首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Stable isotope variability and fractionation associated with transformation of precipitation/accumulation to firn to glacial river water is critical in a variety of climatic, hydrological and paleoenvironmental studies. This paper documents the modification of stable isotopes in water from precipitation to glacier runoff in an alpine catchment located in the central Tibetan Plateau. Isotopic changes are observed by sampling firnpack profiles, glacier surface snow/ice, meltwater on the glacier surface and catchment river water at different times during a melt season. Results show the isotopic fractionation effects associated with glacier melt processes. The slope of the δD‐δ18O regression line and the deuterium excess values decreased from the initial precipitation to the melt‐impacted firnpack (slope from 9.3 to 8.5 and average d‐excess from 13.4‰ to 7.4‰). The slope of the δD‐δ18O line further decreased to 7.6 for the glacier runoff water. The glacier surface snow/ice from different locations, which produces the main runoff, had the same δD‐δ18O line slope but lower deuterium excess (by 3.9‰) compared to values observed in the firnpack profile during the melt season. The δD‐δ18O regression line for the river water exhibited a lower slope compared to the surface snow/ice samples, although they were closely located on the δD‐δ18O plot. Isotope values for the river and glacier surface meltwater showed little scatter around the δD‐δ18O regression line, although the samples were from different glaciers and were collected on different days. Results indicate a high consistency of isotopic fractionation in the δD‐δ18O relationships, as well as a general consistency and temporal covariation of meltwater isotope values at the catchment scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Recharge patterns, possible flow paths and the relative age of groundwater in the Akaki catchment in central Ethiopia have been investigated using stable environmental isotopes δ18O and δ2H and radioactive tritium (3H) coupled with conservative chloride measurements. Stable isotopic signatures are encoded in the groundwater solely from summer rainfall. Thus, groundwater recharge occurs predominantly in the summer months from late June to early September during the major Ethiopian rainy season. Winter recharge is lost through high evaporation–evapotranspiration within the unsaturated zone after relatively long dry periods of high accumulated soil moisture deficits. Chloride mass balance coupled with the isotope results demonstrates the presence of both preferential and piston flow groundwater recharge mechanisms. The stable and radioactive isotope measurements further revealed that groundwater in the Akaki catchment is found to be compartmentalized into zones. Groundwater mixing following the flow paths and topography is complicated by the lithologic complexity. An uncommon, highly depleted stable isotope and zero‐3H groundwater, observed in a nearly east–west stretch through the central sector of the catchment, is coincident with the Filwoha Fault zone. Here, deep circulating meteoric water has lost its isotopic content through exchange reactions with CO2 originating at deeper sources or it has been recharged with precipitation from a different rainfall regime with a depleted isotopic content. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Riparian cottonwood forests in dry regions of western North America do not typically receive sufficient growing season precipitation to completely support their relatively high transpiration requirements. Water used in transpiration by riparian ecosystems must include alluvial groundwater or water stored in the potentially large reservoir of the unsaturated soil zone. We used the stable oxygen and hydrogen isotope composition of stem xylem water to evaluate water sources used by the dominant riparian cottonwood (Populus spp.) trees and shrubs (Shepherdia argentea and Symphoricarpos occidentalis) in Lethbridge, Alberta, during 3 years of contrasting environmental conditions. Cottonwoods did not exclusively take up alluvial groundwater but made extensive use of water sourced from the unsaturated soil zone. The oxygen and hydrogen isotope compositions of cottonwood stem water did not strongly overlap with those of alluvial groundwater, which were closely associated with the local meteoric water line. Instead, cottonwood stem water δ18O and δ2H values were located below the local meteoric water line, forming a line with a low slope that was indicative of water exposed to evaporative enrichment of heavy isotopes. In addition, cottonwood xylem water isotope compositions had negative values of deuterium excess (d‐excess) and line‐conditioned (deuterium) excess (lc‐excess), both of which provided evidence that water taken up by the cottonwoods had been exposed to fractionation during evaporation. The shrub species had lower values of d‐excess and lc‐excess than had the cottonwood trees due to shallower rooting depths, and the d‐excess values declined during the growing season, as shallow soil water that was taken up by the plants was exposed to increasing, cumulative evaporative enrichment. The apparent differences in functional rooting pattern between cottonwoods and the shrub species, strongly influenced the ratio of net photosynthesis to stomatal conductance (intrinsic water‐use efficiency), as shown by variation among species in the δ13C values of leaf tissue.  相似文献   

4.
Stable isotopic composition of precipitation as preserved in continental proxy climate archives (e.g., ice cores, lacustrine sediments, tree rings, groundwater, and organic matter) can sensitively record fluctuations in local meteorological variables. These are important natural climatic tracers to understand the atmospheric circulation patterns and hydrological cycle and to reconstruct past climate from archives. Precipitation was collected at Dokriani Glacier to understand the response of glaciers to climate change in the Garhwal Central Himalaya, Upper Ganga Basin. The local meteoric water line deviates from the global meteoric water line and is useful for the identification of moisture source in the region. The data suggest different clusters of isotopic signals, that is, summer (June–September) and winter (November–April); the mean values of δ18O, δD, and d ‰ during summer are ?13.03‰, ?84.49‰, and 19.78 ‰, respectively, whereas during winter, the mean values of δ18O, δD, and d ‰ are ?7.59‰, ?36.28‰, and 24.46 ‰, respectively. Backward wind trajectory analysis ascertains that the major source of precipitation during summer is from the Indian Summer Monsoon and during winter from the westerlies. Regression analysis has been carried out in order to establish interrelationship between the precipitation isotopic signatures and meteorological variables such as air temperature, relative humidity, and precipitation. Temperature and precipitation have good correlation with the isotopic signatures of precipitation with R2 values >.5, suggesting that both temperature and amount effects prevail in the study region. Multiple regression analysis found strong relationships for both the seasons. The relationship of deuterium excess with δ18O, relative humidity, and precipitation are significant for the winter season. No significant relationships of deuterium excess were found with other meteorological variables such as temperature and radiation. The correlation and regression analysis performed are significant and valuable for interpretation of processes in the hydrological cycle as well as for interpretation of palaeoclimate records from the region.  相似文献   

5.
As a crucial agricultural and economic development zone since the Qin Dynasty (221 to 206 BC), the Guanzhong section of the Weihe River basin is facing serious water resource shortages due to population growth and regional development. Its water resource amount per capita is only 361 m3, about 1/6 of the average in China and less than 1/20 of the average in the world. Surface water and groundwater (SW-GW) interaction, having a significant influence on the spatiotemporal distribution of water resources, was qualitatively and quantitatively investigated during a wet year based on stable isotopes and hydrochemistry. The results show that the recharge pattern in the north part varies with season, that is, 40% of the surface water recharge comes from groundwater in the dry season, but 93% of the groundwater recharge comes from surface water in the rainy season. In the south part, groundwater is always recharged by surface water, with contributions of 47% and 61% in the rainy and dry seasons, respectively. For the main stream, the recharge pattern is complicated and varies with season and site. This study will provide useful information about SW-GW interaction at basin scale. Integrated management of groundwater and surface water could improve the efficiency of regional water resources utilization and promote accurate and sustainable water management in the semi-arid basin.  相似文献   

6.
Hydrogen and oxygen isotopes of water are common environmental tracers used to investigate hydrological processes, such as evaporation, vegetation water use, surface water–groundwater interaction, and groundwater recharge. The water isotope signature in surface water and groundwater evolves from the initial rain signature. In mountain terrain, rain water stable isotope composition spatially varies due to complex orographic precipitation processes. Many studies have examined the isotope–elevation relationships, while few have quantitatively investigate the terrain aspect and slope effect on rain isotope distribution. In this paper, we examine the orographic effects more completely, including elevation, terrain slope and aspect, on stable isotope distribution in the Mount Lofty Ranges (MLR) of South Australia, using a multivariate regression model. The regression of precipitation isotope composition suggests that orographic effects are the dominant controls on isotope spatial variability. About 75% of spatial variability in δ18O and deuterium excess is represented by the regression using solely orography-related variables (elevation, terrain aspect and slope), with about 25% of δ18O spatial variability attributed to the terrain aspect and slope effect. The lapse rate is about −0.25‰ for every 100 m at both windward and leeward slopes. However, at the same elevation, δ18O at the leeward slope (eastern MLR) is 0.5‰ larger than that at the windward slope. The difference can be explained by different mechanisms – continuous rain-out processes on the windward side and sub-cloud evaporation on the leeward side. Both δ18O and deuterium excess maps (1 km resolution) are constructed based on the regression results for the MLR. Both maps are consistent with groundwater of local precipitation origin, and useful to examine groundwater recharge.  相似文献   

7.
The groundwater in shallow loess aquifers in high mountain–hills in the western Loess Plateau in China is almost the sole water resource for local residents. However, the question about how the loess groundwater naturally circulates in these high mountain–hills, characterized by low precipitation and high potential evaporation, remains unclear. The objectives of this study are to evaluate the application of hydrogen and oxygen isotopes to (1) examine temporal variations of the isotopic composition of precipitation and shallow groundwater and (2) uncover the mechanism of groundwater recharge in high mountain–hills. Results from 2 years of monitoring data show a difference in the stable isotopes for groundwater and local precipitation between the winter and summer periods. Similar to precipitation, stable isotopes in groundwater are observed to be depleted in winter and enriched in summer, particularly in oxygen isotope. A prominent characteristic is that H and O isotopes of groundwater show a very clear response to strong precipitation in the rainy season in 2013. The results highlight that local precipitation is the likely recharge source for groundwater in shallow loess aquifers. Annual recharge from local precipitation maintains the groundwater resource in the shallower loess aquifer. The mechanisms governing shallow loess groundwater recharge in high mountain–hills were evaluated. In addition to possible vertical slow percolation of soil water through the unsaturated zone, rapid groundwater recharge mechanisms have been identified as temporal preferential infiltration through sinkholes, slip surface or landslide surface and through the interface of loess layer and palaeo‐soils. Most groundwater can be recharged after a heavy rainy season. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A systematic study of the chemo-isotopic characteristics and origin of the groundwater was carried out at six major qanats in the hyper-arid Gonabad area, eastern Iran. These qanats as a sustainable groundwater extraction technology have a long history, supporting human life for more than a thousand years in this region. The Gonabad qanats are characterized by outlet electrical conductivity (EC) values of 750 to 3900 µS/cm and HCO3-Na-Mg and Cl-Na water types. The Gonabad meteoric water line (GnMWL) was drawn at the local scale as δ2H = 6.32×δ18O + 8.35 (with R2 = 0.90). It has a lower slope and intercept than the global meteoric water line due to different water vapor sources and isotope kinetic fractionation effects during precipitation in this arid region. The altitude effects on isotopic content of precipitation data were derived as δ18O = (−0.0031 × H(m.a.s.l))−1.3). The δ2H and δ18O isotopes signatures demonstrate a meteoric origin of the groundwater of these qanats. The shift of the qanat's water samples from the local meteoric water line (LMWL) in a dry period with higher temperatures is most probably due to evaporation during the infiltration process and water movement in qanat gallery. Based on the isotopic results and mass balance calculations, the qanats are locally recharged from an area between 2000 to 2400 m.a.s.l of nearby carbonate formations and coarse alluvial sediments. The dissolution of evaporate interlayers in Neogene deposits deteriorates the groundwater quality, especially in Baidokht qanat.  相似文献   

9.
The isotopic composition of solid and liquid portions of natural melting snowpack is investigated in detail by the separating of liquid water from snow grains at different depths of the snowpack. The slope of the δD–δ18O line for the liquid phase is found to be lower than for the solid phase. This is proved to be due to the isotopic fractionation occurring in the melt–freeze mass exchange within the snowpack. Melting of the snowpack has no clear impact on the δD–δ18O line for the solid phase, but the slope of the δD–δ18O line for the liquid shows an overall slight decrease in the melting period. When the snowpack is refrozen, the refreezing process would inevitably cause the slope of the solid phase to decrease because of the discrepancy between the slopes of the two phases. Thus the slope of the solid would become lower and lower as the diurnal melt–freeze episodes cycle throughout the melting season. This effect is then demonstrated by looking into the isotopic composition changes of glacier firn. The extent of the effect depends on the snowpack properties and environmental conditions. The slope changes also result in a decreasing trend in deuterium excess. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Studies on hydrological processes are often emphasized in resource and environmental studies. This paper identifies the hydrological processes in different landscape zones during the wet season based on the isotopic and hydrochemical analysis of glacier, snow, frozen soil, groundwater and other water sources in the headwater catchment of alpine cold regions. Hydrochemical tracers indicated that the chemical compositions of the water are typically characterized by: (1) Ca? HCO3 type in glacier snow zone, (2) Mg? Ca? SO4 type for surface runoff and Ca? Mg? HCO3 type for groundwater in alpine desert zone, (3) Ca? Mg? SO4 type for surface water and Ca? Mg? HCO3 type for groundwater in alpine shrub zone, and (4) Ca? Na? SO4 type in surface runoff in the alpine grassland zone. The End‐Members Mixing Analysis (EMMA) was employed for hydrograph separation. The results showed that the Mafengou River in the wet season was mainly recharged by groundwater in alpine cold desert zones and shrub zones (52%), which came from the infiltration and transformation of precipitation, thawed frozen soil water and glacier‐snow meltwater. Surface runoff in the glacier‐snow zone accounted for 11%, surface runoff in alpine cold desert zones and alpine shrub meadow zones accounted for 20%, thawed frozen soil water in alpine grassland zones accounted for 9% of recharge and precipitation directly into the river channel (8%). This study suggested that the whole catchment precipitation did not produce significant surface runoff directly, but mostly transformed into groundwater or interflow, and finally arrived in the river channel. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Recharge areas of the Guarani Aquifer System (GAS) are particularly sensitive and vulnerable to climate variability; therefore, the understanding of infiltration mechanisms for aquifer recharge and surface run‐off generation represent a relevant issue for water resources management in the southeastern portion of the Brazilian territory, particularly in the Jacaré‐Pepira River watershed. The main purpose of this study is to understand the interactions between precipitation, surface water, and groundwater using stable isotopes during the strong 2014–2016 El Niño Southern Oscillation event. The large variation in the isotopic composition of precipitation (from ?9.26‰ to +0.02‰ for δ18O and from ?63.3‰ to +17.6‰ for δ2H), mainly associated with regional climatic features, was not reflected in the isotopic composition of surface water (from ?7.84‰ to ?5.83‰ for δ18O and from ?49.7‰ to +33.6‰ for δ2H), mainly due to the monthly sampling frequency, and groundwater (from ?7.04‰ to ?7.76‰ for δ18O and from ?49.5‰ to ?44.7‰ for δ2H), which exhibited less variation throughout the year. However, variations in deuterium excess (d‐excess) in groundwater and surface water suggest the occurrence of strong secondary evaporation during the infiltration process, corresponding with groundwater level recovery. Similar isotopic composition in groundwater and surface water, as well as the same temporal variations in d‐excess and line‐conditioned excess denote the strong connectivity between these two reservoirs during baseflow recession periods. Isotopic mass balance modelling and hydrograph separation estimate that the groundwater contribution varied between 70% and 80%, however, during peak flows, the isotopic mass balance tends to overestimate the groundwater contribution when compared with the other hydrograph separation methods. Our findings indicate that the application of isotopic mass balance methods for ungauged rivers draining large groundwater reservoirs, such as the GAS outcrop, could provide a powerful tool for hydrological studies in the future, helping in the identification of flow contributions to river discharge draining these areas.  相似文献   

12.
Equatorial Pacific sea surface temperature variations interact with processes of atmospheric circulation, creating conditions for the occurrence of El Niño–Southern Oscillation (ENSO). ENSO events represent the most important interannual phenomena affecting climate patterns worldwide and causing significant socio‐economic impacts. In the Brazilian territory, ENSO leads to an increase in drought episodes in the north‐eastern region and an increase in precipitation in the southern region, whereas the effects over the south‐east region are yet not well understood. The main goal of this study is to compare variations of isotopic composition in precipitation across the south‐east portion of the Brazilian territory during two very strong ENSO events: 1997–1998 (ENSO 1) and 2014–2016 (ENSO 2). Daily isotopic records, available from the Global Network of Isotopes in Precipitation database for ENSO 1, and samples collected during ENSO 2 were used to compare the influence of both events on the isotopic composition of precipitation. Seasonal variations indicated more depleted precipitation during the wet seasons (δ18O = ?5.4 ± 4.0‰) and enriched precipitation during the dry seasons (δ18O = ?2.8 ± 2.3‰). Observed rainfall variations were associated with atmospheric large‐scale processes and moisture transport from the Amazon region, whereas extreme values (enriched or depleted) appear to be associated with particular convective and stratiform precipitation events. Overall, more depleted isotopic composition of precipitation (δ18O = ?4.60‰) and higher d‐excess (up to +15‰) were observed during the dry season of ENSO 1 when compared with ENSO 2 dry season (δ18O‰ = ?2.80‰, d‐excess lower than +14‰). The latter is explained by greater atmospheric moisture content, particularly associated with recycling of transpiration fluxes from the Amazon region, during dry season of ENSO 1. No significant differences for δ18O and δ2H were observed during the wet season; however, d‐excess from ENSO 2 was greater than ENSO 1, due to the slightly greater atmospheric moisture content and very strong upward motion observed. Our findings highlight the opportunity that environmental isotopes offer towards understanding hydrometeorological processes, particularly, the evolution of extreme climatic events of global resonance such as ENSO.  相似文献   

13.
The stable oxygen and hydrogen isotopic features of precipitation in Taiwan, an island located at the western Pacific monsoon area, are presented from nearly 3,500 samples collected during the past decade for 20 stations. Results demonstrate that moisture sources from diverse air masses with different isotopic signals are the main parameter in controlling the precipitation's isotope characteristics. The air mass from polar continental (Pc) region contributes the precipitation with high deuterium excess values (up to 23‰) and relatively enriched isotope compositions (e.g., ? 3.2‰ for δ18O) during the winter with prevailing northeasterly monsoon. By contrast, air masses from equatorial maritime (Em) and tropical maritime (Tm) supply the precipitation with low deuterium excess values (as low as about 7‰) and more depleted isotope values (e.g., ? 8.9‰ and ? 6.0‰ for δ18O of Tm and Em, respectively) during the summer with prevailing southwesterly monsoon. Thus seasonal differences in terms of δ18O, δD, and deuterium excess values are primarily influenced by the interactions among various precipitation sources. While these various air masses travel through Taiwan, secondary evaporation effects further modify the isotope characteristics of the inland precipitation, such as raindrop evaporation (reduces the deuterium excess of winter precipitation) and moisture recycling (increases the deuterium excess of summer precipitation). The semi-quantitative estimations in terms of evaluation for changes in the deuterium excess suggest that the raindrop evaporation fractions for winter precipitation range 7% to 15% and the proportions of recycling moisture in summer precipitation are less than 5%. Additionally, the isotopic altitude gradient in terms of δ18O for summer precipitation is ? 0.22‰/100 m, greater than ? 0.17‰/100 m of winter precipitation. The greater isotopic gradient in summer can be attributed to a higher temperature vs. altitude gradient relative to winter. The observed spatial and seasonal stable isotopic characteristics in Taiwan's precipitation not only contribute valuable information for regional monsoon research crossing the continent–ocean interface of East Asia, but also can serve as very useful database for local water resources management.  相似文献   

14.
Distinguishing headwater components can provide fundamental information for water resources management; however, this is difficult with the hydrometric method for regions with a thick unsaturated zone. We sampled headwaters, precipitation and groundwater in a river on China’s Loess Plateau to determine the isotopic composition, and identified headwater components by an isotope mass balance method. The isotopic composition of precipitation varies greatly, whereas that of groundwater is almost constant, which validates the applicability of the isotope mass balance method. During the dry season, the contributions of precipitation and groundwater to headwaters are both 50% for the upper reach, while they are 20 and 80%, respectively, for the lower reach; however, during the wet season, the contributions are, respectively, 67 and 33% for the upper reach, and 43 and 57% for the lower reach. The headwaters respond quickly to rainfall but are dominated by groundwater. Groundwater protection should be of high priority to sustain the catchment-scale hydrological cycle.
EDITOR D. Koutsoyiannis ASSOCIATE EDITOR M.D. Fidelibus  相似文献   

15.
In the present study, a 2‐year dataset on δ18O and δ2H in precipitation is used to investigate hydrometeorologic controls on the isotopic compositions in a temperate maritime climate. Data was collected in Denmark along a transect of Six sampling stations across a landscape with a small topographic gradient and predominant westerly winds. Data showed the local meteoric water line for this region is expressed by the equation δ2H = 7.4δ18O + 5.4‰. A significant trend correlating enriched isotopic values to humidities around 70% during dry season and more depleted isotopic values to humidities around 90% during wet season was derived from the dataset. Temperature was found to only influence the isotopic composition in a secondary way, whereas no significant relationship was obtained for precipitation amount and evapotranspiration. It is suggested that subcloud post‐condensation exchange strongly influences the isotopic composition at the study site. A simple model of evaporation on falling rain was applied with the aim to reproduce observational data and show the potential influence of changing humidity conditions on precipitation compositions. The rather simple model approach did not fully explain the observational data, but it highlights the drastic isotopic changes from a falling raindrop that potentially can occur due to its release into a dryer atmosphere. This study shows that regional conditions and especially humidity can alter the isotopic composition in precipitation substantially even in regions without major topographic and hydrometeorologic gradients.  相似文献   

16.
Spatial and temporal variations of the isotopic composition of precipitation were investigated to better understand their controlling factors. Precipitation was collected from six locations in Hokkaido, Japan, and event‐based analyses were conducted for a period from March 2010 to February 2013. Relatively low δ values and a high d‐excess for annual averages were observed at three sites located along the Japan Sea compared to the three sites at Pacific Ocean side. Lower δ values in spring and fall and higher d‐excess in winter were observed for the region along the Japan Sea. In total, 264 precipitation events were identified. Precipitation originated predominantly from low‐pressure system (LPS) events, which were classified as northwest (LPS‐NW) and southeast (LPS‐SE) events according to the routes of the low‐pressure center, that passed northwest and southeast of Hokkaido, respectively. LPS‐SE events showed lower δ18O than LPS‐NW events, which is attributable to the lower δ18O of water vapor resulting from heavy rainfalls in the upstream region of the LPS air mass trajectories over the Pacific Ocean. This phenomenon observed in Hokkaido can be found in other midlatitude coastal regions and applied for hydrological, atmospheric, and paleoclimate studies. A characteristic spatial pattern was found in LPS‐NW events, in which lower δ18O was observed on the Japan Sea side than on the Pacific Ocean side in each season. This is likely due to the location of the sampling sites and their distance from the LPS: Precipitation with lower δ18O in the region along the Japan Sea occurs in a well‐developed cloud system near the low‐pressure center in cold and warm sectors of LPS, whereas precipitation with higher δ18O on the Pacific side mainly occurs in a warm sector away from the low‐pressure center. Air mass from the north does not always cause low δ in precipitation, and the precipitation process in the upstream region is another important factor controlling the isotopic composition of precipitation, other than the local temperature and precipitation amount.  相似文献   

17.
The variation of the δ 18O in precipitation and the relationship with precipitation amountat Kyangjin Base House and Yala Glacier Camp in Langtang Valley, Nepal Himalayas were ana-lyzed. The variations of the δ 18O with precipitation had great scatter, and the correlations betweenthe δ18O and precipitation changed with time on the synoptic scale. On the seasonal scale, therewas marked amount effect at Kyangjin Base House. However, the δ18O-precipitation gradient wassmaller than that on the synoptic scale. Because of the maintenance of the basic equilibrium be-tween stable isotopic compositions in atmospheric vapor and precipitation, the evaporation en-richment was light during the rainy season. Therefore, the variation of stable isotopic compositionsin precipitation was independent on the sampling intervals. Simulations show that the rainfall inLangtang Valley was not the outcome of the initial condensation of ocean vapor that originatedfrom low latitudes. The stable isotopic compositions in precipitation were greatly depleted due tothe strong rainout of the vapor from oceans as the vapor was raised over the Himalayas  相似文献   

18.
M. Z. Iqbal 《水文研究》2008,22(23):4609-4619
Oxygen and deuterium isotopes in precipitation were analysed to define local isotopic trends in Iowa, US. The area is far inland from an oceanic source and the observed averages of δ18O and δ D are ? 6·43‰ and ? 41·35‰ for Ames, ? 7·53‰ and ? 51·33‰ for Cedar Falls, and ? 6·01‰ and ? 38·19‰ for Iowa City, respectively. Although these data generally follow global trends, they are different when compared to a semi‐arid mid‐continental location in North Platt, Nebraska. The local meteoric water lines of Iowa are δ D = 7·68 δ18O + 8·0 for Ames, δ D = 7·62 δ18O + 6·07 for Cedar Falls, and δ D = 7·78 δ18O + 8·61 for Iowa City. The current Iowa study compares well with a study conducted in Ames, Iowa, 10 years earlier. The differences between Iowa and Nebraska studies are attributed to a variable climate across the northern Great Plains ranging from sub‐humid in the east to semi‐arid in the west. Iowa being further east in the region is more strongly influenced by a moist sub‐humid to humid climate fed by the tropical air stream from the Gulf of Mexico. The average d‐excess values are 10·06‰ for Ames, 8·92‰ for Cedar Falls and 9·92‰ for Iowa City. Eighty seven percent of the samples are within the global d‐excess range of 0‰ and 20‰. The results are similar to previous studies, including those by National Atmospheric Deposition Programs and International Atomic Energy Agency. It appears that the impact of recycled water or secondary evaporation on δ18O values of area precipitation is minimal. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
This study analyzes the stable isotopic compositions of hydrogen and oxygen (δ2H, δ18O) in montane meteoric waters including precipitation and stream water of central Taiwan to identify hydrological processes in montane catchments. Results of precipitation demonstrate that monsoon and altitude effects are two principal processes affecting δ and deuterium excess (dE) values of inland precipitation in central Taiwan. Furthermore, slope and intercept values of summer and winter local meteoric water line are modified by secondary evaporation effects such as moisture recycling and raindrop evaporation. Additionally, stream water's results indicate that differences in δ values among stream waters reflect isotopic altitude effect whereby lower values are more evident in stream water originating from high‐elevation catchments than low‐elevation catchments. Comparison of the isotopic results between precipitation and stream water indicates that summer precipitation containing recycled moisture is the most important water source for the studied stream waters and indicates that catchment effect and base flow contribution are the two major hydrological processes affecting mountain stream hydrology. The hydrological processes identified by the isotopic study re‐stress the important role of forests in mountain hydrology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
The stable isotope composition (18O and 2H) in the tropical precipitation collected from 18 locations throughout the Deduru Oya river basin in Sri Lanka, has been studied during August and September 2001, in order to characterize the isotopic composition of precipitation in the dry and intermediate climatic zones of Sri Lanka. The isotope compositions are described with respect to the distance from the coast and the altitude. The analyses show that δ18O vary from ? 5·11 to 1·39‰ and δD vary from ? 35·71 to 12·55‰. The d‐excess values range from ? 0·65 to 13·17 with an average value of ~7. Regression for the δ18O ? δD is y = 6·8x + 4·9 (R2 = 0·9) which is compatible with the precipitation in other tropical regions. The lower slope in the regression line and the lower d‐excess value indicate high temperature events which were possibly aided by concentration through successive evaporation within the atmosphere. The spatial variation of isotope composition indicates two different cloud contributions for the rain events, of which one may be linked to the Indian Ocean contribution and the other to the high altitude condensation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号