首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
LES Study of the Energy Imbalance Problem with Eddy Covariance Fluxes   总被引:3,自引:1,他引:3  
The spatial representativeness of heat fluxes on the basis of single-tower measurements, and the mechanism of the so-called energy imbalance problem, are investigated through numerical experiments using large-eddy simulation (LES). LES experiments are done for the daytime atmospheric boundary layer heated over a flat surface, as a best-case scenario completely free of sensor errors and the uncertainties of field conditions. Imbalance is defined as the deviation of the `turbulent' heat flux at a grid point from the horizontally averaged `total' heat flux. Both the theoretical and numerical results of the present study suggest the limitation of single-tower measurements and the necessity of horizontally-distributed observation networks.The temporally averaged `turbulent' flux based on a point measurement systematically underestimates the `total' flux (negative imbalance). This is attributed to local advection effects caused by the existence of turbulent organized structures (TOS), whose time scale is much longer than that of thermal plumes. The temporal and spatial change of TOS patterns causes low-frequency trends in the velocity and temperature data resulting in large scatter of the flux estimates. The influences of geostrophic wind speed, averaging time, observation height, computational domain size and resolution on tower-measured fluxes are also discussed. Finally, it is suggested that a weak inhomogenity in surface heating may reduce the negative bias of flux estimates.  相似文献   

2.
In this study the results from a boundary layer experiment,conducted in autumn 1991 over a flat,build-up urban area in Southeast Sofia,together with some models for mixed layer growth rates are used to investigate the layered structure of the vertical atmospheric stability distribution in the Sofia Valley.Lidar measurements of aerosol layer heights and morning boundary layer development are combined with surface eddy correlation measurements of kinematic heat and moisture fluxes,profiles of temperature and humidity,wind speed and wind direction.A diagnostic method is presented for determining vertical lapse rates using surface meteorological measurements and lidar returns observed during the transition from nighttime stable stratification to daytime convective boundary layer after the sunrise.  相似文献   

3.
In this study the results from a boundary layer experiment,conducted in autumn 1991 over a flat,build-up urbanarea in Southeast Sofia,together with some models for mixed layer growth rates are used to investigate the layered struc-ture of the vertical atmospheric stability distribution in the Sofia Valley.Lidar measurements of aerosol layer heightsand morning boundary layer development are combined with surface eddy correlation measurements of kinematic heatand moisture fluxes,profiles of temperature and humidity,wind speed and wind direction.A diagnostic method is pres-ented for determining vertical lapse rates using surface meteorological measurements and lidar returns observed duringthe transition from nighttime stable stratification to daytime convective boundary layer after the sunrise.  相似文献   

4.
In large-eddy simulations (LES) of the atmospheric boundary layer (ABL), near-surface models are often used to supplement subgrid-scale (SGS) turbulent stresses when a major fraction of the energetic scales within the surface layer cannot be resolved with the temporal and spatial resolution at hand. In this study, we investigate the performance of both dynamic and non-dynamic eddy viscosity models coupled with near-surface models in simulations of a neutrally stratified ABL. Two near-surface models that are commonly used in LES of the atmospheric boundary layer are considered. Additionally, a hybrid Reynolds- averaged/LES eddy viscosity model is presented, which uses Prandtl’s mixing length model in the vicinity of the surface, and blends in with the dynamic Smagorinsky model away from the surface. Present simulations show that significant portions of the modelled turbulent stresses are generated by the near-surface models, and they play a dominant role in capturing the expected logarithmic wind profile. Visualizations of the instantaneous vorticity field reveal that flow structures in the vicinity of the surface depend on the choice of the near-surface model. Among the three near-surface models studied, the hybrid eddy viscosity model gives the closest agreement with the logarithmic wind profile in the surface layer. It is also observed that high levels of resolved turbulence stresses can be maintained with the so-called canopy stress model while producing good agreement with the logarithmic wind profile.  相似文献   

5.
赵昭  周博闻 《气象科学》2021,41(5):631-643
日间对流边界层最显著的结构特征是在热力作用下所形成的组织化对流。与小尺度湍涡不同的是,组织化对流具有边界层尺度的垂直相干性,可实现垂直贯穿边界层的非局地物质和能量传输。本文针对对流边界层中的动量混合,探究组织化对流对动量输送的贡献。以高精度大涡模拟数据为研究资料,通过傅里叶变换、本征正交分解和经验模态分解3种滤波方法,分离组织化对流和背景湍涡,计算与两者相关的非局地和局地动量通量,发现与组织化对流相关的非局地动量通量是总通量的重要组成部分,并主导混合层中的垂直动量输送。而后,基于协谱和相位谱分析,探究组织化对流的空间结构对动量传输的影响,发现在热力主导的不稳定环境中,单体型环流结构对动量的传输效率较低。而在风切较强的近中性环境中,滚涡型组织化结构可使垂直和水平流向扰动速度的相位差减小,从而提升动量传输效率。研究结果表明,边界层方案需要包含非局地动量通量项,其参数化应考虑整体稳定度对传输效率的影响。  相似文献   

6.
风切变对边界层对流影响的大涡模拟研究   总被引:5,自引:0,他引:5  
黄倩  王蓉  田文寿  左洪超  张强 《气象学报》2014,72(1):100-115
利用"西北干旱区陆-气相互作用野外观测实验"加密观测期间在敦煌站的观测资料以及大涡模式,模拟了对流边界层的发展,以及示踪物从混合层向残留层传输的时空变化。模拟的对流边界层的结构及演变特征与实测结果基本一致。进一步通过有风切变和无风切变的敏感性数值试验,研究了风切变对垂直速度、位温和示踪物浓度的水平分布以及示踪物传输高度的影响。研究结果表明,在有风切变的试验中(甚至风切变仅存在于近地层中),对流边界层的增长加强,而且示踪物被传输的高度也较高。与浮力驱动的对流边界层相比,由浮力和风切变共同驱动的边界层中上升气流较弱而下沉气流较强,但前者的上升气流与下沉气流的分布在垂直方向上更为倾斜。由于夹卷作用的增强,浮力和风切变共同驱动的对流边界层较浮力驱动的对流边界层暖。在夹卷层,浮力和风切变共同驱动的边界层对流的上升气流和下沉气流都比浮力驱动的边界层对流中的强,而且垂直速度的概率密度函数分布也较对称,其位温和示踪物浓度的概率密度函数分布也比浮力驱动的边界层中的平直。对湍流动能收支的分析也表明风切变对湍流动能有重要影响,尤其对夹卷层中的湍流动能切变产生项影响较大。示踪物浓度的概率密度函数垂直分布显示,浮力驱动的边界层中示踪物浓度随高度变化较小,而浮力和风切变共同驱动的边界层中示踪物浓度随高度递减,但是示踪物传输的高度比较高。  相似文献   

7.
涡旋相关法测定湍流通量偏低的研究   总被引:15,自引:3,他引:12  
针对野外实验所发现的不同观测法测定地表能通量不平衡问题,进行了均匀加热大气边界层的大涡模拟实验.用模拟的湍流风、温度和湿度涨落的时间序列证实,对流边界层低频涡普遍存在,并经常以一簇一簇热泡的形式出现.风速较小时,有限时长的取样不足以捕捉低频涡的贡献,可造成涡旋相关法测量的统计量异常偏低.仿照涡旋相关法的步骤进行数据处理发现,经去除平均或趋势计算的温度和湿度通量偏低程度在边界层下部随观测高度的增高而显著,其中尤以湿度通量为甚.其结果在一定程度上可以解释低风速条件下地表能通量测量的不闭合问题,但是尚不能完全解释诸如青藏高原实验出现的严重不闭合.文中对此作了探讨性的讨论.  相似文献   

8.
A single-column model (SCM) is developed in the regional climate model RegCM4. The evolution of a dry convection boundary layer (DCBL) is used to evaluate this SCM. Moreover, four planetary boundary layer (PBL) schemes, namely the Holtslag-Boville scheme (HB), Yonsei University scheme (YSU), and two University of Washington schemes (UW01, Grenier-Bretherton-McCaa scheme and UW09, Bretherton-Park scheme), are compared by using the SCM approach. A large-eddy simulation (LES) of the DCBL is performed as a benchmark to examine how well a PBL parameterization scheme reproduces the LES results, and several diagnostic outputs are compared to evaluate the schemes. The results show that the SCM is proper constructed. In general, with the DCBL case, the YSU scheme performs best for reproducing the LES results, which include well-mixed features and vertical sensible heat fluxes; the simulated wind speed, turbulent kinetic energy, entrainment flux, and height of the entrainment zone are all underestimated in the UW09; the UW01 has all those biases of the UW09 but larger, and the simulated potential temperature is not well mixed; the HB is the least skillful scheme, by which the PBL height, entrainment flux, height of the entrainment zone, and the vertical gradients within the mixed layer are all overestimated, and a inversion layer near the top of the surface layer is wrongly simulated.Although more cases and further testing are required, these simulations show encouraging results towards the use of this SCM framework for evaluating the simulated physical processes by the RegCM4.  相似文献   

9.
The Role of Shear in the Morning Transition Boundary Layer   总被引:1,自引:1,他引:0  
We use large-eddy simulation (LES) to better define the early stages of the morning transition boundary layer. Previous LES studies relating to the morning transition boundary layer focus on the role of the entraining convective boundary layer (CBL). By using a combination of different domain sizes and grid lengths, the full evolution from the stable boundary layer (SBL) to the CBL is modelled here. In the early stages of the morning transition the boundary layer is shown to be a combination of a shallow mixed layer capped by a significant shear driven stable boundary layer (the so-called mixed CBL–SBL state). The mixed CBL–SBL state is the key to understanding the sensitivity to shear. Turbulent kinetic energy budgets also indicate that it is shear driven. The negative flux from the mixed CBL–SBL state extends much further above the minimum than is typically found for the CBL later in the day, and the depth of penetration scales as w m /N i , where w m is the combined friction and convective velocity scale and N i the static stability at the inversion top.  相似文献   

10.
We investigate the impact of observed surface heterogeneities during the LITFASS-2003 experiment on the convective boundary layer (CBL). Large-eddy simulations (LES), driven by observed near-surface sensible and latent heat fluxes, were performed for the diurnal cycle and compare well with observations. As in former studies of idealized one- and two-dimensional heterogeneities, secondary circulations developed that are superimposed on the turbulent field and that partly take over the vertical transport of heat and moisture. The secondary circulation patterns vary between local and roll-like structures, depending on the background wind conditions. For higher background wind speeds, the flow feels an effective surface heat-flux pattern that derives from the original pattern by streamwise averaging. This effective pattern generates a roll-like secondary circulation with roll axes along the mean boundary-layer wind direction. Mainly the upstream surface conditions control the secondary circulation pattern, where the fetch increases with increasing background wind speed. Unlike the entrainment flux that appears to be slightly decreased compared to the homogeneously-heated CBL, the vertical flux of sensible heat appears not to be modified in the mixed layer, while the vertical flux of latent heat shows different responses to secondary circulations. The study illustrates that sufficient time averaging and ensemble averaging is required to separate the heterogeneity-induced signals from the raw LES turbulence data. This might be an important reason why experiments over heterogeneous terrain in the past did not give any clear evidence of heterogeneity-induced effects.  相似文献   

11.
During the Energy Balance Experiment, patch-to-patch irrigation generated gradients in soil moisture in a north-south oriented cotton field. An internal boundary layer (IBL) developed as a result of strong horizontal advection from relatively dry upstream patches to relatively wet downstream patches associated with the prevailing northerly winds. This generated large eddies of multiple sizes, which had significant influences on the structure of turbulence in the IBL. The power spectra and cospectra of wind speed, temperature, humidity, and energy fluxes measured at two heights within the IBL are presented and used to investigate the influence of the IBL on surface layer turbulence. The spectra and cospectra were greatly enhanced by external disturbances at low frequencies. The peak frequencies of these disturbances did not change with height. The spectra and cospectra typically converged and were parallel to the Kansas spectrum at high frequencies (in the inertial subrange). A clear gap in the spectra of horizontal wind velocity existed at intermediate frequencies when the surface layer was stable. The results indicate that large eddies that originated in the upstream convective boundary layer had considerable impacts on the spectra and cospectra of surface layer turbulence. The influence of these large eddies was greater (1) when the IBL was well-developed in the near surface layer than when the IBL did not exist, (2) at higher levels than at lower levels, and (3) when the atmospheric surface layer (ASL) was unstable than when the ASL was stable. The length scales of these large eddies were consistent with the dominant scales of surface heterogeneity at the experiment site.  相似文献   

12.
利用宜昌2007年12月10-25日的加密观测资料,分析了两次低值系统经过宜昌时大气边界层的温湿风廓线结构及其日变化特征。结果表明:位温廓线具有明显的日变化特征,对流边界层在白天出现和发展,其高度可达600m,而稳定边界层在夜间出现和发展,其高度可达300m,降水会抑制对流边界层和稳定边界层的发展;湿度廓线结构及其日变化与对流边界层的发展有关,总体上湿度随高度减小,贴近地面的薄层湿度随高度减小较快,而混合层内湿度随高度变化较小,出现降水时,近地层的湿度有明显增加,大气边界层内湿度随高度快速平稳减小;风速廓线结构比较复杂,总体上风速随高度增大,在大气边界层低层有时会出现一个风速极大值,风速廓线没有明显的日变化特征,大气边界层内风向变化较大,但以偏东风为主。  相似文献   

13.
Although large-scale topography and land use have been properly considered in weather and climate models, the effect of mesoscale and microscale heterogeneous land use on convective boundary layer (CBL) has not been fully understood yet. In this study, the influence of semi-idealized strip-like patches of oases and deserts, which resemble irrigated land use in Northwest China, on the CBL characteristics, is investigated based on the Weather Research and Forecasting (WRF)-large eddy simulation (LES) driven by observed land surface data. The influences of soil water content in oases on aloft CBL flow structure, stability, turbulent kinetic energy (TKE), and vertical fluxes are carefully examined through a group of sensitivity experiments. The results show that secondary circulation (SC)/turbulent organized structures (TOS) is the strongest/weakest when soil water content in oases is close to saturation (e.g., when the oases are irrigated). With the decrease of soil water content in oases (i.e., after irrigation), SC (TOS) becomes weak (strong) in the lower and middle CBL, the flux induced by SC and TOS becomes small (large), which has a dramatic impact on point measurement of eddy covariance (EC) fluxes. The flux induced by SC and TOS has little influence on EC sensible heat flux, but great influence on EC latent heat flux. Under this circumstance, the area averaged heat flux cannot be represented by point measurement of flux by the EC method, especially just after irrigation in oases. Comparison of imbalance ratio (i.e., contribution of SC and TOS to the total flux) reveals that increased soil moisture in oases leads to a larger imbalance ratio as well as enhanced surface heterogeneity. Moreover, we found that the soil layer configuration at different depths has a negligible impact on the CBL flux properties.  相似文献   

14.
Although large-scale topography and land use have been properly considered in weather and climate models, the effect of mesoscale and microscale heterogeneous land use on convective boundary layer(CBL) has not been fully understood yet. In this study, the influence of semi-idealized strip-like patches of oases and deserts, which resemble irrigated land use in Northwest China, on the CBL characteristics, is investigated based on the Weather Research and Forecasting(WRF)-large eddy simulation(LES) driven by observed land surface data. The influences of soil water content in oases on aloft CBL flow structure, stability, turbulent kinetic energy(TKE), and vertical fluxes are carefully examined through a group of sensitivity experiments. The results show that secondary circulation(SC)/turbulent organized structures(TOS) is the strongest/weakest when soil water content in oases is close to saturation(e.g.,when the oases are irrigated). With the decrease of soil water content in oases(i.e., after irrigation), SC(TOS) becomes weak(strong) in the lower and middle CBL, the flux induced by SC and TOS becomes small(large), which has a dramatic impact on point measurement of eddy covariance(EC) fluxes. The flux induced by SC and TOS has little influence on EC sensible heat flux, but great influence on EC latent heat flux. Under this circumstance, the area averaged heat flux cannot be represented by point measurement of flux by the EC method, especially just after irrigation in oases. Comparison of imbalance ratio(i.e., contribution of SC and TOS to the total flux) reveals that increased soil moisture in oases leads to a larger imbalance ratio as well as enhanced surface heterogeneity. Moreover,we found that the soil layer configuration at different depths has a negligible impact on the CBL flux properties.  相似文献   

15.
The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer(MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.  相似文献   

16.
Six years of observations from a surface instrument site have been analysed to determine timings and factors influencing developmental changes in the near-surface wind and turbulent heat fluxes during the morning heating of the atmospheric boundary layer. A simple relationship has been found between near-surface wind speed and screen temperature, together with a predictive equation for the morning transition air temperature. Profile measurements from a probe mounted on a tethered balloon have beenused to supplement the surface data and study the processes underlying these surface relationships. The results have confirmed earlier work and have shown that both before and immediately after morning transition, almost all heating in the surface layer is due to turbulent diffusion from above. In order to explain the mechanisms involved in the relationships, a simple finite difference model has been run and validated against the profile data. The model predictions are compared with observations during both the morning and evening and the differences related to the different temperature profiles. Numerical forecasting rules for the surface wind speed and transition temperature are derived from the results.  相似文献   

17.
孟丹  陈正洪  陈城  孙朋杰  阳威 《气象》2019,45(12):1756-1761
利用1981—2014年我国资料齐全的93个高空气象观测站(距离雷达300、600、900 m高度)的探空风资料,按照气象地理区划,借助GIS分析了边界层内不同高度风速及其趋势的时空变化,得到以下结论:300~900 m,东北和华北地区累年平均风速较大,西南和西北地区累年平均风速较小;边界层内各高度同一地区平均风速的月变化趋势基本一致,但各地区季节风速变化不同,同一地区月平均风速的年较差随高度上升而增大;300 m.各地区年平均风速均显著减小:在600和900 m.华北、西北、华中地区年平均风速呈增加趋势,东北地区年平均风速呈减小趋势,但均未通过显著性水平检验;各高度年平均风速空间分布均为东北地区较大,尤其大兴安岭和东北平原地带;从沿海到内陆,由东至西风速逐渐减小;在300 m.全国年平均风速以减小趋势为主;在600 m,全国大部分地区年平均风速呈增加趋势,尤其是中部、西北和华东沿海地区;在900 m高度,全国年平均风速变化趋势呈现由边界向内部的包围态势,中心地区呈增加趋势,边界地区均呈减小趋势,但是通过显著性水平检验的地区不多。  相似文献   

18.
We propose improvements in the “non-local” parameterization scheme of the convective boundary layer. The countergradient terms for components of the momentum fluxes are introduced in a form analogous to those for other scalars. The scheme also includes explicit expressions for entrainment fluxes of momentum, temperature, and humidity. A simplified procedure for calculating the boundary-layer height is proposed, consisting of two steps: the evaluation of the convection level, followed by the assessment of the depth of the interfacial layer.  相似文献   

19.
In this study,the ability of the Weather Research and Forecasting(WRF)model to generate accurate near-surface wind speed forecasts at kilometer-to subkilometer-scale resolution along race tracks(RTs)in Chongli during the wintertime is evaluated.The performance of two postprocessing methods,including the decaying-averaging(DA)and analogy-based(AN)methods,is tested to calibrate the near-surface wind speed forecasts.It is found that great uncertainties exist in the model’s raw forecasts of the near-surface wind speed in Chongli.Improvement of the forecast accuracy due to refinement of the horizontal resolution from kilometer to subkilometer scale is limited and not systematic.The RT sites tend to have large bias and centered root mean square error(CRMSE)values and also exhibit notable underestimation of high-wind speeds,notable overestimation or underestimation of the near-surface wind speed at high altitudes,and notable underestimation during daytime.These problems are not resolved by increasing the horizontal resolution and are even exacerbated,which leads to great challenges in the accurate forecasting of the near-surface wind speed in the competition areas in Chongli.The application of postprocessing methods can greatly improve the forecast accuracy of near-surface wind speed.Both methods used in this study have comparable abilities in reducing the(positive or negative)bias,while the AN method is also capable of decreasing the random error reflected by CRMSE.In particular,the large biases for high-wind speeds,wind speeds at high-altitude stations,and wind speeds during the daytime at RT stations can be evidently reduced.  相似文献   

20.
一个对流边界层大涡模式的建立与调试   总被引:12,自引:4,他引:12  
蔡旭晖  陈家宜 《大气科学》1995,19(4):415-421
本文介绍一个适合于对流边界层的大涡模式的建立及其调试结果。该大涡模式建立过程中注重于计算的节省,同时也强调原理与方法的简单和合理性。模式的调试表明,对于平坦均一地形的情况,模拟可以获得合理的结果。调试同时显示了模式对较低水平分辨率的适用条件,以及模式应用于模拟较大水平范围问题的可能性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号