首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
寇岚  张进 《地震工程学报》2019,41(5):1259-1265
利用重力异常反演测试三维地震波速度结构,存在解不唯一、可靠性不高的问题。将面波反演充分融合到重力异常反演方程中,降低传统反演方法的非唯一性,并提升可靠性。以川滇地区为例,采用融合后的重力异常反演方法分析三维地震波速度结构。通过速度和密度的关系转换,得到对应的重力异常数据。由于面波频射数据主要对地震波横波速度敏感,因此将重力异常数据和初始横波速度相连,依据地震波速度和岩石密度之间的关系,获取重力异常反演方程,用于分析速度结构。选取21.6°~34.2°N、97.1°~105.9°E范围内的川滇地区活动块体作为实验数据,经过实验分析发现:使用该方法迭代反演川滇地区地壳上地幔顶部横波速度,重力异常数据和面波频射数据的残差值分别是6.24 mGal和0.027 km/s,实际拟合效果较好;分析该地区不同深度切面横波速度发现,在24 km深度处,上地壳中含有相对低速层,在44 km深度处,中下地壳中存在低速层;且该方法分析川滇地区三维地震波速度结构解的分辨率较高。  相似文献   

2.
川滇地区Lg波Q值层析成像   总被引:7,自引:2,他引:5       下载免费PDF全文
利用云南和四川数字地震观测台网记录的数字化地震资料,开展了川滇地区不同频率的QLg层析成像研究,反演结果的空间分辨率小于100 km.反演结果表明,川滇地区介质的横向不均匀性强烈,QLg高低值差异显著.川滇地区显著的高衰减区有川滇菱形块体的东南边界(即沿鲜水河至安宁河以及思茅—澜沧—普洱区),滇西北地区、龙门山断裂以西松潘—茂文地区、巴塘及理塘强震区等,Lg波高衰减区的分布与构造活动强烈、强震活动或大震破裂造成介质破碎区、低速区等相关,表明构造活动强烈或大震破裂造成的介质破碎、热物质沿活动断裂上涌等可能是川滇地区低QLg的主要成因.显著的低衰减区有川东盆地、滇东南地区以及金沙江、怒江断裂的中段区域,滇中块体内部也呈现出相对的低衰减特征.Lg波低衰减区与地震活动性弱、速度正异常等相关,表明川滇地区Lg波的低衰减区与地壳变形、地震活动性及水热活动弱、块体稳定等有关.  相似文献   

3.
川滇地区是我国地震危险性较高的地区之一.本文基于对特大强震的风险性考虑,使用全球地震模型OpenQuake软件,建立了川滇地区地震危险性预测新模型.首先根据构造特征划分多个震源分区,并整理出这些震源分区内断层活动特征与滑动速率;基于震源分区和断层模型,使用GPS应变率转换成的锥形古登堡-里克特关系作为整个区域的地震积累率,并允许超过历史最大震级的特大地震的出现,结合活动断层滑动速率所积累的地震发生率,给出震源分区内断层地震源和背景地震源的地震发生率的比率分配关系;在活动断层分段上,保留了大型断裂或其主要部分,没有根据小的阶区来对断层进行详细分段,以便分配特大地震发生率;并使用地震率平滑方法分配背景地震发生率.最后在OpenQuake中加入地震动预测方程,计算出了川滇地区的PGA分布图,为区域地震危险性提供科学依据.  相似文献   

4.
Coulomb stress change on active faults is critical for seismic hazard analysis and has been widely used at home and abroad. The Sichuan-Yunnan region is one of the most tectonically and seismically active regions in Mainland China, considering some highly-populated cities and the historical earthquake records in this region, stress evolution and seismic hazard on these active faults capture much attention. From the physical principal, the occurrence of earthquakes will not only cause stress drop and strain energy release on the seismogenic faults, but also transfer stress to the surrounding faults, hence alter the shear and normal stress on the surrounding faults that may delay, hasten or even trigger subsequent earthquakes. Previously, most studies focus on the coseismic Coulomb stress change according to the elastic dislocation model. However, the gradually plentiful observation data attest to the importance of postseismic viscoelastic relaxation effect during the analysis of seismic interactions, stress evolution along faults and the cumulative effect on the longer time scale of the surrounding fault zone. In this paper, in order to assess the seismic hazard in Sichuan-Yunnan region, based on the elastic dislocation theory and the stratified viscoelastic model, we employ the PSGRN/PSCMP program to calculate the cumulative Coulomb stress change on the main boundary faults and in inner blocks in this region, by combining the influence of coseismic dislocations of the M≥7.0 historical strong earthquakes since the Yongsheng M7.8 earthquake in 1515 in Sichuan-Yunnan region and M≥8.0 events in the neighboring area, and the postseismic viscoelastic relaxation effect of the lower crust and upper mantle. The results show that the Coulomb stress change increases significantly in the south section of the Xianshuihe Fault, the Anninghe Fault, the northern section of the Xiaojiang Fault, the southern section of the Longmen Shan Fault, the intersection of the Chuxiong-Jianshui Fault and the Xiaojiang Fault, and the Shawan section of the Litang Fault, in which the cumulative Coulomb stress change exceeds 0.1MPa. The assuming different friction coefficient has little effect on the stress change, as for the strike-slip dominated faults, the shear stress change is much larger than the normal stress change, and the shear stress change is the main factor controlling the Coulomb stress change on the fault plane. Meanwhile, we compare the Coulomb stress change in the 10km and 15km depths, and find that for most faults, the results are slightly different. Additionally, based on the existing focal mechanism solutions, we add the focal mechanism solutions of the 5 675 small-medium earthquakes(2.5≤M≤4.9)in Sichuan-Yunnan region from January 2009 to July 2019, and invert the directions of the three principal stresses and the stress shape factor in 0.1°×0.1° grid points; by combining the grid search method, we compare the inverted stress tensors with that from the actual seismic data, and further obtain the optimal stress tensors. Then, we project the stress tensors on the two inverted nodal planes separately, and select the maximum Coulomb stress change to represent the stress change at the node. The results show that the cumulative Coulomb stress change increase in the triple-junction of Sichuan-Yunnan-Tibet region is also significant, and the stress change exceeds 0.1MPa. Comprehensive analysis of the Coulomb stress change, seismic gaps and seismicity parameters suggest that more attention should be paid to the Anninghe Fault, the northern section of the Xiaojiang Fault, the south section of the Xianshuihe Fault, the southern section of the Longmen Shan Fault and the triple-junction of the Sichuan-Yunnan-Tibet region. These results provide a basis for future seismic hazard analysis in the Sichuan-Yunnan region.  相似文献   

5.
周旻炜  周龙泉 《中国地震》2018,34(2):328-336
基于2009~2010年国家、区域测震台网的387个宽频带台站数据,通过互相关方法提取到可靠的瑞利波经验格林函数,利用相位匹配滤波时频分析技术测量瑞利波相速度频散曲线,最后采用噪声层析成像方法获得了华南地区不同周期的瑞利波相速度分布图。结果显示,华南地区速度结构横向变化幅度较小,反映了华南地区作为一个整体较为稳定,与华南地区自晚中生代以来未发生过强烈构造活动的特征基本一致;虽然华南地区整个岩石圈速度结构较为均匀,但扬子块体西部、四川盆地与扬子块体东部、华夏块体间存在明显的速度差异,体现在周期为8~10s时华夏块体相速度大于扬子块体西部、川滇块体以及四川盆地,由于沉积层较厚四川盆地速度最低;周期为10~30s时华夏块体面波相速度大于扬子块体西部和四川盆地,而川滇块体速度最低;周期为35s时扬子块体、华夏块体、四川盆地的速度基本一致,且高于川滇块体,这与华南地区地壳厚度明显小于川滇块体的特征相符。  相似文献   

6.
K-means cluster analysis and seismicity partitioning for Pakistan   总被引:2,自引:2,他引:0  
Pakistan and the western Himalaya is a region of high seismic activity located at the triple junction between the Arabian, Eurasian and Indian plates. Four devastating earthquakes have resulted in significant numbers of fatalities in Pakistan and the surrounding region in the past century (Quetta, 1935; Makran, 1945; Pattan, 1974 and the recent 2005 Kashmir earthquake). It is therefore necessary to develop an understanding of the spatial distribution of seismicity and the potential seismogenic sources across the region. This forms an important basis for the calculation of seismic hazard; a crucial input in seismic design codes needed to begin to effectively mitigate the high earthquake risk in Pakistan. The development of seismogenic source zones for seismic hazard analysis is driven by both geological and seismotectonic inputs. Despite the many developments in seismic hazard in recent decades, the manner in which seismotectonic information feeds the definition of the seismic source can, in many parts of the world including Pakistan and the surrounding regions, remain a subjective process driven primarily by expert judgment. Whilst much research is ongoing to map and characterise active faults in Pakistan, knowledge of the seismogenic properties of the active faults is still incomplete in much of the region. Consequently, seismicity, both historical and instrumental, remains a primary guide to the seismogenic sources of Pakistan. This study utilises a cluster analysis approach for the purposes of identifying spatial differences in seismicity, which can be utilised to form a basis for delineating seismogenic source regions. An effort is made to examine seismicity partitioning for Pakistan with respect to earthquake database, seismic cluster analysis and seismic partitions in a seismic hazard context. A magnitude homogenous earthquake catalogue has been compiled using various available earthquake data. The earthquake catalogue covers a time span from 1930 to 2007 and an area from 23.00° to 39.00°N and 59.00° to 80.00°E. A threshold magnitude of 5.2 is considered for K-means cluster analysis. The current study uses the traditional metrics of cluster quality, in addition to a seismic hazard contextual metric to attempt to constrain the preferred number of clusters found in the data. The spatial distribution of earthquakes from the catalogue was used to define the seismic clusters for Pakistan, which can be used further in the process of defining seismogenic sources and corresponding earthquake recurrence models for estimates of seismic hazard and risk in Pakistan. Consideration of the different approaches to cluster validation in a seismic hazard context suggests that Pakistan may be divided into K?=?19 seismic clusters, including some portions of the neighbouring countries of Afghanistan, Tajikistan and India.  相似文献   

7.
利用川滇南部GPS站点速度资料,采用Kriging插值和有限单元中形函数(拉格朗日差值函数)求导原则,计算了川滇南部主应变速率.在此基础上,引入Kostrov地震矩率计算方法,由主应变速率求得了研究区的地震矩率,进而借助于Ward地震平均复发间隔公式计算了研究区地震(MS≥6.5)平均复发间隔.计算结果表明,川滇南部不同震级档地震复发间隔空间分布总体上与区内主要活动断裂展布基本吻合;地震复发间隔低值区主要分布在地震活动水平和滑动速率较高的安宁河—则木河—小江断裂带、丽江—小金河断裂西南段、红河断裂西北段.所得的结果与利用历史地震资料获得的结果基本一致.该方法对于历史地震资料缺乏或不完整地区和活动断层定量研究程度较低的地区有着潜在的应用价值.  相似文献   

8.
The maximum likelihood estimation method is applied to study the geographical distribution of earthquake hazard parameters and seismicity in 28 seismogenic source zones of NW Himalaya and the adjoining regions. For this purpose, we have prepared a reliable, homogeneous and complete earthquake catalogue during the period 1500–2010. The technique used here allows the data to contain either historical or instrumental era or even a combination of the both. In this study, the earthquake hazard parameters, which include maximum regional magnitude (M max), mean seismic activity rate (λ), the parameter b (or β?=?b/log e) of Gutenberg–Richter (G–R) frequency-magnitude relationship, the return periods of earthquakes with a certain threshold magnitude along with their probabilities of occurrences have been calculated using only instrumental earthquake data during the period 1900–2010. The uncertainties in magnitude have been also taken into consideration during the calculation of hazard parameters. The earthquake hazard in the whole NW Himalaya region has been calculated in 28 seismogenic source zones delineated on the basis of seismicity level, tectonics and focal mechanism. The annual probability of exceedance of earthquake (activity rate) of certain magnitude is also calculated for all seismogenic source zones. The obtained earthquake hazard parameters were geographically distributed in all 28 seismogenic source zones to analyze the spatial variation of localized seismicity parameters. It is observed that seismic hazard level is high in Quetta-Kirthar-Sulaiman region in Pakistan, Hindukush-Pamir Himalaya region and Uttarkashi-Chamoli region in Himalayan Frontal Thrust belt. The source zones that are expected to have maximum regional magnitude (M max) of more than 8.0 are Quetta, southern Pamir, Caucasus and Kashmir-Himanchal Pradesh which have experienced such magnitude of earthquakes in the past. It is observed that seismic hazard level varies spatially from one zone to another which suggests that the examined regions have high crustal heterogeneity and seismotectonic complexity.  相似文献   

9.
The structure of low-frequency seismic noise in the range of periods from 2 min to 500 min is studied from the data of continuous seismic monitoring at 77 seismic stations of the F-net broadband network in Japan from the beginning of 1997 to May 15, 2012. A new statistical characteristic of seismic noise is suggested, namely, the minimal normalized entropy En of the distribution of squared orthogonal wavelet coefficients. This parameter of seismic noise is analyzed in conjunction with the multifractal statistics—the support width of the singularity spectrum, Δα, and the generalized Hurst exponent, α*, which were extensively used by the author in the previous works for analyzing the low-frequency seismic noise. The method for constructing the maps of spatial distribution of Δα, α*, En, and their aggregated normalized value over the time windows with a given length is proposed. The maps are constructed by averaging the succession of the elementary charts, each of which corresponds to a day of observations. It is shown that, for the islands of Japan, the reduction in Δα and α* and the increase in En outline the area of the forthcoming mega earthquake of March 11, 2011, with M = 9 (Tohoku earthquake). According to the analysis of about a year’s worth of data after this event, the region south of Tokyo (Nankai trough) is still dominated by decreased Δα and α* and increased En. This gives grounds to hypothesize that this region remains at a high level of seismic threat since the accumulated stresses were incompletely released by the Tohoku earthquake. Drawing an analogy to the behavior of the coefficient of correlation between Δα and α*, we may suppose that there is an increased probability of a strong earthquake occurring in the second half of 2013 or the first half of 2014. Constructing the averaged maps of the distributions of seismic noise parameters and their aggregated value in a moving time window is suggested as a new method for dynamical assessment of seismic hazards.  相似文献   

10.
论发震构造特性在潜在震源区参数确定中的应用   总被引:6,自引:0,他引:6       下载免费PDF全文
周本刚 《地震地质》2004,26(4):750-760
发震构造特性是潜在震源区划分及其地震年发生率确定的重要依据。潜在震源区除了反映“未来具有发生破坏性地震的地区”的内涵外,还应反映高震级档地震具有相似复发特征的涵义。由于在地震活动性参数统计单元内,有一些具有不同本底地震的活动构造块体,为更好地反映地震活动的空间不均匀性,考虑潜在震源区的三级划分是有必要的。通过分析潜在震源区内高震级档地震的复发特征,计算预测时段内潜在震源区的高震级档地震的发震概率,采用预测时段内概率等效转换获得地震年平均发生率的方法,有助于在中国地震危险性分析框架内考虑潜在震源区的强震复发特性。另外,文中还对潜在震源区内特征地震次级震级档频度不足的特性和发震构造上强震非均匀性在地震危险性分析中的应用问题进行了探讨  相似文献   

11.
利用基于时-空传染型余震序列(Epidemic Type Aftershock Sequence, 简称ETAS)模型的随机除丛法,重新审视了2008年5月12日汶川MS8.0地震前可能存在的长期地震活动异常,研究了川滇地区背景地震活动特征,并评估了当前的强震危险状态.对川滇地区1970年以来的ML3.0以上的背景地震和丛集地震活动的研究结果表明,该地区地震丛集特征明显、时空分布很不均匀、地震序列常有前震事件.直接将概率值作为地震计数的权重,对地震丛集率空间分布图像分析表明,汶川MS8.0地震前,龙门山断裂带中南段存在着长期、大范围的地震丛集率低值区,震前该段处于应力闭锁状态.对川滇地区地震丛集率低值区内背景地震与全部地震的累积次数、b值和新定义的Δb等统计参量的分析表明,龙日坝与龙门山断裂带具有地震活动的关联性,川滇地区当前的强震潜在危险区可能是巧家地区和汶川MS8.0地震破裂尚未穿越的龙门山断裂带南段.此外,还发现b值倾向于反映局部应力场变化,而Δb能较为敏感地给出更大范围应力场的相对变化.  相似文献   

12.
张萌  潘华 《地震学报》2022,44(6):1099-1110
为了寻找一种精度较高、超越概率范围较广并且便于应用的方式来表达地震危险性,本文回顾了当前常用的几种地震危险性表达方法,提出基于一个新函数来拟合地震危险性曲线的“特征系数法”,并使用《中国地震动参数区划图》(GB 18306—2015)的基础数据对该函数的拟合效果进行了验证。结果表明,新函数与地震危险性曲线拟合良好,与极值函数相比有明显的提升,能够充分地表达一个场点的地震危险性。另外,本文结果还显示该函数中表征曲线形状的参数k (文中称为特征系数)与场点面临的地震环境有关,k值较低的场点危险性贡献基本来自近场,而k值较高的场点中远距离的贡献是不能忽视的。   相似文献   

13.
潜在地震滑坡危险区区划方法   总被引:5,自引:0,他引:5       下载免费PDF全文
不同地区地震活动的强度和频率是不同的.基于地震危险性分析的地震滑坡危险研究在综合了地震烈度、位置、复发时间等因素的基础上,考虑了地震动峰值加速度时空分布的特点,可以有效地应用于潜在地震滑坡危险区区划.以汶川地震灾区为研究对象,根据研究区的地质构造、地震活动特点等划分出灾区的潜在震源区,对该区进行地震危险性分析,并在此基础上采用综合指标法做出基于地震危险性分析的地震滑坡危险性区划.所得地震滑坡危险性区划按照滑坡危险程度分为高危险、较高危险、较低危险和低危险四级,表示未来一段时间内研究区在遭受一定超越概率水平的地震动作用下,不同地区地震滑坡发生的可能程度. 本文给出的地震滑坡危险性区划结果中,汶川地震滑坡崩塌较发育的汶川、北川、茂县等部分区域均处于高危险或较高危险区域;在对具有较高DEM精度的北川擂鼓镇地区所作的地震滑坡危险性区划中,汶川地震中实际发生的地震滑坡灾害与地震滑坡危险区划结果表现出较好的一致性.对区域范围而言,基于地震危险性分析的地震滑坡区划,可为初期阶段的土地规划使用及重大工程选址提供参考.  相似文献   

14.
利用中国区域台网地震波形记录,采用CAP方法反演了香格里拉德钦(位于云南省)—得荣(属于四川省)2013年8月28日MS5.1、8月31日MS5.9地震及8次MS4余震的震源双力偶断层面解和震源质心深度.结合震区地质构造、余震分布、烈度分布、动力学背景等资料,分析了此次地震序列的震源机制和应力场特征.反演结果表明,此次地震序列为节面倾角倾斜的正断层型地震,发震断层为NWW向活动构造带.序列中最大地震MS5.9和次大地震MS5.1地震的破裂节面分别为走向299°、倾角53°、滑动角-73°;走向290°、倾角55°、滑动角-72°.震源区受到强烈的水平拉张力、垂直挤压力作用.MS5.9地震后续余震T、P轴方位角随时间变化强烈,表明MS5.9地震后震源区应力调整作用明显.震源区应力场反演结果显示,地震发生的构造带上最大主拉应力为NNE-SSW向,最大主压应力为NW-SE向,与GPS观测所反映的地表最大主应力分布方向基本一致,表明震源区的应力状态可能主要受到背景大尺度构造应力场的控制.此次地震序列填充了川滇地区震源机制及应力场的空间分布图像,1976年以来可靠的震源机制解资料表明香格里拉次级块体是川滇块体及周边区域显著的拉张作用区域.香格里拉次级块体和保山次级块体正断层地震的断层节面及震源应力轴分布的空间变化,与GPS观测反映的地表最大主拉应力分布较一致,其空间分布特征反映了在青藏高原物质挤出背景下,块体之间相互作用、地势差异等作用对构造活动的影响.  相似文献   

15.
We applied the maximum likelihood method produced by Kijko and Sellevoll (Bull Seismol Soc Am 79:645–654, 1989; Bull Seismol Soc Am 82:120–134, 1992) to study the spatial distributions of seismicity and earthquake hazard parameters for the different regions in western Anatolia (WA). Since the historical earthquake data are very important for examining regional earthquake hazard parameters, a procedure that allows the use of either historical or instrumental data, or even a combination of the two has been applied in this study. By using this method, we estimated the earthquake hazard parameters, which include the maximum regional magnitude $ \hat{M}_{\max } , $ the activity rate of seismic events and the well-known $ \hat{b} $ value, which is the slope of the frequency-magnitude Gutenberg-Richter relationship. The whole examined area is divided into 15 different seismic regions based on their tectonic and seismotectonic regimes. The probabilities, return periods of earthquakes with a magnitude M?≥?m and the relative earthquake hazard level (defined as the index K) are also evaluated for each seismic region. Each of the computed earthquake hazard parameters is mapped on the different seismic regions to represent regional variation of these parameters. Furthermore, the investigated regions are classified into different seismic hazard level groups considering the K index. According to these maps and the classification of seismic hazard, the most seismically active regions in WA are 1, 8, 10 and 12 related to the Alia?a Fault and the Büyük Menderes Graben, Aegean Arc and Aegean Islands.  相似文献   

16.
In this paper, by means of the statistical analysis method of stochastic spatial point process, statistical analysis of spatial distribution of earthquakes in the large northern region of China is made. Emphasis is on the test and analysis of the complete spatial randomness, correlation of earthquake distribution in the different magnitude interval and random labeling. It is shown by the analysis that the spatial distribution of earthquakes in the large northern region is “clustered”, the distributions of earthquakes in different magnitude interval are positively correlated and can be modeled by a two-dimensional process. The results obtained in the paper can be used for the establishment of a reasonable spatial distribution model and have some application in the reasonable estimation of seismic hazard. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 129–135, 1993.  相似文献   

17.
徐伟进  高孟潭 《地震学报》2012,34(4):526-536
根据华北地区的地震目录,建立了4个空间光滑的地震活动性模型,并以这些模型为空间分布函数,将华北地震区每个地震带的地震年发生率分配到空间格点中,计算这一地区的地震危险性.结果表明,采用仪器记录地震计算得到的地震活动性模型和地震危险性结果能够反映华北地区现今的地震活动水平和地震危险性水平,符合人们对现今华北地区地震危险性的认识;采用历史破坏性地震(Mge;4.7)计算的地震活动性模型和地震危险性结果,较好地反映了华北地区中强地震活动区的地震危险性水平;以地震应变计算地震活动率,并根据点椭圆模型和线椭圆模型计算得到的地震活动性模型,能够较好地反映大地震的活动水平和空间构造特征.将根据4个模型计算得到的50年超越概率10%峰值加速度(PGA)分布加权平均,得到综合的华北地区PGA分布,并将该PGA分布与根据《中国地震动参数区划图》中综合潜源方案计算得到的50年超越概率10%的PGA分布做了比较,发现二者无本质差别,均能反映华北地震区的地震危险性水平.当然,二者也具有一定的差异:前者计算得到的符合PGAge;100 cm/s2条件的区域面积明显要比后者的大,而符合PGAge;250 cm/s2条件的区域面积则比后者的要小. 这主要是由于潜在震源区类型和空间分布函数不同造成的.   相似文献   

18.
潜在震源区地震活动性参数、地震动衰减关系对地震危险性分析结果至关重要。以中国第五代地震动区划图潜在震源区划分方案为基础,采用2类震级分档分别建立自编及五代图潜在震源区空间分布函数,收集4组青藏高原及周缘地区地震动衰减关系,采用不同组合对青藏工程走廊沿线的81个场点进行概率地震危险性分析计算,得到50年超越概率10%(地震重现期475年)的各场点基岩地震动峰值加速度(PGA),并转换为一般场地(Ⅱ类)PGA,对计算结果进行对比分析,并与第五代地震动区划图归档上下限值进行比较。结果显示:采用我国西部地区地震动衰减关系计算得到的PGA最大,采用云南地区地震动衰减关系得到的PGA最小,采用川藏地区及青藏高原东北缘地震动衰减关系时居中;在同一地震动衰减关系下,采用自编空间分布函数计算得到的PGA普遍略大于采用第五代图空间分布函数时;在震级上限为8.5的潜在震源区及附近地区,潜在震源区空间分布函数震级分档对计算结果有显著影响。综合分析表明,采用自编Ⅱ型震级分档空间分布函数方案与川藏地区地震动衰减关系组合方案的计算结果最为理想。最后,采用该组合方案对青藏工程走廊50年超越概率10%的基岩场地PGA及一般场地PGA进行了区划。  相似文献   

19.
Based on historical earthquake data, we use statistical methods to study integrated recurrence behaviors of strong earthquakes along 7 selected active fault zones in the Sichuan-Yunnan region. The results show that recurrences of strong earthquakes in the 7 fault zones display near-random, random and clustering behaviors. The recurrence processes are never quasiperiodic, and are neither strength-time nor time-strength dependent. The more independent segments for strong earthquake rupturing a fault zone has, the more complicated the corresponding recurrence process is. And relatively active periods and quiescent periods for earthquake activity occur alternatively. Within the active periods, the distribution of recurrence time intervals between earthquakes has relatively large discretion, and can be modelled well by a Weibull distribution. The time distribution of the quiescent periods has relatively small discretion, and can be approximately described by some distributions as the normal. Both the durations of the active periods and the numbers of strong earthquakes within the active periods vary obviously cycle by cycle, leading to the relatively active periods having never repeated quasi-periodically. Therefore, the probabilistic assessment for middle- and longterm seismic hazard for entireties of active fault zones based on data of historical strong earthquakes on the fault zones still faces difficulty.  相似文献   

20.
Two kinds of methods for determining seismic parameters are presented,that is,the potential seismic source zoning method and grid-spatially smoothing method. The Gaussian smoothing method and the modified Gaussian smoothing method are described in detail, and a comprehensive analysis of the advantages and disadvantages of these methods is made. Then,we take central China as the study region,and use the Gaussian smoothing method and potential seismic source zoning method to build seismic models to calculate the mean annual seismic rate. Seismic hazard is calculated using the probabilistic seismic hazard analysis method to construct the ground motion acceleration zoning maps. The differences between the maps and these models are discussed and the causes are investigated. The results show that the spatial smoothing method is suitable for estimating the seismic hazard over the moderate and low seismicity regions or the hazard caused by background seismicity; while the potential seismic source zoning method is suitable for estimating the seismic hazard in well-defined seismotectonics. Combining the spatial smoothing method and the potential seismic source zoning method with an integrated account of the seismicity and known seismotectonics is a feasible approach to estimate the seismic hazard in moderate and low seismicity regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号