首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Campi Flegrei hosts numerous monogenetic vents inferred to be younger than the 15 ka Neapolitan Yellow Tuff. Sanidine crystals from the three young Campi Flegrei vents of Fondi di Baia, Bacoli and Nisida were dated using 40Ar/39Ar geochronology. These vents, together with several other young edifices, occur roughly along the inner border of the Campi Flegrei caldera, suggesting that the volcanic conduits are controlled by caldera-bounding faults. Plateau ages of ∼9.6 ka (Fondi di Baia), ∼8.6 ka (Bacoli) and ∼3.9 ka (Nisida) indicate eruptive activity during intervals previously interpreted as quiescent. A critical revision, involving calendar age correction of literature 14C data and available 40Ar/39Ar age data, is presented. A new reference chronostratigraphic framework for Holocene Phlegrean activity, which significantly differs from the previously adopted ones, is proposed. This has important implications for understanding the Campi Flegrei eruptive history and, ultimately, for the evaluation of related volcanic risk and hazard, for which the inferred history of its recent activity is generally taken into account.  相似文献   

2.
Eruptive activity has occurred in the summit region of Mount Erebus over the last 95 ky, and has included numerous lava flows and small explosive eruptions, at least one plinian eruption, and at least one and probably two caldera-forming events. Furnace and laser step-heating 40Ar/39Ar ages have been determined for 16 summit lava flows and three englacial tephra layers erupted from Mount Erebus. The summit region is composed of at least one or possibly two superimposed calderas that have been filled by post-caldera lava flows ranging in age from 17 ± 8 to 1 ± 5 ka. Dated pre-caldera summit flows display two age populations at 95 ± 9 to 76 ± 4 ka and 27 ± 3 to 21 ± 4 ka of samples with tephriphonolite and phonolite compositions, respectively. A caldera-collapse event occurred between 25 and 11 ka. An older caldera-collapse event is likely to have occurred between 80 and 24 ka. Two englacial tephra layers from the flanks of Mount Erebus have been dated at 71 ± 5 and 15 ± 4 ka. These layers stratigraphically bracket 14 undated tephra layers, and predate 19 undated tephra layers, indicating that small-scale explosive activity has occurred throughout the late Pleistocene and Holocene eruptive history of Mount Erebus. A distal, englacial plinian-fall tephra sample has an age of 39 ± 6 ka and may have been associated with the older of the two caldera-collapse events. A shift in magma composition from tephriphonolite to phonolite occurred at around 36 ka.Editorial responsibility: Julie Donnelly-Nolan  相似文献   

3.
Mt. Erebus, a 3,794-meter-high active polygenetic stratovolcano, is composed of voluminous anorthoclase-phyric tephriphonolite and phonolite lavas overlying unknown volumes of poorly exposed, less differentiated lavas. The older basanite to phonotephrite lavas crop out on Fang Ridge, an eroded remnant of a proto-Erebus volcano and at other isolated locations on the flanks of the Mt. Erebus edifice. Anorthoclase feldspars in the phonolitic lavas are large (~10 cm), abundant (~30–40%) and contain numerous melt inclusions. Although excess argon is known to exist within the melt inclusions, rigorous sample preparation was used to remove the majority of the contaminant. Twenty-five sample sites were dated by the 40Ar/39Ar method (using 20 anorthoclase, 5 plagioclase and 9 groundmass concentrates) to examine the eruptive history of the volcano. Cape Barne, the oldest site, is 1,311±16 ka and represents the first of three stages of eruptive activity on the Mt. Erebus edifice. It shows a transition from sub-aqueous to sub-aerial volcanism that may mark the initiation of proto-Erebus eruptive activity. It is inferred that a further ~300 ky of basanitic/phonotephritic volcanism built a low, broad platform shield volcano. Cessation of the shield-building phase is marked by eruptions at Fang Ridge at ~1,000 ka. The termination of proto-Erebus eruptive activity is marked by the stratigraphically highest flow at Fang Ridge (758±20 ka). Younger lavas (~550–250 ka) on a modern-Erebus edifice are characterized by phonotephrites, tephriphonolites and trachytes. Plagioclase-phyric phonotephrite from coastal and flank flows yield ages between 531±38 and 368±18 ka. The initiation of anorthoclase tephriphonolite occurred in the southwest sector of the volcano at and around Turks Head (243±10 ka). A short pulse of effusive activity marked by crustal contamination occurred ~160 ka as indicated by at least two trachytic flows (157±6 and 166±10 ka). Most anorthoclase-phyric lavas, characteristic of Mt. Erebus, are less than 250 ka. All Mt. Erebus flows between about 250 and 90 ka are anorthoclase tephriphonolite in composition.Editorial responsibility: J. Donelly-Nolan  相似文献   

4.
A careful re-examination of the well-known written documents pertaining to the 2,750-year-long historical period of Mount Etna was carried out and their interpretation checked through the high-accuracy archeomagnetic method (>1,200 large samples), combined with the 226Ra-230Th radiochronology. The magnetic dating is based upon secular variation of the direction of the geomagnetic field (DGF) and estimated to reach a precision of  ±40 years for the last 1,200 years, and ±100 to 200 years up to circa 150 B.C. Although less precise, the 226Ra-230Th method provides a unique tool for distinguishing between historic and prehistoric lavas, which in some cases might have similar DGFs. We show that despite the abundance of details on ancient historical eruptions, the primary sources of information are often too imprecise to identify their lava flows and eruptive systems. Most of the ages of these lavas, which are today accepted on the geological maps and catalogues, were attributed in the 1800s on the basis of their morphology and without any stratigraphical control. In fact, we found that 80% of the “historically dated” flows and cones prior to the 1700s are usually several hundreds of years older than recorded, the discrepancies sometimes exceeding a millennium. This is proper the case for volcanics presumed of the “1651 east” (actually ∼1020), “1595” (actually two distinct flows, respectively, ∼1200 and ∼1060), “1566” (∼1180), “1536” (two branches dated ∼1250 and ∼950), “1444” (a branch dated ∼1270), “1408” (lower branches dated ∼450 and ∼350), “1381” (∼1160), “1329” (∼1030), “1284” (∼1450 and ∼700), “1169 or 812” (∼1000) eruptions. Conversely, well-preserved cones and flows that are undated on the maps were produced by recent eruptions that went unnoticed in historical accounts, especially during the Middle Ages. For the few eruptions that are recorded between A.D. 252 and 750 B.C., none of their presumed lava flows shows a DGF in agreement with that existing at their respective dates of occurrence, most of these flows being in fact prehistoric. The cinder cones of Monpeloso (presumed “A.D. 252”) and Mt. Gorna (“394 B.C.”), although roughly consistent magnetically and radiochronologically with their respective epochs, remain of unspecified age because of a lack of precision of the DGF reference curve at the time. It is concluded that at the time scale of the last millennia, Mount Etna does not provide evidence of a steady-state behavior. Periods of voluminous eruptions lasting 50 to 150 years (e.g., A.D. 300–450, 950–1060, 1607–1669) are followed by centuries of less productive activity, although at any time a violent outburst may occur. Such a revised history should be taken into account for eruptive models, magma output, internal plumbing of the volcano, petrological evolution, volcano mapping and civil protection.  相似文献   

5.
Lava flows spanning the eruptive record of Graciosa Island (Azores archipelago) and a gabbro xenolith were dated by 40Ar/39Ar in order to constrain the Pleistocene and Holocene volcanic evolution of the island. The results range from 1.05 Ma to 3.9 ka, whereas prior published K–Ar and 14C ages range from 620 to 2 ka. The formation of the Serra das Fontes shield volcano started at minimum 1.05 Ma, and the magmatic system was active for ca. 600 ky, as suggested by the formation of the gabbro xenolith by magmatic differentiation. Evolved magmas making up the Serra das Fontes–Serra Branca composite volcano were generated at ca. 450 ka. After a period of ca. 110 ky of volcanic inactivity and erosion of volcanic edifices, volcanism was reactivated with the formation of the Vitória Unit NW platform. Later, the development of the Vulcão Central Unit started with the formation of monogenetic cones located to the south of the Serra das Fontes–Serra Branca–Vitória Unit. This volcanism became progressively more evolved and was concentrated in a main eruptive center, forming the Vulcão Central stratovolcano with an age older than 50 ka. The caldera related to this stratovolcano is older than 47 ka and was followed by effusion of basaltic magmas into the caldera, resulting in the formation of a lava lake, which ultimately spilled over the caldera rim at ca. 11 ka. The most recent eruptions on Graciosa formed two small pyroclastic cones within the caldera and the Pico do Timão cone within the Vitória Unit at ca 3.9 ka.  相似文献   

6.
The Hakusan volcano, central Japan, is located in a region where two subducting plates (the Pacific Plate and the Philippine Sea Plate) overlap near the junction of four plates adjacent to the Japanese Islands (the Pacific Plate, the Philippine Sea Plate, the Eurasia Plate, and the North American Plate). The Hakusan volcano consists of products from four major volcanic episodes: Kagamuro, Ko‐hakusan, and Shin‐Hakusan I and II. To date the eruption events of the Hakusan volcano we applied thermoluminescence and fission track methods. 238U(234U)–230Th disequilibrium and 206Pb/238U methods were applied to date the zircon crystallization ages for estimating the magma residence time before the eruptions. The eruption ages we obtained are ca 250 ka for Kagamuro, ca 100 ka and ca 60 ka for Ko‐Hakusan, ca 50 ka for Shin‐Hakusan I, and <10 ka for Shin‐Hakusan II. They are concordant with previous reports based on K–Ar dating. Some of the pyroclastic rocks, possibly originating from Shin‐Hakusan II activities, are dated to be ca 36 ka or 50 ka, and belong to the Shin‐Hakusan I activity. The zircon crystallization ages show several clusters prior to eruption. The magma residence time was estimated for each volcanic activity by comparing the major crystallization events and eruption ages, and we found a gradual decrease from ca. 500 ky for the Kagamuro activity to ca. 5 ky for the Shin‐Hakusan II activity. This decrease in residence time may be responsible for the decrease in volume of erupted material estimated from the current topography of the region. The scale of volcanic activity, which was deduced from the number of crystallized zircons, is more or less constant throughout the Hakusan volcanic activity. Therefore, the decrease in magma residence time is most likely the result of stress field change.  相似文献   

7.
Our two newly obtained high-quality 40Ar/39Ar ages suggest that the high-K volcanic rocks of the Lawuxiang Formation in the Mangkang basin, Tibet were formed at 33.5 ± 0.2 Ma. The tracing of elemental and Pb-Sr-Nd isotopic geochemistry indicates that they were derived from an EM2 enriched mantle in continental subduction caused by transpression. Their evidently negative anomalies in HFSEs such as Nb and Ta make clear that there is an input of continental material into the mantle source. The high-K rocks at 33.5 ± 0.2 Ma in the Mangkang basin may temporally, spatially and compositionally compare with the early one of two-pulse high-K rocks in eastern Tibet distinguished by Wang J. H. et al., implying that they were formed in the same tectonic setting.  相似文献   

8.
For lack of reliable isotopic chronological data, the metamorphic rock series in the Faku region of northern Liaoning has long been regarded as the platform basement. Recent studies reveal that these deformed and metamorphosed rocks, with a variety of protoliths of plutonic intrusions and supracrustal volcanic and sedimentary rocks, were genetically related to later ductile shearing events, and they, together with the syntectonic intrusions, constituted the large-scale Faku tectonites. In this paper, we report new 40Ar/39Ar data on hornblende, biotite, and K-feldspar from typical granitic mylonites in this suite of tectonites. The plateau age 256 Ma of FK53 hornblende and the high-temperature plateau age 262 Ma of Fk51-1 biotite should represent the cooling ages when the granites, formed as a result of Paleozoic oceanic crustal subduction beneath the continental crust or collision of multiple micro-continental blocks, were exhumed into shallow crustal levels. The plateau age 231 Ma of FK51-1 boitite and the apparent age 227 Ma of Fk51-2 K-feldspar are interpreted to record the time of ductile deformation occurring under greenschist facies conditions, i.e. the formation age of the Faku tectonites, while the age gradient from 197 Ma to 220 Ma of Fk51-2 K-feldspar probably record the subsequent stable uplift-cooling process. The tectonic exhumation event indicated by the plateau age 180 Ma of Fk51-2 K-feldspar may be associated with the onset of paleo-Pacific subduction beneath the North China plate. In addition, the U-Pb dating of FK54 zircon from later-intruded granite yields the age of crystallization of this super-unit intrusion at 159 Ma, thus establishing an upper limit for the formation age of the Faku tectonites, while the plateau age 125 Ma of Fk54 K-feldspar most likely corresponds to the rapid cooling and tectonic denudation event associated with the final collision between the Siberian plate and the North China plate. These isotopic ages provide important geochronological constraints for re-evaluating the tectonic essence of the Faku Faulted Convex and ascertaining the suturing boundary between the North China Platform and the Xingmeng Fold System.  相似文献   

9.
A buried, old volcanic body (pre‐Komitake Volcano) was discovered during drilling into the northeastern flank of Mount Fuji. The pre‐Komitake Volcano is characterized by hornblende‐bearing andesite and dacite, in contrast to the porphyritic basaltic rocks of Komitake Volcano and to the olivine‐bearing basaltic rocks of Fuji Volcano. K‐Ar age determinations and geological analysis of drilling cores suggest that the pre‐Komitake Volcano began with effusion of basaltic lava flows around 260 ka and ended with explosive eruptions of basaltic andesite and dacite magma around 160 ka. After deposition of a thin soil layer on the pre‐Komitake volcanic rocks, successive effusions of lava flows occurred at Komitake Volcano until 100 ka. Explosive eruptions of Fuji Volcano followed shortly after the activity of Komitake. The long‐term eruption rate of about 3 km3/ka or more for Fuji Volcano is much higher than that estimated for pre‐Komitake and Komitake. The chemical variation within Fuji Volcano, represented by an increase in incompatible elements at nearly constant SiO2, differs from that within pre‐Komitake and other volcanoes in the northern Izu‐Bonin arc, where incompatible elements increase with increasing SiO2. These changes in the volcanism in Mount Fuji may have occurred due to a change in regional tectonics around 150 ka, although this remains unproven.  相似文献   

10.
Recognition and correlation of rock units within geothermal fields is often hampered by high degrees of alteration that obscure primary mineralogies and lithological boundaries, and preclude direct dating by radiometric techniques. Magmatic zircons are commonly present in silicic volcanic rocks, where zircon saturation was achieved and zircons crystallized up to the point of eruption. Young zircons are highly resistant to hydrothermal alteration and can yield a record of their crystallization ages in otherwise heavily altered rocks. Zircon crystallization-age spectra have been obtained by SIMS techniques (SHRIMP-RG) from three samples of cuttings and a core sample from ignimbrite penetrated in 3 drillholes up to ~ 3.2 km deep at the Mangakino geothermal field in New Zealand. The crystallization ages are similar between the drillcore and cutting samples, indicating that downhole mixing of cuttings has not been important, and showing collectively that volcanic units of closely similar ages are represented between ~ 1.4 and ~ 3.2 km depth. This is despite apparent changes in the inferred primary volcanic lithology that had led to earlier inferences that multiple ignimbrites of contrasting age were present in this depth interval. Comparisons of zircon crystallization-age spectra and inferred primary mineralogical characteristics from the drillhole samples with surficial ignimbrites that crop out west of Mangakino suggest that the boreholes have entered a > 1.8-km-thick intracaldera fill of ignimbrite generated in the closely-spaced Kidnappers and Rocky Hill eruptions at ~ 1 Ma.  相似文献   

11.
During the past 500 thousand years, Unzen volcano, an active composite volcano in the Southwest Japan Arc, has erupted lavas and pyroclastic materials of andesite to dacite composition and has developed a volcanotectonic graben. The volcano can be divided into the Older and the Younger Unzen volcanoes. The exposed rocks of the Older Unzen volcano are composed of thick lava flows and pyroclastic deposits dated around 200–300 ka. Drill cores recovered from the basal part of the Older Unzen volcano are dated at 400–500 ka. The volcanic rocks of the Older Unzen exceed 120 km3 in volume. The Younger Unzen volcano is composed of lava domes and pyroclastic deposits, mostly younger than 100 ka. This younger volcanic edifice comprises Nodake, Myokendake, Fugendake, and Mayuyama volcanoes. Nodake, Myokendake and Fugendake volcanoes are 100–70 ka, 30–20 ka, and <20 ka, respectively. Mayuyama volcano formed huge lava domes on the eastern flank of the Unzen composite volcano about 4000 years ago. Total eruptive volume of the Younger Unzen volcano is about 8 km3, and the eruptive production rate is one order of magnitude smaller than that of the Older Unzen volcano.  相似文献   

12.
We report on the paleomagnetism of ten sites in the products of the most recent silicic eruptive cycle of Pantelleria, Strait of Sicily. Previously radiometrically dated at 5–10 ka, our comparison with proxies for geomagnetic field directions allows us to narrow considerably the time window during which these eruptions occurred. The strongly peralkaline composition causes the magmas to have low viscosities, locally resulting in strong agglutination of proximal fall deposits. This allows successful extraction of paleomagnetic directions from the explosive phases of eruptions. One of our sites was located in the Serra della Fastuca fall deposit, produced by the first explosive event of the eruptive cycle. The other nine sites were located in the most recent explosive (pumice fall and agglutinate from Cuddia del Gallo and Cuddia Randazzo) and effusive (Khaggiar lava) products. The (very similar) paleomagnetic directions gathered from eight internally consistent sites were compared to reference geomagnetic field directions of the last 5–10 ka. Directions from Cuddia del Gallo agglutinate and Khaggiar flows translate into 5.9- to 6.2-ka ages, whereas the Fastuca pumices yield a slightly older age of 6.2–6.8 ka. Hence, the most recent silicic eruptive cycle lasted at most a millennium and as little as a few centuries around 6.0 ka. Paleomagnetically inferred ages are in good agreement with published (and calibrated by us) 14C dates from paleosols/charcoals sampled below the studied volcanic units, whereas K/Ar data are more scattered and yield ∼30% older ages. Our data show that the time elapsed since the most recent silicic eruptions at Pantelleria is comparable to the quiescence period separating the two latest volcanic cycles.  相似文献   

13.
Brown Tuffs (BT) are volcaniclastic ash deposits prominently represented in the stratigraphic profiles of all the Aeolian Islands (and Capo Milazzo on the northern coast of Sicily). Detailed stratigraphy and tephrochronology together with available radiometric ages suggest that they were emplaced over a long time interval spanning from the end of the last interglacial period (ca. 80 ka BP) up to 4–5 ka BP (age of the overlying Punte Nere pyroclastic products on Vulcano). The most complete BT succession is documented on Lipari where 14 distinct and successive units are subdivided by the interbedding of widespread tephra layers, local volcanic products, paleosols and epiclastic deposits and the occurrence of local erosive surfaces. Inter-island occurrence of Ischia-Tephra (a widely known tephra layer in the Aeolian archipelago dated at 56 ka BP) and Monte Guardia pyroclastics from Lipari (dated at 22–20 ka BP) subdivides the BT succession in Upper (UBT), Intermediate (IBT) and Lower BT units (LBT), which can be correlated at regional level: the LBT was emplaced between 80 and 56 ka BP, the IBT between 56 and 22 ka BP and the UBT between 20 and 4–5 ka BP. On the basis of stratigraphy, similarity in lithology and textural features, morphology of glass fragments, composition and consistency of thickness and grain-size variations, UBT units correlate with Piano Grotte dei Rossi tuffs on Vulcano island. They were generated by pulsating hydromagmatic explosive activity giving rise to pyroclastic density currents spreading laterally from a source located inside the La Fossa caldera on Vulcano island. Composition is in agreement with this hypothesis since UBT compositional features match those of Vulcano magmas erupted in that period. The effect of co-ignimbrite ash clouds (or associated fallout processes from sustained eruptive columns) is seen to explain the presence of UBT in areas further away from the suggested source (e.g. Salina and Lipari islands and Capo Milazzo). The origin of UBT exposed on Panarea island is still a matter of debate, due to contrasting compositional data. Due to large uniformity of lithological, textural and componentry characters with respect to the UBT, the lower portions of the BT succession (LBT-IBT) are considered to be the result of recurrent, large scale hydromagmatic eruptions of similar type. Moreover, for the IBT units, the correlation with Monte Molineddo 3 pyroclastics of Vulcano island (on the basis of lithological, compositional and stratigraphic matching) again suggests source(s) related to the Vulcano plumbing system and located within the La Fossa Caldera.  相似文献   

14.
The Hougou gold deposit in northwestern Hebei is a typical K-metasomatism-related gold deposit hosted by K-altered rocks overprinting alkali intrusive rocks. In order to determine the age and pulse intervals of K-metasomatism in this gold deposit, some metasomatic K-feldspars from K-altered rocks are selected to measure their formation time by laser probe 40Ar-39Ar dating method. The new analyzing data show that these metasomatic K-feldspar formed during 202.6 Ma and 176.7 Ma, and the corresponding K-metasomatism and associated gold mineralization occurred in the early stage of Mesozoic era. The pulse intervals of K-metasomatism in the Hougou area are estimated to be about 4 Ma.  相似文献   

15.
A 26-cm-long stalagmite (XY2) from Xinya Cave in northeastern Chongqing of China has been ICP-MS 230Th/U dated, showing a depositional hiatus at 2.3 cm depth from the top. The growth of the 2.3–26 cm interval determined by four dates was between 57 ka and 70 ka, with a linear growth rate of 0.023 mm/a. We have analyzed 190 samples for δ 18O and δ 13C, mostly in the 2.3–26 cm part. The δ 18O and δ 13C values between 57 ka and 70 ka reveal decadal-to-centennial climatic variability during the glacial interval of Marine Isotope Stage 4 (MIS4), exhibiting much higher resolution than that of the published Hulu and Dongge records during this interval. Speleothem δ 18O in eastern China, including our study area can be used as a proxy of summer monsoon strength, with lighter values pointing to stronger summer monsoon and higher precipitation, and vice versa. Two decreases in the δ 18O signature of XY2 record around 59.5 and 64.5 Ka are argued to correspond to the Dansgaard-Oeschger (D-O) events 17 and 18 respectively. The Heinrich event 6 (H6) can be identified in the record as a heavy δ 18O peak around 60 ka, indicating significant weakening of the monsoon in Chongqing during the cold period. The XY2 δ 18O record shows very rapid change toward to the interstadial condition of the D-O event, but more gradual change toward to the cold stadial condition. This phenomenon found in the Greenland ice core records is rarely observed so clearly in previously published speleothem records. According to SPECMAP δ 18O record, the glacial maximum of MIS 4 was around 64.5 ka with the boundary of MIS 3/4 around 60 ka. Unlike the marine record, the speleothem record of XY2, China, exhibits much high frequency variations without an apparent glacial maximum during MIS 4. However, the timing of MIS 3/4 boundary seems to be around 60 ka when the H6 terminated, in agreement with the marine chronology. The growth period of sample XY2 during glacial times probably reflects a local karstic routing of water, rather than having climatic significance. Supported by the National Natural Science Foundation of China (Grant Nos. 40672165, 90511004, 40672202) and the Academician Special Project of Chongqing Science Committee (Grant No. 2003-7835)  相似文献   

16.
We describe analytical details and uncertainty evaluation of a simple technique for the measurement of the carbon isotopic composition of CO2 in volcanic plumes. Data collected at Solfatara and Vulcano, where plumes are fed by fumaroles which are accessible for direct sampling, were first used to validate the technique. For both volcanoes, the plume-derived carbon isotopic compositions are in good agreement with the fumarolic compositions, thus providing confidence on the method, and allowing its application at volcanoes where the volcanic component is inaccessible to direct sampling. As a notable example, we applied the same method to Mount Etna where we derived a δ13C of volcanic CO2 between −0.9 ± 0.27‰ and −1.41 ± 0.27‰ (Bocca Nuova and Voragine craters). The comparison of our measurements to data reported in previous work highlights a temporal trend of systematic increase of δ13C values of Etna CO2 from ~ −4‰, in the 1970’s and the 1980’s, to ~ −1‰ at the present time (2009). This shift toward more positive δ13C values matches a concurrent change in magma composition and an increase in the eruption frequency and energy. We discuss such variations in terms of two possible processes: magma carbonate assimilation and carbon isotopic fractionation due to magma degassing along the Etna plumbing system. Finally, our results highlight potential of systematic measurements of the carbon isotopic composition of the CO2 emitted by volcanic plumes for a better understanding of volcanic processes and for improved surveillance of volcanic activity.  相似文献   

17.
Due to their slow growth rates, seamount Co-rich crusts are very difficult to date with high resolution and precision. This paper is to test the use of orbital pacing on the growth profile of crusts to determine high-resolution age and growth rate. Crust CB14 from the central Pacific Ocean was selected for this study. We first examined the growth pattern in detail under a reflected-light microscope and ascertained that the growth environment was stable for the sub-layer 1 (0–3 mm). We then used electron microprobe line-scanning to obtain elemental profiles. The pattern of the power spectrum analysis of the Al-profile revealed that there are significant cycles of 113.9, 87.8, 51.5, 42.2 and 25.8 μm. These cycles correspond to the Milankovitch cycles of 53.1, 41, 24, 19.7 and 12 ka, respectively, and yield the growth rate of about 2.14 mm/Ma and an age of about 1.40 Ma for the boundary between the sub-layer 1 and sub-layer 2. We also used a drilling machine with a numerically controlled drive to obtain high-resolution samples at 0.1mm intervals, and used the 230Thex/232Th method to date the samples. For the uppermost 1.3 mm, the growth rate was about 2.15 mm/Ma, and the age for the layer at the depth of 3 mm was about 1.40 Ma, which coincides perfectly with the results obtained from orbital pacing. Thus, it is considered that orbital pacing is a new and effective method to determine the growth rate of the seamount Co-rich crust. This method is applicable for establishing a high-resolution age frame for the crusts of the world’s oceans. Supported by China Ocean Mineral Resources R & P Association (Grant No. DY105-01-01-08) and National Natural Science Foundation of China (Grant Nos. 40106005, 40476050)  相似文献   

18.
Rabaul Caldera is the most recently active (1937–1943) of four adjoining volcanic centres aligned north-south through the northern extremity of eastern New Britain. Geological mapping after the 1983–1985 Rabaul seismic and deformation crisis has partially revealed a long and complex eruption history dominated by numerous explosive eruptions, the largest accompanied by caldera collapse. The oldest exposed eruptives are the basaltic pre-caldera cone Tovanumbatir Lavas K/Ar dated at 0.5 Ma. The dacitic Rabaul Quarry Lavas exposed in the caldera wall and K/Ar dated at 0.19 Ma, are overlain by a sequence of dacitic and andesitic pyroclastic flow and fall deposits. Uplifted coral reef limestones, interbedded within the pyroclastic sequence on the northeast coast, suggest that explosive eruptions in the Rabaul area had commenced prior to the 0.125 Ma last interglacial high sea level stand. The pyroclastic sequence includes the large Boroi Ignimbrites and Malaguna Pyroclastics both 40Ar/39Ar dated at about 0.1 Ma, and the Barge Tunnel Ignimbrite 40Ar/39Ar dated at around 0.04 Ma. Few reliable ages exist for the many younger eruptives. These include Holocene ignimbrites of the latest caldera-forming eruptions—the Raluan Pyroclastics variously dated (14C) at either about 3500 or 7000 yr B.P., and the ca. 1400 yr B.P. Rabaul Pyroclastics. At least eight intracaldera eruptions have occurred since the 1400 yr B.P. collapse, building small pyroclastic and lava cones within the caldera.A major erosional episode is evident as a widespread unconformity in the upper pyroclastic stratigraphy at Rabaul. Lacking relevant radiometric ages, this episode is assumed to have occurred during last glaciation low sea levels and is here arbitarily dated at ca. ?20 ka. At least five, possibly nine, significant ignimbrite eruptions have occurred at Rabaul during the last ?20 ka. The new eruptive history differs considerably from that previously published, which considered ignimbrite eruption and caldera collapse to have first occurred at 3500 yr B.P.Rabaul volcanism has been dominated by two main types: (a) basaltic and basaltic andesite cone building eruptions; and (b) dacitic, and rarely andesitic or rhyolitic, plinian/ignimbrite eruptions of both high- and low-aspect ratio types. The 1400 yr B.P. Rabaul Ignimbrite is a type example of a low-aspect ratio, high-energy, and potentially very damaging eruption. Fine vitric ash deposits, common in the Rabaul pyroclastic sequence, demonstrate the frequent modification of eruptions by external water probably related to early caldera lakes or bays. Interbedding of these fine ashes with plinian pumice lapilli beds suggests that many early eruptions occurred from multiple vents, located in both wet and dry areas.  相似文献   

19.
Fifty-three major explosive eruptions on Iceland and Jan Mayen island were identified in 0–6-Ma-old sediments of the North Atlantic and Arctic oceans by the age and the chemical composition of silicic tephra. The depositional age of the tephra was estimated using the continuous record in sediment of paleomagnetic reversals for the last 6 Ma and paleoclimatic proxies (δ18O, ice-rafted debris) for the last 1 Ma. Major element and normative compositions of glasses were used to assign the sources of the tephra to the rift and off-rift volcanic zones in Iceland, and to the Jan Mayen volcanic system. The tholeiitic central volcanoes along the Iceland rift zones were steadily active with the longest interruption in activity recorded between 4 and 4.9 Ma. They were the source of at least 26 eruptions of dominant rhyolitic magma composition, including the late Pleistocene explosive eruption of Krafla volcano of the Eastern Rift Zone at about 201 ka. The central volcanoes along the off-rift volcanic zones in Iceland were the source of at least 19 eruptions of dominant alkali rhyolitic composition, with three distinct episodes recorded at 4.6–5.3, 3.5–3.6, and 0–1.8 Ma. The longest and last episode recorded 11 Pleistocene major events including the two explosive eruptions of Tindfjallajökull volcano (Thórsmörk, ca. 54.5 ka) and Katla volcano (Sólheimar, ca. 11.9 ka) of the Southeastern Transgressive Zone. Eight major explosive eruptions from the Jan Mayen volcanic system are recorded in terms of the distinctive grain-size, mineralogy and chemistry of the tephra. The tephra contain K-rich glasses (K2O/SiO2>0.06) ranging from trachytic to alkali rhyolitic composition. Their normative trends (Ab–Q–Or) and their depleted concentrations of Ba, Eu and heavy-REE reflect fractional crystallisation of K-feldspar, biotite and hornblende. In contrast, their enrichment in highly incompatible and water-mobile trace elements such as Rb, Th, Nb and Ta most likely reflect crustal contamination. One late Pleistocene tephra from Jan Mayen was recorded in the marine sequence. Its age, estimated between 617 and 620 ka, and its composition support a common source with the Borga pumice formation at Sør Jan in the south of the island.  相似文献   

20.
The geological evolution of Merapi volcano, Central Java, Indonesia   总被引:1,自引:0,他引:1  
Merapi is an almost persistently active basalt to basaltic andesite volcanic complex in Central Java (Indonesia) and often referred to as the type volcano for small-volume pyroclastic flows generated by gravitational lava dome failures (Merapi-type nuées ardentes). Stratigraphic field data, published and new radiocarbon ages in conjunction with a new set of 40K–40Ar and 40Ar–39Ar ages, and whole-rock geochemical data allow a reassessment of the geological and geochemical evolution of the volcanic complex. An adapted version of the published geological map of Merapi [(Wirakusumah et al. 1989), Peta Geologi Gunungapi Merapi, Jawa Tengah (Geologic map of Merapi volcano, Central Java), 1:50,000] is presented, in which eight main volcano stratigraphic units are distinguished, linked to three main evolutionary stages of the volcanic complex—Proto-Merapi, Old Merapi and New Merapi. Construction of the Merapi volcanic complex began after 170?ka. The two earliest (Proto-Merapi) volcanic edifices, Gunung Bibi (109?±?60?ka), a small basaltic andesite volcanic structure on Merapi’s north-east flank, and Gunung Turgo and Gunung Plawangan (138?±?3?ka; 135?±?3?ka), two basaltic hills in the southern sector of the volcano, predate the Merapi cone sensu stricto. Old Merapi started to grow at ~30?ka, building a stratovolcano of basaltic andesite lavas and intercalated pyroclastic rocks. This older Merapi edifice was destroyed by one or, possibly, several flank failures, the latest of which occurred after 4.8?±?1.5?ka and marks the end of the Old Merapi stage. The construction of the recent Merapi cone (New Merapi) began afterwards. Mostly basaltic andesite pyroclastic and epiclastic deposits of both Old and New Merapi (<11,792?±?90 14C years BP) cover the lower flanks of the edifice. A shift from medium-K to high-K character of the eruptive products occurred at ~1,900 14C years BP, with all younger products having high-K affinity. The radiocarbon record points towards an almost continuous activity of Merapi since this time, with periods of high eruption frequency interrupted by shorter intervals of apparently lower eruption rates, which is reflected in the geochemical composition of the eruptive products. The Holocene stratigraphic record reveals that fountain collapse pyroclastic flows are a common phenomenon at Merapi. The distribution and run-out distances of these flows have frequently exceeded those of the classic Merapi-type nuées ardentes of the recent activity. Widespread pumiceous fallout deposits testify the occurrence of moderate to large (subplinian) eruptions (VEI 3–4) during the mid to late Holocene. VEI 4 eruptions, as identified in the stratigraphic record, are an order of magnitude larger than any recorded historical eruption of Merapi, except for the 1872?AD and, possibly, the October–November 2010 events. Both types of eruptive and volcanic phenomena require careful consideration in long-term hazard assessment at Merapi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号