.
地-空界面上天然中子辐射场的数理模型   总被引:1,自引:0,他引:1       下载免费PDF全文
本文论述了地-空界面上天然宇宙中子流的来源;将天然中子按能量分为快中子组(En>01MeV)与慢热中子组,建立了地-空界面上天然快中子流与慢热中子流粒子注量率随空间分布的数理方程.理论与实测结果相互验证表明:(1)地-空界面上天然中子流粒子注量率随距近地表高度的增加而呈指数规律减小;(2)地-空界面上天然中子流粒子注量率随海拨高程增加而呈指数规律增加;(3)地-空界面上上升中子流粒子注量率随地表介质含水率的增加而减少.  相似文献   

9.
A quasi three-dimensional (QUASI 3-D) model is presented for simulating the subsurface water flow and solute transport in the unsaturated and in the saturated zones of soil. The model is based on the assumptions of vertical flow in the unsaturated zone and essentially horizontal groundwater flow. The 1-D Richards equation for the unsaturated zone is coupled at the phreatic surface with the 2-D flow equation for the saturated zone. The latter was obtained by averaging 3-D flow equation in the saturated zone over the aquifer thickness. Unlike the Boussinesq equation for a leaky-phreatic aquifer, the developed model does not contain a storage term with specific yield and a source term for natural replenishment. Instead it includes a water flux term at the phreatic surface through which the Richards equation is linked with the groundwater flow equation. The vertical water flux in the saturated zone is evaluated on the basis of the fluid mass balance equation while the horizontal fluxes, in that equation, are prescribed by Darcy law. A 3-D transport equation is used to simulate the solute migration. A numerical algorithm to solve the problem for the general quasi 3-D case was developed. The developed methodology was exemplified for the quasi 2-D cross-sectional case (QUASI2D). Simulations for three synthetic problems demonstrate good agreement between the results obtained by QUASI2D and two fully 2-D flow and transport codes (SUTRA and 2DSOIL). Yet, simulations with the QUASI2D code were several times faster than those by the SUTRA and the 2DSOIL codes.  相似文献   

10.
Abstract

The hydraulic flow of a reduced-gravity fluid of non-negative potential vorticity through a sill is considered. It is shown that for any flow with a reversal of current, another, physically realisable, flow exists which is unidirectional and/or resting, and carries more flux than the original flow. Thus only non-negative flows need be considered when examining maximal hydraulic fluxes. Then, for a simple sill (one which slopes downward on the left and upward on the right, looking downstream), it is shown that zero potential vorticity flow, possibly modified by having a region of motionless fluid at its right, carries the maximum flux possible for that sill shape. This makes the calculation of maximal fluxes for a given sill considerably simpler, and examples of parabolic and V-shaped sills are computed.  相似文献   

11.
针对地震勘探中的波场模拟和反演困难等问题,本文从二维波动方程出发,采用Fourier变换得到了赫姆霍兹方程,并创造性地提出了一种全新的近似解法-广义WKB法;该法可以更加近似赫姆霍兹方程,且它的解中包含WKB的近似值.数值模拟显示了WKB法与广义WKB求解的异同.结果表明:广义WKB法是WKB法的一种推广,在求解非线性波数问题时具有更好的优势.  相似文献   

12.
The suspended sediment flux field in the Yellow and East China Seas(YECS) displays its seasonal variability.A new method is introduced in this paper to obtain the flux field via retrieval of ocean color remote sensing data,statistical analysis of historical suspended sediment concentration data,and numerical simulation of three-dimensional(3D) flow velocity.The components of the sediment flux field include(i) surface suspended sediment concentration inverted from ocean color remote sensing data;(ii) vertical distribution of suspended sediment concentration obtained by statistical analysis of historical observation data;and(iii) 3D flow field modeled by a numerical simulation.With the improved method,the 3D suspended sediment flux field in the YECS has been illustrated.By comparison with the suspended sediment flux field solely based on the numerical simulation of a suspended sediment transport model,the suspended sediment flux field obtained by the improved method is found to be more reliable.The 3D suspended sediment flux field from ocean colour remote sensing and in situ observation are more closer to the reality.Furthermore,by quantitatively analyzing the newly obtained suspended sediment flux field,the quantity of sediment erosion and deposition within the different regions can be evaluated.The sediment exchange between the Yellow Sea and the East China Sea can be evident.The mechanism of suspended sediment transport in the YECS can be better understood.In particular,it is suggested that the long-term transport of suspended sediment is controlled mainly by the circulation pattern,especially the current in winter.  相似文献   

13.
The balance equation for a substance washed out in a river basin is analyzed under the assumption that the runoff of this substance and its reserves in the watershed are directly proportional. The proportionality factor is perturbed by a random component, which accounts for the effect of atmospheric precipitation. The balance equation is transformed into a stochastic differential equation with a multiplicative white noise, which is used to construct a Fokker-Plank equation for the probability density of chemical flow. A stationary solution containing a power function is found for this equation. Because of the proportionality of the concentration and chemical flow, the concentration distribution also obeys the power law. Statistical treatment of empirical data on some water quality characteristics and water flow showed that the power law adequately describes the probability of unfavorable hydrochemical events. The parameters of this law for turbidity, color index, permanganate oxidability, and ammonia concentration are evaluated.__________Translated from Vodnye Resursy, Vol. 32, No. 4, 2005, pp. 452–458.Original Russian Text Copyright © 2005 by Dolgonosov, Korchagin.  相似文献   

14.
Fluid flow below the core-mantle boundary is inferred from geomagnetic secular variation data, assuming frozen magnetic flux and a new physical assumption termed helical flow, in which the tangential divergence correlates with the radial vorticity. Helical flow introduces streamfunction diffusion and removes non-uniqueness in the inversion of the magnetic induction equation. We combine helical flow with tangential geostrophy and compare the following physical assumptions: tangential geostrophy, strong helicity, weak helicity and columnar flow, using geomagnetic field models from the 2000 Oersted and 1980 Magsat satellites. Our solutions contain some features found in previous core flow models, such as large mid-latitude vortices, westward drift in most of the southern hemisphere, and suggested polar vortices. However, our solutions contain significantly more flow along contours of the radial magnetic field than previous core flow models.  相似文献   

15.
The effect of a step change in macro‐roughness on the saltation process under sediment supply limited conditions was examined in the atmospheric boundary layer. For an array of roughness elements of roughness density λ = 0.045 (λ = total element frontal area/total surface area of the array) the horizontal saltation flux was reduced by 90% (±7%) at a distance of ≈150 roughness element heights into the array. This matches the value predicted using an empirical design model and provides confidence that it can be effectively used to engineer roughness arrays to meet sand flux reduction targets. Measurements of the saltation flux characteristics in the vertical dimension, including: saltation layer decay (e‐folding) height and particle size, revealed that with increasing distance into the array, the rate of mass flux change with increasing height decreased notably, and (geometric) mean particle diameter decreased. The distribution of the saltation mass flux in the vertical remains exponential in form with increasing distance into the roughness array, and the e‐folding height increases as well as increasing at a greater rate as particle diameter diminishes. The increase in e‐folding height suggests the height of saltating particles is increasing along with their mean speed. This apparent increase in mean speed is likely due to the preferential removal, or sequestration, of the slower moving particles across the size spectrum, as they travel through the roughness array. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

16.
The erosion of sediment by wind and the resulting mass flux density profile is thought to be described by a mathematical function that bears information on the mechanisms responsible for the movement of individual particles by the wind, and such functions have been studied extensively. In this study several functions are evaluated that have been proposed to describe the variation in mass flux density with height of wind‐blown sediment, with the flux containing a mixture of particles in suspension and saltation, based on detailed field data at four land types in the Minqin area of north‐western China, where severe wind erosion occurs. High‐resolution mass flux density measurements at 50 heights, collected at 20 mm intervals to a height of 1 m above the surface, were obtained using vertically segmented samplers. Three kinds of functions fit the measured flux density profiles reasonably well, but a three‐parameter modified exponential function is preferred because it contains fewer coefficients to be defined and provides a reasonably good fit to the measured mass flux density profiles. This and previous conclusions suggest that the decay with height of mass flux density of sediments dominated by saltation particles as in the present study tends to follow a modified exponential function law, but a modified power function law replaces the modified exponential function law when the height extends to a level high enough to be dominated by suspension particles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The flow caused by the discharge of freshwater underneath a glacier into an idealized fjord is simulated with a 2D non-hydrostatic model. As the freshwater leaves horizontally the subglacial opening into a fjord of uniformly denser water it spreads along the bottom as a jet, until buoyancy forces it to rise. During the initial rising phase, the plume meanders into complex flow patterns while mixing with the surrounding fluid until it reaches the surface and then spreads horizontally as a surface seaward flowing plume of brackish water. The process induces an estuarine-like circulation. Once steady-state is reached, the flow consists of an almost undiluted buoyant plume rising straight along the face of the glacier that turns into a horizontal surface layer thickening as it flows seaward. Over the range of parameters examined, the estuarine circulation is dynamically unstable with gradient Richardson number at the sheared interface having values of <1/4. The surface velocity and dilution factors are strongly and non-linearly related to the Froude number. It is the buoyancy flux that primarily controls the resulting circulation with the momentum flux playing a secondary role.  相似文献   

18.
The unconditional stochastic studies on groundwater flow and solute transport in a nonstationary conductivity field show that the standard deviations of the hydraulic head and solute flux are very large in comparison with their mean values (Zhang et al. in Water Resour Res 36:2107–2120, 2000; Wu et al. in J Hydrol 275:208–228, 2003; Hu et al. in Adv Water Resour 26:513–531, 2003). In this study, we develop a numerical method of moments conditioning on measurements of hydraulic conductivity and head to reduce the variances of the head and the solute flux. A Lagrangian perturbation method is applied to develop the framework for solute transport in a nonstationary flow field. Since analytically derived moments equations are too complicated to solve analytically, a numerical finite difference method is implemented to obtain the solutions. Instead of using an unconditional conductivity field as an input to calculate groundwater velocity, we combine a geostatistical method and a method of moment for flow to conditionally simulate the distributions of head and velocity based on the measurements of hydraulic conductivity and head at some points. The developed theory is applied in several case studies to investigate the influences of the measurements of hydraulic conductivity and/or the hydraulic head on the variances of the predictive head and the solute flux in nonstationary flow fields. The study results show that the conditional calculation will significantly reduce the head variance. Since the hydraulic head measurement points are treated as the interior boundary (Dirichlet boundary) conditions, conditioning on both the hydraulic conductivity and the head measurements is much better than conditioning only on conductivity measurements for reduction of head variance. However, for solute flux, variance reduction by the conditional study is not so significant.  相似文献   

19.
Lava flux and a low palaeoslope were the critical factors in determining the development of different facies in the Late Permian Blow Hole flow, which comprises a series of shoshonitic basalt lavas and associated volcaniclastic detritus in the southern Sydney Basin of eastern Australia. The unit consists of a lower lobe and sheet facies, a middle tube and breccia facies, and an upper columnar-jointed facies. Close similarities in petrography and geochemistry between the basalt lavas from the three facies suggest similar viscosities at similar temperatures. Sedimentological and palaeontological evidence from the sedimentary units immediately below the Blow Hole flow suggests that the lower part of the volcanic unit was emplaced in a cold water, shallow submarine environment, but at least the top of the uppermost lava was subaerial with some palaeosol development. The lower lobe and sheet facies was emplaced on a low slope (<2°) in a lower to middle shoreface environment with water depths of 20–25 m. Lava may have transgressed from subaerial to subaqueous and was emplaced relatively passively with lava flux sufficiently high and uniform to form lobes and sheets rather than pillows. The middle unit probably originated from a subaerial vent and flowed into a shallow (10–15 m) submarine environment, and wave action probably interacted with the advancing lava front to form a lava delta. Lava flux was sufficiently high to produce well-developed, subcircular lava tubes, which lack evidence for thermal erosion. In some areas, lava ‘burrowed’ into the unconsolidated, water-saturated lava delta and sand pile to produce intrusive contacts. The upper columnar-jointed unit represents a ponded facies probably emplaced initially in water depths <5 m but whose top was subaerial.  相似文献   

20.
A numerical model for the global tsunamis computation constructed by Kowalik et al. (2005), is applied to the tsunami of 26 December, 2004 in the World Ocean from 80°S to 69°N with spatial resolution of one minute. Because the computational domain includes close to 200 million grid points, a parallel version of the code was developed and run on a Cray X1 supercomputer. An energy flux function is used to investigate energy transfer from the tsunami source to the Atlantic and Pacific Oceans. Although the first energy input into the Pacific Ocean was the primary (direct) wave, reflections from the Sri Lankan and eastern shores of Maldives were a larger source. The tsunami traveled from Indonesia, around New Zealand, and into the Pacific Ocean by various routes. The direct path through the deep ocean to North America carried miniscule energy, while the stronger signal traveled a considerably longer distance via South Pacific ridges as these bathymetric features amplified the energy flux vectors. Travel times for these amplified energy fluxes are much longer than the arrival of the first wave. These large fluxes are organized in the wave-like form when propagating between Australia and Antarctica. The sources for the larger fluxes are multiple reflections from the Seychelles, Maldives and a slower direct signal from the Bay of Bengal. The energy flux into the Atlantic Ocean shows a different pattern since the energy is pumped into this domain through the directional properties of the source function. The energy flow into the Pacific Ocean is approximately 75% of the total flow to the Atlantic Ocean. In many locations along the Pacific and Atlantic coasts, the first arriving signal, or forerunner, has lower amplitude than the main signal which often is much delayed. Understanding this temporal distribution is important for an application to tsunami warning and prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号