首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Upper Eocene impact ejecta has been discovered all over the world. The number of upper Eocene impact layers and the geographic distribution of each layer, based on major chemical composition and biostratigraphic data, are not agreed upon. We have performed four Sr‐Nd isotopic analyses of clinopyroxene‐bearing spherules (cpx spherules) and three Sr‐Nd analyses of microtektites from five Deep Sea Drilling Project/Ocean Drilling Program (DSDP/ODP) sites in the South Atlantic and Indian Oceans. Our data support the hypothesis that there is only one cpx spherule layer in upper Eocene sediments. We also find that the microtektites associated with the cpx spherule layer in the South Atlantic and Indian Oceans are not part of the North American tektite strewn field, but belong to the same event that produced the cpx spherules. The microtektites, together with cpx spherules, are more heterogeneous than microtektites/tektites from other strewn fields. No direct link has been established between the microtektites from this study and possible target rock at the Popigai crater.  相似文献   

2.
Abstract— A layer of tektite glass and shock-metamorphosed grains found in an upper Eocene section of core 21 from DSDP Site 612 taken on the continental slope off New Jersey may belong to the North American tektite strewn field. However, the Site 612 glasses generally have higher K2O and lower Na2O contents for a given SiO2 content and different Sr and Nd isotopic compositions. In order to better define the layer, a series of samples was taken continuously through the layer at 1 cm intervals. Tektite fragments are in an 8 cm thick layer; microtektites are concentrated in the upper 4 cm, while spherules with “crystalline” textures (microkrystites) are concentrated in the lower half of the layer. Millimeter-size splash forms are mostly in the lower part of the tektite-bearing layer. Rock and mineral grains showing evidence of shock metamorphism are abundant in the upper half of the tektite-bearing layer. Coesite is abundant, and stishovite was found in one rock fragment. The size and abundance of the tektite glass and the abundance of shocked debris indicate that Site 612 is relatively close to the source crater, which may be to the north of Site 612 on the coastal plain or adjacent continental shelf.  相似文献   

3.
Abstract— Late Eocene tektite material from DSDP site 612 is composed of angular to spherical tektites and microtektites containing abundant vesicles and a few unmelted to partially melted mineral inclusions. The major element compositions of the 612-tektites are generally comparable to those of North American tektites, but the physical features suggest that the DSDP-612 tektites were formed by less severe shock melting. The 87Sr/86Sr and 143Nd/144Nd compositions of 612-tektites: a) show much wider ranges than the tightly constrained group of North American tektites and microtektites, and b) are significantly different from those of other groups of tektites. The existence of large isotopic variations in tektites from DSDP site 612 requires that they were formed from a chemically and isotopically heterogeneous material in a regime that is distinctive from that of other groups of tektites. TNDCHUR and TSrUR model ages of the 612-tektites indicate that they were formed from a crustal source of late Precambrian mean age (800–1000 Ma) which in middle Palaeozoic time (?400 Ma) was further enriched in Rb/Sr during sedimentary processes. These source characteristics suggest that the impact which produced the 612-tektites occurred in rocks of the Appalachian orogeny or sediments derived from this orogenic belt. Potential source materials for both 612-tektites and North American tektites are present on the eastern and southeastern part of the North American continent and its adjacent shelf. The distinct isotopic differences between 612-tektites and North American tektites indicate that the two groups of tektites were either formed by the impact of more than one bolide in the same general area, or by a single impact event that sampled different layers.  相似文献   

4.
Abstract— Montanari et al. (1993) reported a positive Ir anomaly in the upper Eocene sediments from Ocean Drilling Program Hole 689B on the Maud Rise, Southern Ocean. Vonhof (1998) described microtektites and clinopyroxene-bearing (cpx) spherules associated with the Ir anomaly in Hole 689B and suggested that they belong to the North American and equatorial Pacific cpx strewn fields, respectively. We searched a suite of 27 samples taken through the spherule layer from Hole 689B, and we recovered 386 microtektites and 667 cpx spherules. We studied the petrography of the microtektites and cpx spherules and determined the major element compositions of 31 microtektites and 14 cpx spherules using energy dispersive x-ray analysis. We also determined the minor element compositions of eight microtektites using instrumental neutron activation analysis. We found that the peak abundance of cpx spherules is ~2 cm below the peak abundance of the microtektites (~128.7 m below sea floor), which suggests that the cpx spherule layer may be slightly older (~3–5 ka). The microtektites are mostly spherical and are generally transparent and colorless. They are similar to the North American microtektites in composition, the biggest differences being their generally lower Na2O and generally higher Zr, Ba, and Ir (up to 0.3 ppb) contents. We agree with Vonhof (1998) that the Hole 689B microtektites probably belong to the North American tektite strewn field. We calculate that the number of microtektites (>125 μm)/cm2 at Hole 689B is 52. This number is close to the concentration predicted by extrapolation of the trend of concentration vs. distance from the Chesapeake Bay structure, based on data from other North American microtektite-bearing sites. Thus, the North American strewn field may be at least four times larger than previously mapped. The Hole 689B cpx spherules range from translucent yellow to opaque black, but most are opaque tan to dark brown. They are generally spherical in shape and all are < 125 μm in diameter. Some contain Ni-rich spinels in addition to clinopyroxene microlites. The cpx spherules are petrographically and compositionally similar to cpx spherules previously found in the northwestern Atlantic Ocean, Caribbean Sea, Gulf of Mexico, equatorial Pacific, and eastern Indian Ocean. The abundance and widespread geographic occurrence of these spherules suggest that the strewn field may be global in geographic extent. Assuming a global extent, we estimate that there may be at least 25 billion metric tons of cpx spherules in the strewn field. Based on age, size, and geographic location, we speculate that the 100 km diameter Popigai crater in northern Siberia may be the source of the cpx spherule layer.  相似文献   

5.
Abstract— An examination of data collected over the last 30 years indicates that the percent of glass fragments vs. whole splash forms in the Cenozoic microtektite strewn fields increases towards the source crater (or source region). We propose that this is due to thermal stress produced when tektites and larger microtektites fall into water near the source crater while still relatively hot (>1150 °C). We also find evidence (low major oxide totals, frothing when melted) for hydration of most of the North American tektite fragments and microtektites found in marine sediments. High-temperature mass spectrometry indicates that these tektite fragments and microtektites contain up to 3.8 wt% H2O. The H2O-release behavior during the high-temperature mass-spectrometric analysis, plus high CI abundances (0.05 wt%), indicate that the North American tektite fragments and microtektites were hydrated in the marine environment (i.e., the H2O was not trapped solely on quenching from a melt). The younger Ivory Coast and Australasian microtektites do not exhibit much evidence of hydration (at least not in excess of 0.5 wt% H2O); this suggests that the degree of hydration increases with age. In addition, we find that some glass spherules (with <65 wt% SiO2) from the upper Eocene clinopyroxene-bearing spherule layer in the Indian Ocean have palagonitized rims. These spherules appear to have been altered in a similar fashion to the splash form K/T boundary spherules. Thus, our data indicate that tektites and microtektites that generally contain >65 wt% SiO2 can undergo simple hydration in the marine environment, while impact glasses (with <65 wt% SiO2) can also undergo palagonitization.  相似文献   

6.
The Fe oxidation state and coordination number of 29 impact glass spherules recently recovered from the Transantarctic Mountains (Antarctica) have been determined by X‐ray absorption near edge structure (XANES) spectroscopy. Based on geochemical, isotopic, and fission track data, these spherules are considered as microtektites from the Australasian tektite/microtektite strewn field. Their find location is the farthest so far discovered from the possible source crater region, and their alkali content is the lowest compared with other published data on Australasian microtektite glasses. The Fe3+/(Fe2++Fe3+) ratio, determined from the analysis of the pre‐edge peak energy position and integrated intensity, is below 0.1 (±0.04) for all the samples, and is comparable to that of most tektites and microtektites from the Australasian strewn field. Also, the pre‐edge peak integrated intensity, which is sensitive to the average Fe coordination geometry, is comparable to that of other Australasian microtektites reported in the literature. The agreement of the Fe oxidation state and coordination number, between the Transantarctic Mountain microtektites (TAM) and the Australasian tektites and microtektites, further confirms the impact origin of these glass spherules and provides an independent suggestion that they represent a major extension southeastward of the Australasian strewn field. The fact that similar redox conditions are observed in tektites and microtektites within the Australasian strewn field regardless of the distance from the source crater area (up to approximately 11000 km) could be an important constraint for better understanding the different processes affecting microtektite formation and transport. The fact that the Fe oxidation state of microtektites does not increase with distance, as in the case of North American microtektites, means that thermal and redox histories of Australasian and TAM microtektites could differ significantly from those of North American microtektites.  相似文献   

7.
Recent discoveries of microtektite and related crystal bearing microspherule layers in deep-sea sediments of the west equatorial Pacific DSDP Sites 292, 315A and 462, off-shore New Jersey in Site 612 and in southern Spain have confirmed the presence of at least three microspherule layers in Late Eocene sediments. Moreover, these discoveries have extended the North American strewn field from the Caribbean and Gulf of Mexico region to the northwest Atlantic, and have established a third strewn field in western equatorial Pacific and Indian Ocean which may extend to the Mediterranean. Stratigraphically the oldest microspherule layer occurs in the planktonic foraminifer Globigerapsis semiinvoluta Zone about 0.5 m.y. prior to the closely spaced crystal bearing microspherule layer and North American microtektite layer in the Globorotalia cerroazulensis Zone. Major element composition of the G. semiinvoluta Zone layer and the crystal bearing microspherule layer overlap, but there is a clear trend towards higher Al2O3 and FeO values in SiO2 equivalent microspherules of the latter layer. The G. semiinvoluta Zone microspherules also contain a higher percentage of non-crystalline spherules (microtektites) than the crystal bearing microspherule layer, but lower than the North American microtektite layer. Excess iridium due to an abrupt increase in supply is associated with the middle crystal bearing microspherule layer and to a lesser extent with the other two layers. But, Ir excess due to concentration as a result of carbonate loss was also observed at two sites (462, 612). The three late Eocene microspherule layers do not precisely coincide with planktonic foraminiferal species extinctions, but a major faunal assemblage change is associated with the G. semiinvoluta Zone layer. Abundant pyrite is present in the North American microtektite layer of DSDP Site 612 suggesting reducing conditions possibly due to a sudden influx of biologic matter (dead bodies) to the ocean floor, and the crystal bearing microspherule layer coincides with five radiolarian extinctions. All three microspherule layers are associated with decreased carbonate possibly due to sudden productivity changes, increased dissolution as a result of sea-level and climate fluctuations, or the impact events.  相似文献   

8.
Abstract— Elemental and isotopic compositions of the noble gases have been determined in six North American tektites (4 bediasites and 2 georgiaites) and one Ivory Coast tektite. Radiogenically produced 4He may explain the large 4He/36Ar ratios measured relative to air, despite significant diffusive losses. The Ne isotopic composition is enriched in 20Ne consistent with a single stage mass fractionation process. The enormous 20Ne/36Ar enrichments observed in all tektite samples, similar to those reported from other tektites and impact glasses, are attributed to atmospheric diffusion into the samples following solidification. The North American tektites show a systematic increase in 84Kr/36Ar and 132Xe/36Ar relative to air, with enrichments greater than those determined for any other tektite group or terrestrial samples other than shales. These enrichments are inconsistent with existing models of dissolving Kr and Xe in tektite glass without elemental fractionation at atmospheric pressures equivalent to ∼40 km altitude. The Kr and Xe isotopic compositions are indistinguishable from atmospheric within experimental uncertainty.  相似文献   

9.
Abstract— Australasian microtektites were discovered in Ocean Drilling Program (ODP) Hole 1143A in the central part of the South China Sea. Unmelted ejecta were found associated with the microtektites at this site and with Australasian microtektites in Core SO95–17957–2 and ODP Hole 1144A from the central and northern part of the South China Sea, respectively. A few opaque, irregular, rounded, partly melted particles containing highly fractured mineral inclusions (generally quartz and some K feldspar) and some partially melted mineral grains, in a glassy matrix were also found in the microtektite layer. The unmelted ejecta at all three sites include abundant white, opaque grains consisting of mixtures of quartz, coesite, and stishovite, and abundant rock fragments which also contain coesite and, rarely, stishovite. This is the first time that shock‐metamorphosed rock fragments have been found in the Australasian microtektite layer. The rock fragments have major and trace element contents similar to the Australasian microtektites and tektites, except for higher volatile element contents. Assuming that the Australasian tektites and microtektites were formed from the same target material as the rock fragments, the parent material for the Australasian tektites and microtektites appears to have been a fine‐grained sedimentary deposit. Hole 1144A has the highest abundance of microtektites (number/cm2) of any known Australasian microtektite‐bearing site and may be closer to the source crater than any previously identified Australasian microtektite‐bearing site. A source crater in the vicinity of 22° N and 104° E seems to explain geographic variations in abundance of both the microtektites and the unmelted ejecta the best; however, a region extending NW into southern China and SE into the Gulf of Tonkin explains the geographic variation in abundance of microtektites and unmelted ejecta almost as well. The size of the source crater is estimated to be 43 ± 9 km based on estimated thickness of the ejecta layer at each site and distance from the proposed source. A volcanic ash layer occurs just above the Australasian microtektite layer, which some authors suggest is from a supereruption of the Toba caldera complex. We estimate that deposition of the ash occurred ?800 ka ago and that it is spread over an area of at least 3.7 times 107 km2.  相似文献   

10.
Abstract— The site of an impact event that spread ejecta in the form of tektites and microtektites over ~5 × 107 km2 of the southern Pacific and Indian Ocean area has not yet been discovered. A number of lines of evidence point toward a source in eastern Indochina. From an examination of a digital topographic data set and Landsat imagery, we identified four candidate structures in southern Laos, and we visited these sites in 1995 February. No evidence of impact origin of these structures could be found; flat-lying, undisturbed Mesozoic sedimentary rocks similar to those on Thailand's Khorat Plateau were found over the region. Small layered tektite fragments are relatively common in a lateritic horizon that is characterized by the presence of quartz pebbles. This scene is identical to the situation found several hundred kilometers to the southeast in Thailand. New tektite sites identified on this trip support a previous suggestion that there is a large region in southern NE Thailand and Laos that is rich in Muong Nong-type (layered) tektites but seemingly devoid of the splash-form type tektites.  相似文献   

11.
Abstract— We have recovered 18 kg of layered tektites from 10 tektite-bearing localities in Laos and central Vietnam, including 5 localities around the town of Muong Nong (Laos). Several of these deposits originally contained several hundred kilograms of layered tektite fragments, and one fragmented mass may have been as large as 1000 kg. This is the largest single deposit of tektites yet reported. In this region, layered tektite fragments are found in isolated clusters usually associated with a pebbly laterite horizon that is 0–1 m below the surface. Near Khe Sanh, Vietnam, we estimate the abundance of layered tektite fragments to be ~100 g/m2. This is greater than five times the abundance estimated for northeast Thailand (Fiske et al., 1996). In a region that extends from northeast Thailand, through central Laos, and into central Vietnam, we found only layered tektites, which confirmed the existence of a large (>50 000 km2) subfield of the Australasian strewn field with only layered tektites. The east-west extent of the “layered-only” subfield is well constrained, but little field data exist to constrain its north-south extent.  相似文献   

12.
Ralph B. Baldwin 《Icarus》1981,45(3):554-563
From estimates of the total masses of tektites in three strewnfields, calculations by Orphal et al. (1980) of the amount of melt that could be ejected from impact craters, and equations relating kinetic energy of impact to crater diameter, it is possible to calculate minimum diameters of lunar craters capable of ejecting the liquid masses that could have formed the various tektite strewnfields. No lunar craters of the requisite sizes have been found that are young enough to correlate with the dates of formations of the strewnfields and it seems clear that the Moon must be eliminated as a source of tektites on the Earth. It is concluded that the associations of the Ivory Coast tektites with the Bosumtwi crater and the moldavites with the Rieskessel are real and the tektites are of terrestrial origin. It follows that if the Ivory Coast tektites came from the 10.5-km-wide Bosumtwi crater, the larger masses in the Australasian and North American strewnfields came from craters 17 km in diameter and between 33 and 65 km in diameter, respectively. No crater has yet been proven to be the parent of the Australisian tektites. The large crater that formed the North American tektites may not yet have been found, although the Mistastin Lake Crater may eventually be proven to be the source.  相似文献   

13.
Abstract— Only 2 Australasian tektites have been found in the Indian Ocean, and both are associated with surficial sediments. We collected cores from both locations where the tektites have been reported. The microtektites in these cores (and both the tektites, as reported earlier) have chemical compositions within the compositional range previously reported for Australasian tektites and microtektites. In both locations, while the tektites are occurring at the sediment/water interface, the microtektites are found buried in older horizons beneath the seafloor at stratigraphic levels, conforming to the radiometric age of the strewn field. Thus, at first glance, there appear to be 2 layers of Australasian impact ejecta in the Indian Ocean. However, the manganese nodules are associated with the tektites which, although millions of years old, are invariably resting on recent sediments. Therefore, the mechanism that retains nodules at the seafloor also seems to be operative on the tektites, thus leading to this apparent “age paradox” of tektite/microtektite distribution in the Indian Ocean, although they both belong to the same impact event.  相似文献   

14.
Abstract— A tektite, probably found in Cuba, was previously classified as belonging to the North American tektite strewn field on the basis of chemistry, age, isotopic, and petrographic characteristics. New major element analyses and trace element analyses show that the sample falls within the range of other North American tektites, and is close to the bediasite compositions. There are, however, some differences to normal georgiaites and bediasites. In a Na2O/K2O diagram the sample plots between the two distinct fields formed by georgiaites and bediasites. The rare earth elements and some lithophile trace elements are slightly enriched compared to bediasites, and much higher than in georgiaites. The discovery of tektite fragments from locations at Barbados and a DSDP site off the coast of New Jersey makes it likely that the North American strewn field is larger than previously thought, in agreement with microtektite distributions. Thus it is possible that the “Cuban” tektite really originated from Cuba.  相似文献   

15.
Abstract— Previous workers have shown that an impact ejecta layer at Massignano, Italy contains a positive Ir anomaly, flattened spheroids (pancake spherules), Ni‐rich spinel crystals, and shocked quartz with multiple sets of planar deformation features. Because of sample sizes and work by different investigators, it was not clear if the shocked quartz is associated with the Ir anomaly and pancake spherules or if it belongs to a separate impact event. To address this problem, we carried out a high‐resolution stratigraphic study of this ejecta layer. The ejecta layer was sampled continuously at 1 cm intervals in two adjacent columns. The carbonate was removed with dilute HCl, and the non‐carbonate fraction was gently sieved. Pancake spherules were recovered from the 250–500 μm size fraction and counted. At the peak abundance, the number of pancake spherules in the 250–500 μm size fraction is about 6–7/g of sample. The pancake spherules removed from the 250–500 μm size fraction are mostly translucent to opaque pale green, but some have a grey color or dark opaque patches due to a coating of Ni‐ and Cr‐rich spinel crystals. Energy‐dispersive X‐ray analysis and X‐ray diffraction data indicate that the green spherules are composed of iron‐rich smectite, probably nontronite. Black opaque spinel stringers (dark spinel‐rich pancake spherules), usually <200 μm across, can be seen in a polished section of a block that includes the ejecta layer. None of the dark spinel‐rich pancake spherules were recovered from the sieved non‐carbonate fraction due to their fragile nature, but we believe that they are from the same impact event as the green pancake spherules. The <250 μm size fractions from both columns were disaggregated using ultrasonics and re‐sieved. The 63–125 μm size fractions were then searched for shocked quartz using a petrographic microscope. At the peak‐abundance level, the number of shocked quartz grains in the 63–125 μm size fraction is about 7/g of sample. Some of the shocked quartz grains have a “toasted” appearance. These grains have a brownish color and contain a patchy distribution of faint, densely spaced planar deformation features (PDFs). Polymineralic fragments containing one or two shocked quartz grains with one or two sets of PDFs were observed. They appear to have an organic matrix and are probably fragments of agglutinated foraminiferal tests. We searched for, but did not find, coesite or shocked zircons. We found that the peak abundance of the shocked quartz is within a centimeter of the peak abundance of the green pancake spherules. We conclude that the pancake spherules are diagenetically altered clinopyroxene‐bearing spherules and that the shocked quartz, green (and presumably the dark spinel‐rich) pancake spherules, and Ir anomaly all belong to the same impact event. This conclusion is consistent with previous suggestions that the cpx spherule layer may be from the 100 km‐diameter Popigai impact crater in northern Siberia.  相似文献   

16.
Abstract— Late Eocene microtektites and microkrystites recovered from Ocean Drilling Project Hole 689B at Maud Rise (Southern Ocean) are stratigraphically and geochemically compared to spherules from the North American and Pacific strewn fields, and to devitrified spherules from the Eocene-Oligocene global stratotype section and point section in Massignano, Italy. The ODP 689B microkrystites compare well to the Pacific strewn field microkrystites, which suggests that the geographic extent of the Pacific strewn field was much larger than previously documented. The elemental composition of microtektites of ODP Hole 689B is comparable to tektites of the North American strewn field. Their 87Sr/86Sr ratio, however, is different. We tentatively interpret this to reflect geochemical heterogeneity within the North American strewn field but can not exclude the option that the chemical discrepancies result from the existence of a third late Eocene impact site.  相似文献   

17.
Abstract— Fifty-odd years of tektite research are reviewed, proceeding from the discovery of the first North American tektites in 1936. This included the early recognition that tektites were terrestrial objects rather than meteorites and that the glassy particles in tektites were fused quartz (lechatelierite). Later, during National Science Foundation-supported research, it was found that some tektites appeared to have formed as puddles of melt, that the content and character of bubbles in lechatelierite can be used as a relative temperature scale, that rayed bubbles in tektites formed from hydrous minerals, that bubbles in tektites formed chiefly from water which was absorbed into the walls of the bubbles leaving vacuums, and that “fingers” in the surficial part of some tektites may have formed by differential volatilization. Some unpublished observations and adventures are briefly reported.  相似文献   

18.
Abstract— A new 40Ar/39Ar data set is presented for tektites from the Central European strewn field (moldavites). This is the only strewn field that is entirely situated in a continental environment and still characterized by scattered ages (14–15.3 Myr). The main objectives of the study were to define more precisely the moldavite formation age and provide a good calibration for a glass standard proposed for fission‐track dating. The laser total fusion ages obtained on chips from 7 individual specimens from the Southern Bohemian and Moravian subfields are restricted to a narrow interval of time, with an average of 14.34 ± 0.08 Myr relative to the 27.95 ± 0.09 Myr of the Fish Canyon Tuff biotite. This result gives a more precise age not only for the tektite field but also for its producing impact. If the genetic link between the moldavites and the Nördlinger Ries impact crater is maintained, then this new age has to be considered a reliable estimate for the Ries crater also. This new value places the formation of Central European tektites within the Lower Serravallian period in the latest geologic timescales. Evidence of their impact products, such as glass spherules or shocked minerals, can, therefore, be sought in sedimentary marine formations in a more precisely defined age interval.  相似文献   

19.
Abstract— The origin of tektites has been obscure because of the following dilemma. The application of physical principles to the data available on tektites points strongly to origin from one or more lunar volcanoes; but few glasses of tektite composition have hitherto been reported from the lunar samples. Instead, the lunar silicic glasses consist chiefly of a material very rich in K2O and poor in MgO. The ratio of K2O/MgO is higher in these glasses than in any tektites reported. The solution of the dilemma seems to come from the study of some recently discovered terrestrial deposits of tektite glass with high values of K2O/MgO at the Cretaceous-Tertiary boundary. These glasses are found to be very vulnerable to crystallization into sandine or to alteration to smectite. These end products are known and are more abundant than any terrestrial deposits of tektite glass. It seems possible that, in fact, the moon produces tektite glass, mostly of the high K2O-low MgO type; but on Earth these deposits are destroyed. The much less abundant deposits with lower K and higher Mg are observed because they survive. Other objections to the lunar origin hypothesis appear to be answerable.  相似文献   

20.
The problem of the origin of the enigmatic tektites is still unsolved. The two leading hypotheses - viz., ejecta from terrestrial impacts, and ejecta from lunar volcanoes or lunar impacts, each encounters serious difficulties. The former has ballistic and water content difficulties, while the latter has some compositional difficulties, especially in the trace elements, as determined from the returned samples. It is possible that the latter problem may be met through lunar volcanic ejecta from sites suggesting more differentiation than the majority of the Moon. That such features may exist is suggested from the identity of some granitic material in the returned rocks and soil samples implying fairly sizable source regions on the Moon. The rare terrestrial strewn tektite fields require restrictive ballistic trajectories from the Moon. Calculations reveal that ellipses of varying, decreasing sizes which depend on velocity of vertical ejection from which ejecta will intersect the earth at low-entrance angles occur on the nearside of the Moon. Reasonable velocities were chosen (2.55 to 3.0 km s?1) and these ellipses circumscribe areas with longitudes between 30 and 50° east and latitudes between 7° north and south of the Moon's equator. These areas were searched for evidence of volcanism. As tektites have compositions ranging from acidic (major tektites) to basic (micro-tektites) contents of silica (SiO2) both acidic and basic volcanic features were sought. Since tektites range in age from about 30 million to 700000 yr old, they imply recent volcanism. Lunar Transient Phenomena (LTP) and data from various Apollo missions indicate that mild internal activity may still be occurring on the Moon. LTP sites are logical sources to investigate, of which four occur within the above delimited regions. These and their surroundings were examined and a number of possible explosive volcanism sites were found. These sites are identified and discussed after a review of the manifestations found from the various kinds of terrestrial volcanism for which lunar counterparts were sought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号