首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 249 毫秒
1.
A detailed analysis of the 2006 November 15 data release X-ray surface density Σ-map and the strong and weak gravitational lensing convergence κ-map for the Bullet Cluster 1E0657-558 is performed and the results are compared with the predictions of a modified gravity (MOG) and dark matter. Our surface density Σ-model is computed using a King β-model density, and a mass profile of the main cluster and an isothermal temperature profile are determined by the MOG. We find that the main cluster thermal profile is nearly isothermal. The MOG prediction of the isothermal temperature of the main cluster is   T = 15.5 ± 3.9 keV  , in good agreement with the experimental value   T = 14.8+2.0−1.7 keV  . Excellent fits to the 2D convergence κ-map data are obtained without non-baryonic dark matter, accounting for the 8σ spatial offset between the Σ-map and the κ-map reported in Clowe et al. The MOG prediction for the κ-map results in two baryonic components distributed across the Bullet Cluster 1E0657-558 with averaged mass fraction of 83 per cent intracluster medium (ICM) gas and 17 per cent galaxies. Conversely, the Newtonian dark matter κ-model has on average 76 per cent dark matter (neglecting the indeterminant contribution due to the galaxies) and 24 per cent ICM gas for a baryon to dark matter mass fraction of 0.32, a statistically significant result when compared to the predicted Λ-cold dark matter cosmological baryon mass fraction of 0.176+0.019−0.012.  相似文献   

2.
We have assessed the significance of Tully and Verheijen's bimodal Ursa Major Cluster spiral galaxy near-infrared surface brightness distribution, focusing on whether this bimodality is simply an artefact of small number statistics. A Kolmogorov–Smirnov style of significance test shows that the total distribution is fairly represented by a single-peaked distribution, but that their isolated galaxy subsample (with no significant neighbours within a projected distance of ∼80 kpc) is bimodal at the 96 per cent level. We have also investigated the assumptions underlying the isolated galaxy surface brightness distribution, finding that the (often large) inclination corrections used in the construction of this distribution reduce the significance of the bimodality. We conclude that the Ursa Major Cluster data set is insufficient to establish the presence of a bimodal near-infrared surface brightness distribution: an independent sample of ∼100 isolated, low-inclination galaxies is required to establish bimodality at the 99 per cent level.  相似文献   

3.
Recently, the gravitational polarization of the quantum vacuum was proposed as alternative to the dark matter paradigm. In the present paper we consider four benchmark measurements: the universality of the central surface density of galaxy dark matter haloes, the cored dark matter haloes in dwarf spheroidal galaxies, the non-existence of dark disks in spiral galaxies and distribution of dark matter after collision of clusters of galaxies (the Bullet cluster is a famous example). Only some of these phenomena (but not all of them) can (in principle) be explained by the dark matter and the theories of modified gravity. However, we argue that the framework of the gravitational polarization of the quantum vacuum allows the understanding of the totality of these phenomena.  相似文献   

4.
We present predictions for the abundance of submillimetre galaxies (SMGs) and Lyman-break galaxies (LBGs) in the Λ cold dark matter cosmology. A key feature of our model is the self-consistent calculation of the absorption and emission of radiation by dust. The new model successfully matches the LBG luminosity function, as well as reproducing the properties of the local galaxy population in the optical and infrared. The model can also explain the observed galaxy number counts at 850 μm, but only if we assume a top-heavy initial mass function for the stars formed in bursts. The predicted redshift distribution of SMGs depends relatively little on their flux over the range 1–10 mJy, with a median value of   z ≈ 2.0  at a flux of 5 mJy, in good agreement with the recent measurement by Chapman et al. The counts of SMGs are predicted to be dominated by ongoing starbursts. However, in the model these bursts are responsible for making only a few per cent of the stellar mass locked up in massive ellipticals at the present day.  相似文献   

5.
The 2dF Galaxy Redshift Survey has now measured in excess of 160 000 galaxy redshifts. This paper presents the power spectrum of the galaxy distribution, calculated using a direct Fourier transform based technique. We argue that, within the k -space region     , the shape of this spectrum should be close to that of the linear density perturbations convolved with the window function of the survey. This window function and its convolving effect on the power spectrum estimate are analysed in detail. By convolving model spectra, we are able to fit the power-spectrum data and provide a measure of the matter content of the Universe. Our results show that models containing baryon oscillations are mildly preferred over featureless power spectra. Analysis of the data yields 68 per cent confidence limits on the total matter density times the Hubble parameter     , and the baryon fraction     , assuming scale-invariant primordial fluctuations.  相似文献   

6.
We present the first optimal power spectrum estimation and three-dimensional deprojections for the dark and luminous matter and their cross-correlations. The results are obtained using a new optimal fast estimator, deprojected using minimum variance and Singular Value Decomposition (SVD) techniques. We show the resulting 3D power spectra for dark matter and galaxies, and their covariance for the VIRMOS-DESCART weak lensing shear and galaxy data. The survey is most sensitive to non-linear scales   k NL∼ 1 h Mpc−1  . On these scales, our 3D power spectrum of dark matter is in good agreement with the RCS 3D power spectrum found by Tegmark & Zaldarriaga. Our galaxy power is similar to that found by the 2MASS survey, and larger than that of SDSS, APM and RCS, consistent with the expected difference in galaxy population.
We find an average bias   b = 1.24 ± 0.18  for the I -selected galaxies, and a cross-correlation coefficient   r = 0.75 ± 0.23  . Together with the power spectra, these results optimally encode the entire two point information about dark matter and galaxies, including galaxy–galaxy lensing. We address some of the implications regarding galaxy haloes and mass-to-light ratios. The best-fitting 'halo' parameter   h ≡ r / b = 0.57 ± 0.16  , suggesting that dynamical masses estimated using galaxies systematically underestimate total mass.
Ongoing surveys, such as the Canada–France–Hawaii Telescope Legacy Survey, will significantly improve on the dynamic range, and future photometric redshift catalogues will allow tomography along the same principles.  相似文献   

7.
We use the Millennium Simulation (MS) to measure the cross-correlation between halo centres and mass (or equivalently the average density profiles of dark haloes) in a Lambda cold dark matter (ΛCDM) cosmology. We present results for radii in the range  10  h −1 kpc < r < 30  h −1 Mpc  and for halo masses in the range  4 × 1010 < M 200 < 4 × 1014  h −1 M  . Both at   z = 0  and at   z = 0.76  these cross-correlations are surprisingly well fitted if the inner region is approximated by a density profile of NFW or Einasto form, the outer region by a biased version of the linear mass autocorrelation function, and the maximum of the two is adopted where they are comparable. We use a simulation of galaxy formation within the MS to explore how these results are reflected in cross-correlations between galaxies and mass. These are directly observable through galaxy–galaxy lensing. Here also we find that simple models can represent the simulation results remarkably well, typically to ≲10 per cent. Such models can be used to extend our results to other redshifts, to cosmologies with other parameters, and to other assumptions about how galaxies populate dark haloes. Our galaxy formation simulation already reproduces current galaxy–galaxy lensing data quite well. The characteristic features predicted in the galaxy–galaxy lensing signal should provide a strong test of the ΛCDM cosmology as well as a route to understanding how galaxies form within it.  相似文献   

8.
We show that in the framework of R2 gravity and in the linearized approach it is possible to obtain spherically symmetric stationary states that can be used as a model for galaxies. Such approach could represent a solution to the Dark Matter Problem. In fact, in the model, the Ricci curvature generates a high energy term that can in principle be identified as the dark matter field making up the galaxy. The model can also help to have a better understanding on the theoretical basis of Einstein-Vlasov systems. Specifically, we discuss, in the linearized R2 gravity, the solutions of a Klein-Gordon equation for the spacetime curvature. Such solutions describe high energy scalarons, a field that in the context of galactic dynamics can be interpreted like the no-light-emitting galactic component. That is, these particles can be figured out like wave-packets showing stationary solutions in the Einstein-Vlasov system. In such approximation, the energy of the particles can be thought of as the galactic dark matter component that guarantees the galaxy equilibrium. Thus, because of the high energy of such particles the coupling constant of the R2-term in the gravitational action comes to be very small with respect to the linear term R. In this way, the deviation from standard General Relativity is very weak, and in principle the theory could pass the Solar System tests. As pertinent to the issue under analysis in this paper, we present an analysis on the gravitational lensing phenomena within this framework.Although the main goal of this paper is to give a potential solution to the Dark Matter Problem within galaxies, we add a section where we show that an important property of the Bullet Cluster can in principle be explained in the scenario introduced in this work.To the end, we discuss the generic prospective to give rise to the Dark Matter component of most galaxies within extended gravity.  相似文献   

9.
The Las Campanas Observatory and Anglo-Australian Telescope Rich Cluster Survey (LARCS) is a panoramic imaging and spectroscopic survey of an X-ray luminosity-selected sample of 21 clusters of galaxies at     . Charge-coupled device (CCD) imaging was obtained in B and R of typically 2° wide regions centred on the 21 clusters, and the galaxy sample selected from the imaging is being used for an on-going spectroscopic survey of the clusters with the 2dF spectrograph on the Anglo-Australian Telescope. This paper presents the reduction of the imaging data and the photometric analysis used in the survey. Based on an overlapping area of 12.3 deg2 we compare the CCD-based LARCS catalogue with the photographic-based galaxy catalogue used for the input to the 2dF Galaxy Redshift Survey (2dFGRS) from the APM, to the completeness of the GRS/APM catalogue,     . This comparison confirms the reliability of the photometry across our mosaics and between the clusters in our survey. This comparison also provides useful information concerning the properties of the GRS/APM. The stellar contamination in the GRS/APM galaxy catalogue is confirmed as around     per cent, as originally estimated. However, using the superior sensitivity and spatial resolution in the LARCS survey evidence is found for four distinct populations of galaxies that are systematically omitted from the GRS/APM catalogue. The characteristics of the 'missing' galaxy populations are described, reasons for their absence examined and the impact they will have on the conclusions drawn from the 2dF Galaxy Redshift Survey are discussed.  相似文献   

10.
Mass-to-light ratio gradients in early-type galaxy haloes   总被引:1,自引:0,他引:1  
Owing to the fact that the near future should see a rapidly expanding set of probes of the halo masses of individual early-type galaxies, we introduce a convenient parameter for characterizing the halo masses from both observational and theoretical results:  ∇ϒ  , the logarithmic radial gradient of the mass-to-light ratio. Using halo density profiles from Λ-cold dark matter (CDM) simulations, we derive predictions for this gradient for various galaxy luminosities and star formation efficiencies  εSF  . As a pilot study, we assemble the available  ∇ϒ  data from kinematics in early-type galaxies – representing the first unbiased study of halo masses in a wide range of early-type galaxy luminosities – and find a correlation between luminosity and  ∇ϒ  , such that the brightest galaxies appear the most dark-matter dominated. We find that the gradients in most of the brightest galaxies may fit in well with the ΛCDM predictions, but that there is also a population of fainter galaxies whose gradients are so low as to imply an unreasonably high star formation efficiency  εSF > 1  . This difficulty is eased if dark haloes are not assumed to have the standard ΛCDM profiles, but lower central concentrations.  相似文献   

11.
In the 2dF Galaxy Redshift Survey, we study the properties of voids and of fainter galaxies within voids that are defined by brighter galaxies. Our results are compared with simulated galaxy catalogues from the Millennium simulation coupled with a semi-analytical galaxy formation recipe. We derive the void size distribution and discuss its dependence on the faint magnitude limit of the galaxies defining the voids. While voids among faint galaxies are typically smaller than those among bright galaxies, the ratio of the void sizes to the mean galaxy separation reaches larger values. This is well reproduced in the mock galaxy samples studied. We provide analytic fitting functions for the void size distribution. Furthermore, we study the galaxy population inside voids defined by galaxies with   B J− 5 log  h < −20  and diameter larger than  10  h −1 Mpc  . We find a clear bimodality of galaxies inside voids and in the average field but with different characteristics. The abundance of blue cloud galaxies inside voids is enhanced. There is an indication of a slight blueshift of the blue cloud. Furthermore, galaxies in void centres have slightly higher specific star formation rates as measured by the η parameter. We determine the radial distribution of the ratio of early- and late-type galaxies through the voids. We find and discuss some differences between observations and the Millennium catalogues.  相似文献   

12.
Differences in clustering properties between galaxy subpopulations complicate the cosmological interpretation of the galaxy power spectrum, but can also provide insights about the physics underlying galaxy formation. To study the nature of this relative clustering, we perform a counts-in-cells analysis of galaxies in the Sloan Digital Sky Survey in which we measure the relative bias between pairs of galaxy subsamples of different luminosities and colours. We use a generalized  χ2  test to determine if the relative bias between each pair of subsamples is consistent with the simplest deterministic linear bias model, and we also use a maximum likelihood technique to further understand the nature of the relative bias between each pair. We find that the simple, deterministic model is a good fit for the luminosity-dependent bias on scales above  ∼2  h −1 Mpc  , which is good news for using magnitude-limited surveys for cosmology. However, the colour-dependent bias shows evidence for stochasticity and/or non-linearity which increases in strength towards smaller scales, in agreement with previous studies of stochastic bias. Also, confirming hints seen in earlier work, the luminosity-dependent bias for red galaxies is significantly different from that of blue galaxies: both luminous and dim red galaxies have higher bias than moderately bright red galaxies, whereas the biasing of blue galaxies is not strongly luminosity dependent. These results can be used to constrain galaxy formation models and also to quantify how the colour and luminosity selection of a galaxy survey can impact measurements of the cosmological matter power spectrum.  相似文献   

13.
14.
We confirm and extend the recent finding that the central surface density  μ0D≡ r 0ρ0  of galaxy dark matter haloes, where r 0 and  ρ0  are the halo core radius and central density, is nearly constant and independent of galaxy luminosity. Based on the co-added rotation curves (RCs) of ∼1000 spiral galaxies, the mass models of individual dwarf irregular and spiral galaxies of late and early types with high-quality RCs, and the galaxy–galaxy weak-lensing signals from a sample of spiral and elliptical galaxies, we find that  log μ0D= 2.15 ± 0.2  in units of  log(M pc−2)  . We also show that the observed kinematics of Local Group dwarf spheroidal galaxies are consistent with this value. Our results are obtained for galactic systems spanning over 14 mag, belonging to different Hubble types and whose mass profiles have been determined by several independent methods. In the same objects, the approximate constancy of  μ0D  is in sharp contrast to the systematical variations, by several orders of magnitude, of galaxy properties, including  ρ0  and central stellar surface density.  相似文献   

15.
We present detailed predictions for the properties of Lyα-emitting galaxies in the framework of the Λ cold dark matter cosmology, calculated using the semi-analytical galaxy formation model galform . We explore a model that assumes a top-heavy initial mass function in starbursts and that has previously been shown to explain the sub-millimetre number counts and the luminosity function of Lyman-break galaxies at high redshift. We show that this model, with the simple assumption that a fixed fraction of Lyα photons escape from each galaxy, is remarkably successful at explaining the observed luminosity function of Lyα emitters (LAEs) over the redshift range  3 < z < 6.6  . We also examine the distribution of Lyα equivalent widths and the broad-band continuum magnitudes of emitters, which are in good agreement with the available observations. We look more deeply into the nature of LAEs, presenting predictions for fundamental properties such as the stellar mass and radius of the emitting galaxy and the mass of the host dark matter halo. The model predicts that the clustering of LAEs at high redshifts should be strongly biased relative to the dark matter, in agreement with observational estimates. We also present predictions for the luminosity function of LAEs at   z > 7  , a redshift range that is starting to be be probed by near-infrared surveys and using new instruments such as the Dark Ages Z Lyman Explorer (DAzLE).  相似文献   

16.
We investigate the relative distribution of the gaseous contents of the Universe (as traced by a sample of Lyα absorbers), and the luminous baryonic matter (as traced by a redshift survey of galaxies in the same volume searched for Lyα absorbers), along 16 lines of sight (LOS) between redshifts 0 and 1. Our galaxy redshift survey was made with the multi-object spectrograph on the Canada–France–Hawaii Telescope and, when combined with galaxies from the literature in the same LOS, gives us a galaxy sample of 636 objects. By combining this with an absorption-line sample of 406 absorbing systems drawn from published works, we are able to study the relationship between gas and galaxies over the latter half of the age of the Universe. A correlation between absorbers and galaxies is detected out to separation of 1.5 Mpc. This correlation is weaker than the galaxy–galaxy correlation. There is also some evidence that the absorbing systems seen in C  iv are more closely related to galaxies, although this correlation could be with column density rather than metallicity. The above results are all consistent with the absorbing gas and the galaxies coexisting in dark matter filaments and knots as predicted by current models where the column density of the absorbing gas is correlated with the underlying matter density.  相似文献   

17.
We forecast the constraints on the values of  σ8, Ωm  and cluster scaling-relation parameters which we expect to obtain from the XMM Cluster Survey (XCS). We assume a flat Λ cold dark matter Universe and perform a Monte Carlo Markov Chain analysis of the evolution of the number density of galaxy clusters that takes into account a detailed simulated selection function. Comparing our current observed number of clusters shows good agreement with predictions. We determine the expected degradation of the constraints as a result of self-calibrating the luminosity–temperature relation (with scatter), including temperature measurement errors, and relying on photometric methods for the estimation of galaxy cluster redshifts. We examine the effects of systematic errors in scaling relation and measurement error assumptions. Using only  ( T , z )  self-calibration, we expect to measure Ωm to ±0.03 (and  ΩΛ  to the same accuracy assuming flatness), and σ8 to ±0.05, also constraining the normalization and slope of the luminosity–temperature relation to ±6 and ±13 per cent (at 1σ), respectively, in the process. Self-calibration fails to jointly constrain the scatter and redshift evolution of the luminosity–temperature relation significantly. Additional archival and/or follow-up data will improve on this. We do not expect measurement errors or imperfect knowledge of their distribution to degrade constraints significantly. Scaling-relation systematics can easily lead to cosmological constraints 2σ or more away from the fiducial model. Our treatment is the first exact treatment to this level of detail, and introduces a new 'smoothed ML' (Maximum Likelihood) estimate of expected constraints.  相似文献   

18.
19.
Many current and future astronomical surveys will rely on samples of strong gravitational lens systems to draw conclusions about galaxy mass distributions. We use a new strong lensing pipeline (presented in Paper I of this series) to explore selection biases that may cause the population of strong lensing systems to differ from the general galaxy population. Our focus is on point-source lensing by early-type galaxies with two mass components (stellar and dark matter) that have a variety of density profiles and shapes motivated by observational and theoretical studies of galaxy properties. We seek not only to quantify but also to understand the physics behind selection biases related to: galaxy mass, orientation and shape; dark matter profile parameters such as inner slope and concentration; and adiabatic contraction. We study how all of these properties affect the lensing Einstein radius, total cross-section, quad/double ratio and image separation distribution, with a flexible treatment of magnification bias to mimic different survey strategies. We present our results for two families of density profiles: cusped and deprojected Sérsic models. While we use fixed lens and source redshifts for most of the analysis, we show that the results are applicable to other redshift combinations, and we also explore the physics of how our results change for very different redshifts. We find significant (factors of several) selection biases with mass; orientation, for a given galaxy shape at fixed mass; cusped dark matter profile inner slope and concentration; concentration of the stellar and dark matter deprojected Sérsic models. Interestingly, the intrinsic shape of a galaxy does not strongly influence its lensing cross-section when we average over viewing angles. Our results are an important first step towards understanding how strong lens systems relate to the general galaxy population.  相似文献   

20.
We perform a series of comparisons between distance-independent photometric and spectroscopic properties used in the surface brightness fluctuation (SBF) and fundamental plane (FP) methods of early-type galaxy distance estimation. The data are taken from two recent surveys: the SBF Survey of Galaxy Distances and the Streaming Motions of Abell Clusters (SMAC) FP survey. We derive a relation between     colour and Mg2 index using nearly 200 galaxies and discuss implications for Galactic extinction estimates and early-type galaxy stellar populations. We find that the reddenings from Schlegel et al. for galaxies with     appear to be overestimated by     per cent, but we do not find significant evidence for large-scale dipole errors in the extinction map. In comparison with stellar population models having solar elemental abundance ratios, the galaxies in our sample are generally too blue at a given Mg2; we ascribe this to the well-known enhancement of the α -elements in luminous early-type galaxies. We confirm a tight relation between stellar velocity dispersion σ and the SBF 'fluctuation count' parameter N¯ , which is a luminosity-weighted measure of the total number of stars in a galaxy. The correlation between N¯ and σ is even tighter than that between Mg2 and σ . Finally, we derive FP photometric parameters for 280 galaxies from the SBF survey data set. Comparisons with external sources allow us to estimate the errors on these parameters and derive the correction necessary to bring them on to the SMAC system. The data are used in a forthcoming paper, which compares the distances derived from the FP and SBF methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号