首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the first time, the age of magnesite in the Lower Riphean Bakal Formation of the Southern Urals is determined by the U—Pb (Pb—Pb) method: it is equal to 1366 ± 47 Ma (MSWD = 18). The stage of magnesite formation of the Bakal ore field was associated with the Mashak rifting pulse and took place prior to the formation of industrial deposits of the Bakal siderite.  相似文献   

2.
Doklady Earth Sciences - The first direct Pb–Pb dating of carbonate rocks of the Kamo Group has been carried out. The Pb–Pb age of carbonates of the lower units (the Madra, Jurubchen,...  相似文献   

3.
Apatite is a common U- and Th-bearing accessory mineral in igneous and metamorphic rocks, and a minor but widespread detrital component in clastic sedimentary rocks. U–Pb and Th–Pb dating of apatite has potential application in sedimentary provenance studies, as it likely represents first cycle detritus compared to the polycyclic behavior of zircon. However, low U, Th and radiogenic Pb concentrations, elevated common Pb and the lack of a U–Th–Pb apatite standard remain significant challenges in dating apatite by LA-ICPMS, and consequently in developing the chronometer as a provenance tool.This study has determined U–Pb and Th–Pb ages for seven well known apatite occurrences (Durango, Emerald Lake, Kovdor, Mineville, Mud Tank, Otter Lake and Slyudyanka) by LA-ICPMS. Analytical procedures involved rastering a 10 μm spot over a 40 × 40 μm square to a depth of 10 μm using a Geolas 193 nm ArF excimer laser coupled to a Thermo ElementXR single-collector ICPMS. These raster conditions minimized laser-induced inter-element fractionation, which was corrected for using the back-calculated intercept of the time-resolved signal. A Tl–U–Bi–Np tracer solution was aspirated with the sample into the plasma to correct for instrument mass bias. External standards (Ple?ovice and 91500 zircon, NIST SRM 610 and 612 silicate glasses and STDP5 phosphate glass) along with Kovdor apatite were analyzed to monitor U–Pb, Th–Pb, U–Th and Pb–Pb ratiosCommon Pb correction employed the 207Pb method, and also a 208Pb correction method for samples with low Th/U. The 207Pb and 208Pb corrections employed either the initial Pb isotopic composition or the Stacey and Kramers model and propagated conservative uncertainties in the initial Pb isotopic composition. Common Pb correction using the Stacey and Kramers (1975) model employed an initial Pb isotopic composition calculated from either the estimated U–Pb age of the sample or an iterative approach. The age difference between these two methods is typically less than 2%, suggesting that the iterative approach works well for samples where there are no constraints on the initial Pb composition, such as a detrital sample. No 204Pb correction was undertaken because of low 204Pb counts on single collector instruments and 204Pb interference by 204Hg in the argon gas supply.Age calculations employed between 11 and 33 analyses per sample and used a weighted average of the common Pb-corrected ages, a Tera–Wasserburg Concordia intercept age and a Tera–Wasserburg Concordia intercept age anchored through common Pb. The samples in general yield ages consistent (at the 2σ level) with independent estimates of the U–Pb apatite age, which demonstrates the suitability of the analytical protocol employed. Weighted mean age uncertainties are as low as 1–2% for U- and/or Th-rich Palaeozoic–Neoproterozoic samples; the uncertainty on the youngest sample, the Cenozoic (31.44 Ma) Durango apatite, ranges from 3.7–7.6% according to the common Pb correction method employed. The accurate and relatively precise common Pb-corrected ages demonstrate the U–Pb and Th–Pb apatite chronometers are suitable as sedimentary provenance tools. The Kovdor carbonatite apatite is recommended as a potential U–Pb and Th–Pb apatite standard as it yields precise and reproducible 207Pb-corrected, 232Th–208Pb, and common Pb-anchored Tera–Wasserburg Concordia intercept ages.  相似文献   

4.
5.
Lead isotope ratios were used to trace the origin of Pb in a soil–plant (Urtica dioica)–snail (Cepaea nemoralis) food chain in two polluted locations in the floodplains of the rivers Meuse and Rhine (Biesbosch National Park) and one reference location in the Netherlands. Lead isotope ratios and concentrations were determined in soil, litter, plant leaves, snails, rainwater and airborne particulate matter. Anthropogenic Pb in the soils of all locations was found to be derived from deposition of Pb polluted river sediments. Discharging rivers influenced the reference location before being reclaimed from the sea. The river sediment contains anthropogenic Pb from various sources related to industrial activities in the hinterland of the rivers Meuse and Rhine. Lead in the atmosphere contributed substantially to Pb pollution and Pb transfer in plant leaves and snails in all locations. Lead pollution in plant leaves and snails can be explained from a mixture of river sediment-Pb and atmospheric Pb from various transfer routes that involve low concentrations.  相似文献   

6.
碳酸盐岩石Pb—Pb和U—Pb地质年代学评述   总被引:1,自引:0,他引:1  
近年来碳酸盐岩石Pb-Pb和U-Pb地质年代学的应用,对原生只作用和沉积变质作用的年龄测定做了出了重要贡献。本文总结了这方面的显著发展,讨论了碳酸盐岩石U-Pb和Pb-Pb计时器的功能,概括其主要优缺点和未来要解决的一些问题。  相似文献   

7.
《International Geology Review》2012,54(10):1239-1262
The Chahgaz Zn–Pb–Cu volcanogenic massive sulphide (VMS) deposit occurs within a metamorphosed bimodal volcano–sedimentary sequence in the south Sanandaj–Sirjan Zone (SSZ) of southern Iran. This deposit is hosted by rhyodacitic volcaniclastics and is underlain and overlain by rhyodacitic flows, volcaniclastics, and pelites. Peperitic textures between rhyodacite flows and contact pelites indicate that emplacement of the rhyodacite occurred prior to the lithification of the pelites. The rhyodacitic flows are calc-alkaline, and show rare earth and trace elements features characteristic of arc magmatism. Zircons extracted from stratigraphic footwall and hanging-wall rhyodacitic flows of the Chahgaz deposit yield concordant U–Pb ages of 175.7 ± 1.7 and 172.9 ± 1.4 Ma, respectively, and a mean age of 174 ± 1.2 Ma. This time period is interpreted to represent the age of mineralization of the Chahgaz deposit. This Middle Jurassic age is suggested as a major time of VMS mineralization within pull-apart basins formed during Neo-Tethyan oblique subduction-related arc volcano-plutonism in the SSZ. Galena mineral separates from the layered massive sulphide have uniform lead isotope ratios of 206Pb/204Pb?=?18.604–18.617, 207Pb/204Pb?=?15.654–15.667, and 208Pb/204Pb?=?38.736–38.769; they show a model age of 200 Ma, consistent with the derivation of Pb from a Late Triassic, homogeneous upper crustal source.  相似文献   

8.
Perovskite, a common Th- and U-enriched accessory mineral crystallised from kimberlitic magmas, has long been thought to be an important geochronometer for dating the emplacement of kimberlite. However, it also contains variably high levels of common Pb, which makes it difficult to obtain a precise measurement of radiogenic Pb/U and Pb/Th isotopic compositions using microbeam techniques such as SIMS and LA-ICP-MS. We present calibration protocols for in situ U–Pb and Th–Pb age determination of kimberlitic perovskite using the large double-focusing Cameca IMS 1280. Linear relationships are found between ln(206Pb?+/U+) and ln(UO2+/U+), and between ln(208Pb?+/Th+) and ln(ThO+/Th+), based on which the inter-element fractionation in unknown samples during SIMS analyses can be precisely calibrated against a perovskite standard. The well-characterized Ice River perovskite is chosen as the U–Pb and Th–Pb age standard in this study. The 204Pb-correction method was used to estimate the fraction of common Pb, which is consistent with the results obtained using the 207Pb-based correction method for the dated perovskites of Phanerozoic age.A Tazheran perovskite with unusually high U but rather low Th yielded a Concordia U–Pb age of 462.8 ± 2.5 Ma and a Th–Pb age of 462 ± 4 Ma. Two perovskite samples from the Iron Mountain kimberlite have identical Concordia U–Pb ages of 410.8 ± 3.4 Ma and 411.0 ± 2.6 Ma, which are consistent within errors with their corresponding Th–Pb ages of 409.2 ± 7.2 Ma and 412.3 ± 3.3 Ma, respectively. Two perovskite samples from the Wesselton Mine of South Africa yielded indistinguishable 206Pb/238U ages of 91.5 ± 2.2 Ma and 90.3 ± 2.9 Ma, and Th–Pb ages of 90.5 ± 0.8 Ma and 88.4 ± 1.6 Ma, respectively. Accuracy and precision of 1–2% (95% confidence level) for these measurements have been demonstrated by the consistency of their U–Pb and Th–Pb ages with the recommended U–Pb ages of previous works.  相似文献   

9.
Summary The provenance of the Mid-Devonian clastic sediments in the Teplá-Barrandian Unit (TBU) of the Bohemian Massif was investigated by laser ablation ICP-MS U–Pb zircon dating, bulk sediment geochemistry and mineralogical study of the heavy mineral fraction. In contrast to the island arc provenance of the TBU Neoproterozoic sediments, the Early Palaeozoic sediments contain significant amounts of differentiated crustal material. The detrital zircon populations in the Barrandian Mid-Devonian siltstones and sandstones show ages ranging from Archaean (3.0Ga) to Early Palaeozoic (0.39Ga). Major age maxima are at 2.6Ga, 2.0–2.25Ga, 0.62 and 0.51Ga. The youngest identified zircons so far correspond to Lower and Mid-Devonian ages. The extensive mechanical abrasion of zircons having Archaean (3.0, 2.8 and 2.6Ga) to Paleoproterozoic ages (2.25–2.0Ga) suggest their provenance from recycled old sedimentary sequences. The relatively large number of zircons with ages between 2.0 and 3.0Ga may indicate the presence of relicts of the Archaean/Paleoproterozoic crust in the source areas of the studied Mid-Devonian sediments. The absence of detrital zircon ages between 0.9 and 1.2Ga and the presence of zircon ages of 2.0–2.25 and 0.5–0.8Ga correspond to the zircon age pattern from the Gondwana-related North African, rather than Gondwana-related South American and Baltic terranes. The material was entering the basin predominantly from the west and consisted primarily of detrital material of Cambrian granitoids and recycled material of Neoproterozoic meta-sedimentary sequences.  相似文献   

10.
Human activities in cities affect properties of urban soils. In particular, urban soils often contain high contents of harmful metals even in deeper horizons added to them from diverse sources over centuries of the city development. This is reflected in complex distribution of metals in bulk soils with depth and the complex metal fractionation, but the exact sources of the metals are difficult to identify. This is also the situation in soils from Wroclaw, one of the largest cities in Poland. Potentially harmful elements Pb, Cd and Hg were examined in six profiles located along the major communication route and compared to two non-urban soils profiles located close to the same route. In all of the urban profiles, Pb and Cd exceeded the element contents observed in non-urban profiles and showed an erratic distribution compared to the more predictable one in non-urban soils. The differences between urban and non-urban profiles were explained as the result of contamination coming from more pollution sources in the case of urban soils, the conclusion supported by Pb isotope analyses. In fact, Pb isotopes showed that the contamination sources in urban soils included leaded petrol, coal combustion, smelting and possibly old pre-industrial ore processing, whereas leaded petrol and pre-industrial lead were the only possible anthropogenic sources in non-urban soils. The comparison of Wrocöaw soils with those from cities of comparable size Kraków and Poznań show similar ranges of metal contents with implication that urban pollution oversteps diverse geogenic chemical background. On the other hand, the comparison with other European cities show large variability in metal contents and suggest that urban soils contamination is time integrated and reflects long-term industrial evolution of each country.  相似文献   

11.
The isotopic–geochemical features of late and postorogenic granites of the S type and ambient migmatites are studied within the Russian part of the Svecofennian orogen of the Fennoscandinavian Shield. The spatial association of leucosomes of migmatites and granites of the S type and their similar petro- and geochemistry and distribution of Pb isotopes are evidence of the genetic similarity of their parental melts. The Borodinskoe pluton has a more primitive 206Pb/207Pb ratio, which indicates the presence of upper and U-poor lower crustal material in the source of granitic magmas. This conclusion is supported by the ?Nt(t) lower value of granites of this pluton relative to those of other plutons of the region.  相似文献   

12.
The Hakkari nonsulfide zinc deposit is situated close to the southeastern border of Turkey. Here both sulfide and nonsulfide Zn  Pb ores are hosted in carbonate rocks of the Jurassic Cudi Group with features typical of carbonate-hosted supergene nonsulfide zinc mineralization. The regional strike extent of the mineralized district is at least 60 km. The age of the supergene deposit has not been determined, but it is probable that the main weathering happened during Upper Tertiary, possibly between Upper Miocene and Lower Pliocene. The Hakkari mineralization can be compared to other carbonate-hosted Zn–Pb deposits in Turkey, and an interpretation made of its geological setting. The zinc mineral association at Hakkari typically comprises smithsonite and hemimorphite, which apparently replace both sulfide minerals and carbonate host rock. Two generations of smithsonite are present: the first is relatively massive, the second occurs as concretions in cavities as a final filling of remnant porosity. Some zinc is also hosted within Fe–Mn-(hydr)oxides. Lead is present in cerussite, but also as partially oxidized galena. Lead can also occur in Mn-(hydr)oxides (max 30% PbO). The features of the supergene mineralization suggest that the Hakkari deposit belongs both to the “direct replacement” and the “wall-rock replacement” types of nonsulfide ores. Mineralization varies in style from tabular bodies of variable thickness (< 0.5 to 13 m) to cross-cutting breccia zones and disseminated ore minerals in pore spaces and fracture planes. At Hakkari a As–Sb–Tl(≫ Hg) geochemical association has been detected, which may point to primary sulfide mineralization, quite different from typical MVT.  相似文献   

13.
The 3.09 to 2.97 Ga Murchison Greenstone Belt is an important metallotect in the northern Kaapvaal Craton (South Africa), hosting several precious and base metal deposits. Central to the metallotect is the Antimony Line, striking ENE for over 35?km, which hosts a series of structurally controlled Sb–Au deposits. To the north of the Antimony Line, hosted within felsic volcanic rocks, is the Copper–Zinc Line where a series of small, ca. 2.97 Ga Cu–Zn volcanogenic massive sulfide (VMS)-type deposits occur. New data are provided for the Malati Pump gold mine, located at the eastern end of the Antimony Line. Crystallizations of a granodiorite in the Malati Pump Mine and of the Baderoukwe granodiorite are dated at 2,964?±?7 and 2,970?±?7?Ma, respectively (zircon U–Pb), while pyrite associated with gold mineralization yielded a Pb–Pb age of 2,967?±?48?Ma. Therefore, granodiorite emplacement, sulfide mineral deposition and gold mineralization all happened at ca. 2.97?Ga. It is, thus, suggested that the major styles of orogenic Au–Sb and the Cu–Zn VMS mineralization in the Murchison Greenstone Belt are contemporaneous and that the formation of meso- to epithermal Au–Sb mineralization at fairly shallow levels was accompanied by submarine extrusion of felsic volcanic rocks to form associated Cu–Zn VMS mineralization.  相似文献   

14.
The accumulation of Pb in the food chain is one of the great concerns as it can cause chronic health problems and the available Pb is easily absorbed by crops. To shed light on Pb bioavailability in lead-contaminated agricultural soils of Zhejiang Province, a series of plant growth experiments were performed in a greenhouse to select more suitable extractants from five commonly used extractants (0.1 M HCl, 1 M NH4OAc, 0.1 M CaCl2, DTPA-TEA and Mehlich 3). The results showed that 1 M NH4OAc can extract Pb best, indicating the Pb bioavailability, then, DTPA-TEA and 0.1 M HCl in the tested soils. In case 1 M NH4OAc was used as an extractant, the critical Pb concentrations in soils were 50.19 mg/kg, 21.16 mg/kg and 114.00 mg/kg (1 M NH4OAc extracted Pb) in silty loam, yellowish-red soil and purplish soil, respectively. When the values exceed the above ones, the contents of Pb in Chinese cabbage leaves will exceed the Chinese Tolerance Limit of Lead in Foods (GB14935-94), as a result, potential ecological risk and hazard to human health via the food chain will appear.  相似文献   

15.
Effects of EDTA and heavy metals on growth of Typha latifolia and its uptake and translocation of Pb and Cd were investigated in this study. Both Pb and Cd of high concentrations had inhibitory effect on growth of Typha latifolia. Chlorophyll concentratio…  相似文献   

16.
Metallogenic Mechanism of the Tianbaoshan Pb—Zn Deposit,Sichuan   总被引:8,自引:3,他引:5  
The Tianbaoshan Pb-Zn deposit in Sichuan Province,exhibiting open-space-filling and /or replacement textures,occurs as being of vine style in the Sinian(Late Proterozoic) carbonate rocks,and is simple in ore composition.A systematic study of lead isotope and rareearth elements reveals that the ore-forming materials were derived from multiple sources.The ultimate source of the sulfur in all stages in seawater sulfate but the reducing mechanisms are different,The carbon was derved from marine carbonate and organic matter,The ore-forming fluid,meteoric in origin,belongs to a Ca^2 -Mg^2 -Cl^--Hco3^- type of weak acidic to alkalic solutions with a salinity of about 5wt% NaCl.The ore was formed at the depth of about 1 km from 150 to 250℃ during the main stage of ore deposition.The heated meteoric water,after extracting ore materials from wall rocks,evolved into ore-forming solution with a low salinity, in which metals were trasported as chloride complexes such as PbCl,ZnCl and ZnCl.The metal-bearing solution moved upward along deep faults to low-pressure zones,where the metal ions reacted with reduced sulfur and were precipitated as sulfied minerals.The textures of the minerals were controlled by the rate at which the reduced sulfur was supplied.  相似文献   

17.
The paper reports the results of Pb isotope study of several gold deposits of the Russia’s largest metallogenic province of Northern Transbaikalia. Potential sources of the ore material are considered by the example of new and previously published Pb–Pb data on nine deposits and occurrences of different scales. The comparison of Pb–Pb isotope-geochemical characteristics of ores, Paleozoic granitoids, as well as metamorphic pyrite from barren metasedimentary sequences shows that the Neoproterozoic terrigenous–carbonate rocks of the Baikal–Patom fold belt (BPB) served as the main source of lead and other components in the mineral-forming systems of the deposits. Significant variations of Pb isotope ratios typical in general of the considered deposits of the BPB reflect the initial isotopic heterogeneity of Pb source. This heterogeneity is caused by mixing of two geochemical types of continental crust during sedimentation: old (Early Precambrian) crust of the Siberian craton with long-term geochemical evolution and newly formed Late Precambrian crust. Pb–Pb data serve in support of the hydrothermal–metamorphogenic hypothesis of the formation of gold deposits of the BPB.  相似文献   

18.
EPMA chemical U-Th-Pb uraninite analysis has been used to constrain the age of the granite-related, Rössing South uranium prospect in Namibia and the Kintyre unconformity-related uranium deposit in Western Australia. Uraninite from the Rössing South prospect has an age of 496.1 ± 4.1 Ma, which is similar to the age of other uranium deposits in the region at Rössing and Goanikontes. Uraninite grains analysed from the Kintyre deposit have an age of 837 +35/-31 Ma suggesting that the uranium mineralisation occurred during or after the latest period of sedimentation in the Yeneena Basin during the ca 850 to ca 800 Ma Miles Orogeny.  相似文献   

19.
20.
Isotopic analyses of ancient mantle-derived magmatic rocks are used to trace the geochemical evolution of the Earth’s mantle, but it is often difficult to determine their primary, initial isotope ratios due to the detrimental effects of metamorphism and secondary alteration. We present in situ analyses by LA-MC-ICPMS for the Pb isotopic compositions of igneous plagioclase (An75–89) megacrysts and the Hf isotopic compositions of BSE-imaged domains of zircon grains from two mantle-derived anorthosite complexes from south West Greenland, Fiskenæsset and Nunataarsuk, which represent two of the best-preserved Archean anorthosites in the world. In situ LA-ICPMS U–Pb geochronology of the zircon grains suggests that the minimum crystallization age of the Fiskenæsset complex is 2,936 ± 13 Ma (2σ, MSWD = 1.5) and the Nunataarsuk complex is 2,914 ± 6.9 Ma (2σ, MSWD = 2.0). Initial Hf isotopic compositions of zircon grains from both anorthosite complexes fall between depleted mantle and a less radiogenic crustal source with a total range up to 5 εHf units. In terms of Pb isotopic compositions of plagioclase, both anorthosite complexes share a depleted mantle end member yet their Pb isotopic compositions diverge in opposite directions from this point: Fiskenæsset toward a high-μ, more radiogenic Pb, crustal composition and Nunataarsuk toward low-μ, less radiogenic Pb, crustal composition. By using Hf isotopes in zircon in conjunction with Pb isotopes in plagioclase, we are able to constrain both the timing of mantle extraction of the crustal end member and its composition. At Fiskenæsset, the depleted mantle melt interacted with an Eoarchean (~3,700 Ma) mafic crust with a maximum 176Lu/177Hf ~0.028. At Nunataarsuk, the depleted mantle melt interacted with a Hadean (~4,200 Ma) mafic crust with a maximum 176Lu/177Hf ~0.0315. Evidence from both anorthosite complexes provides support for the long-term survival of ancient mafic crusts that, although unidentified at the surface to date, could still be present within the Fiskenæsset and Nunataarsuk regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号