首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extended period of mass extinctions around the K/T boundary correlating with extraterrestrial amino acids in the sediment record constitutes strong evidence of a cometary cause. The input of extraterrestrial matter over 105 yr supports the hypothesis of a giant comet, fragmented into subcomets on close encounter with Jupiter, and subsequently perturbed into Earth-crossing orbits. Copious amounts of dust were emitted via this and possibly successive fragmenting encounters, and via normal cometary evaporation. The dynamics of dust from the disintegrating comet fragments favours retention in Earth-crossing orbits of the sub-micron fraction of organic composition. The shroud of dust accreted in the Earth's upper atmosphere varied with time and imposed climatic stresses that caused species extinctions over 105 yr. While the iridium peak in the sediments coincides with the Chicxulub crater impactor, other iridium detail suggests that some of the impactor material was reinjected into space and in part re-accreted by Earth from the interplanetary orbits.  相似文献   

2.
We present the study of dust environment of dynamically new Comet C/2003 WT42 (LINEAR) based on spectroscopic and photometric observations. The comet was observed before and after the perihelion passage at heliocentric distances from 5.2 to 9.5 AU. Although the comet moved beyond the zone where water ice sublimation could be significant, its bright coma and extended dust tail evidenced the high level of physical activity. Afρ values exceeded 3000 cm likely reaching its maximum before the perihelion passage. At the same time, the spectrum of the comet did not reveal molecular emission features above the reflected continuum. Reddening of the continuum derived from the cometary spectrum is nonlinear along the dispersion with the steeper slop in the blue region. The pair of the blue and red continuum images was analyzed to estimate a color of the comet. The mean normalized reflectivity gradient derived from the innermost part of the cometary coma equals to 8% per 1000 Å that is typical for Oort cloud objects. However, the color map shows that the reddening of the cometary dust varies over the coma increasing to 15% per 1000 Å along the tail axis. The photometric images were fitted with a Monte Carlo model to construct the theoretical brightness distribution of the cometary coma and tail and to investigate the development of the cometary activity along the orbit. As the dust particles of distant comets are expected to be icy, we propose here the model, which describes the tail formation taking into account sublimation of grains along their orbits. The chemical composition and structure of these particles are assumed to correspond with Greenberg’s interstellar dust model of comet dust. All images were fitted with the close values of the model parameters. According to the results of the modeling, the physical activity of the comet is mainly determined by two active areas with outflows into the wide cones. The obliquity of the rotation axis of the nucleus equals to 20° relative to the comet’s orbital plane. The grains occupying the coma and tail are rather large amounting to 1 mm in size, with the exponential size distribution of a−4.5. The outflow velocities of the dust particles vary from a few centimeters to tens of meters per second depending on their sizes. Our observations and the model findings evidence that the activity of the nucleus decreased sharply to a low-level phase at the end of April–beginning of May 2007. About 190 days later, in the first half of November 2007 the nucleus stopped any activity, however, the remnant tail did not disappear for more than 1.5 years at least.  相似文献   

3.
In this paper we analyze the dynamical behavior of large dust grains in the vicinity of a cometary nucleus. To this end we consider the gravitational field of the irregularly shaped body, as well as its electric and magnetic fields. Without considering the effect of gas friction and solar radiation, we find that there exist grains which are static relative to the cometary nucleus; the positions of these grains are the stable equilibria. There also exist grains in the stable periodic orbits close to the cometary nucleus. The grains in the stable equilibria or the stable periodic orbits won’t escape or impact on the surface of the cometary nucleus. The results are applicable for large charge dusts with small area-mass ratio which are near the cometary nucleus and far from the Solar. It is found that the resonant periodic orbit can be stable, and there exist stable non-resonant periodic orbits, stable resonant periodic orbits and unstable resonant periodic orbits in the potential field of cometary nuclei. The comet gravity force, solar gravity force, electric force, magnetic force, solar radiation pressure, as well as the gas drag force are all considered to analyze the order of magnitude of these forces acting on the grains with different parameters. Let the distance of the dust grain relative to the mass centre of the cometary nucleus, the charge and the mass of the dust grain vary, respectively, fix other parameters, we calculated the strengths of different forces. The motion of the dust grain depends on the area-mass ratio, the charge, and the distance relative to the comet’s mass center. For a large dust grain (> 1 mm) close to the cometary nucleus which has a small value of area-mass ratio, the comet gravity is the largest force acting on the dust grain. For a small dust grain (< 1 mm) close to the cometary nucleus with large value of area-mass ratio, both the solar radiation pressure and the comet gravity are two major forces. If the a small dust grain which is close to the cometary nucleus have the large value of charge, the magnetic force, the solar radiation pressure, and the electric force are all major forces. When the large dust grain is far away from the cometary nucleus, the solar gravity and solar radiation pressure are both major forces.  相似文献   

4.
Because of their short cosmic ray exposure ages, chondritic meteorites are more likely to have been broken off from parent bodies in Earth-crossing orbits than from parent bodies in the asteroid belt. The radii of the objects now in the vicinity of the Earth (Apollo and Amor objects) are too small to be unfragmented asteroids of the theory for the origin of gas-rich meteorites of Anders. Because of the abundant evidence for very heavy shock and reheating among L- and H-chondrites, I conclude that the asteroidal origin for the ordinary chondrites is still the most likely. A cometary origin for the CI chondrites is examined. Regolith and megaregolith do not necessarily have to be formed by impacts on the cometary nucleus. The short-period comet Encke receives about 1/10 the solar-wind flux of a belt asteroid at 2.5 AU in its present orbit. The thickness of the megaregolith (C1 chondrites) is estimated between 0.1 and 0.3 km. Stirring of the megaregolith without substantial loss of dust from the comet might occur when the comet is transitional between “active” and “dead.” The consolidation of C1- “dust” into rock is somewhat problematic, but if liquid water and water vapor have played a role, then a crust rich in solar gases might form in the outer regions of a comet. A testable alternative explanation is suggested, namely that the solar gases in the C1 chondrites do not come from the Sun.  相似文献   

5.
Abstract– We investigated three‐dimensional structures of comet Wild 2 coma particle impact tracks using synchrotron radiation (SR) X‐ray microtomography at SPring‐8 to elucidate the nature of comet Wild 2 coma dust particles captured in aerogel by understanding the capture process. All tracks have a similar entrance morphology, indicating a common track formation process near the entrance by impact shock propagation irrespective of impactor materials. Distributions of elements along the tracks were simultaneously measured using SR‐XRF. Iron is distributed throughout the tracks, but it tends to concentrate in the terminal grains and at the bottoms of bulbs. Based on these results, we propose an impact track formation process. We estimate the densities of cometary dust particles based on the hypothesis that the kinetic energy of impacting dust particles is proportional to the track volume. The density of 148 cometary dust particles we investigated ranges from 0.80 to 5.96 g cm?3 with an average of 1.01 (±0.25) g cm?3. Moreover, we suggest that less fragile crystalline particles account for approximately 5 vol% (20 wt%) of impacting particles. This value of crystalline particles corresponds to that of chondrules and CAIs, which were transported from the inner region of the solar system to the outer comet‐forming region. Our results also suggest the presence of volatile components, such as organic material and perhaps ice, in some bulbous tracks (type‐C).  相似文献   

6.
Abstract– Samples returned from comet 81P/Wild 2 by the Stardust mission provided an unequaled opportunity to compare previously available extraterrestrial samples against those from a known comet. Iron sulfides are a major constituent of cometary grains commonly identified within cometary interplanetary dust particles (IDPs) and Wild 2 samples. Chemical analyses indicate Wild 2 sulfides are fundamentally different from those in IDPs. However, as Wild 2 dust was collected via impact into capture media at approximately 6.1 km s?1, it is unclear whether this is due to variation in preaccretional/parent body processes experienced by these materials or due to heating and alteration during collection. We investigated alteration in pyrrhotite and pentlandite impacted into Stardust flight spare Al foils under encounter conditions by comparing scanning and transmission electron microscope (SEM, TEM) analyses of preimpact and postimpact samples and calculating estimates of various impact parameters. SEM is the primary method of analysis during initial in situ examination of Stardust foils, and therefore, we also sought to evaluate the data obtained by SEM using insights provided by TEM. We find iron sulfides experience heating, melting, separation, and loss of S, and mixing with molten Al. These results are consistent with estimated peak pressures and temperatures experienced (approximately 85 GPa, approximately 2600 K) and relative melting temperatures. Unambiguous identification of preserved iron sulfides may be possible by TEM through the location of Al‐free regions. In most cases, the Ni:Fe ratio is preserved in both SEM and TEM analyses and may therefore also be used to predict original chemistry and estimate mineralogy.  相似文献   

7.
Impacts of comets and asteroids play an important role in volatile delivery on the Moon. We use a novel method for tracking vapor masses that reach escape velocity in hydrocode simulations of cometary impacts to explore the effects of volatile retention. We model impacts on the Moon to find the mass of vapor plume gravitationally trapped on the Moon as a function of impact velocity. We apply this result to the impactor velocity distribution and find that the total impactor mass retained on the Moon is approximately 6.5% of the impactor mass flux. Making reasonable assumptions about water content of comets and the comet size-frequency distribution, we derive a water flux for the Moon. After accounting for migration and stability of water ice at the poles, we estimate a total 1.3×108-4.3×109 metric tons of water is delivered to the Moon and remains stable at the poles over 1 Ga. A factor of 30 uncertainty in the estimated cometary impact flux is primarily responsible for this large range of values. The calculated mass of water is sufficient to account for the neutron fluxes poleward of 75° observed by Lunar Prospector. A similar analysis for water delivery to the Moon via asteroid impacts shows that asteroids provide six times more water mass via impacts than comets.  相似文献   

8.
We used numerical simulations to model the orbital evolution of interplanetary dust particles (IDPs) evolving inward past Earth’s orbit under the influence of radiation pressure, Poynting–Robertson light drag (PR drag), solar wind drag, and gravitational perturbations from the planets. A series of β values (where β is the ratio of the force from radiation pressure to that of central gravity) were used ranging from 0.0025 up to 0.02. Assuming a composition consistent with astronomical silicate and a particle density of 2.5 g cm−3 these β values correspond to dust particle diameters ranging from 200 μm down to 25 μm. As the dust particle orbits decay past 1 AU between 4% (for β = 0.02, or 25 μm) and 40% (for β = 0.0025, or 200 μm) of the population became trapped in 1:1 co-orbital resonance with Earth. In addition to traditional horseshoe type co-orbitals, we found about a quarter of the co-orbital IDPs became trapped as so-called quasi-satellites. Quasi-satellite IDPs always remain relatively near to Earth (within 0.1–0.3 AU, or 10–30 Hill radii, RH) and undergo two close-encounters with Earth each year. While resonant perturbations from Earth halt the decay in semi-major axis of quasi-satellite IDPs their orbital eccentricities continue to decrease under the influence of PR drag and solar wind drag, forcing the IDPs onto more Earth-like orbits. This has dramatic consequences for the relative velocity and distance of closest approach between Earth and the quasi-satellite IDPs. After 104–105 years in the quasi-satellite resonance dust particles are typically less than 10RH from Earth and consistently coming within about 3RH. In the late stages of evolution, as the dust particles are escaping the 1:1 resonance, quasi-satellite IDPs can have deep close-encounters with Earth significantly below RH. Removing the effects of Earth’s gravitational acceleration reveals that encounter velocities (i.e., velocities “at infinity”) between quasi-satellite IDPs and Earth during these close-encounters are just a few hundred meters per second or slower, well below the average values of 2–4 km s−1 for non-resonant Earth-crossing IDPs with similar initial orbits. These low encounter velocities lead to a factor of 10–100 increase in Earth’s gravitationally enhanced impact cross-section (σgrav) for quasi-satellite IDPs compared to similar non-resonant IDPs. The enhancement in σgrav between quasi-satellite IDPs and cometary Earth-crossing IDPs is even more pronounced, favoring accretion of quasi-satellite dust particles by a factor of 100–3000 over the cometary IDPs. This suggests that quasi-satellite dust particles may dominate the flux of large (25–200 μm) IDPs entering Earth’s atmosphere. Furthermore, because quasi-satellite trapping is known to be directly correlated with the host planet’s orbital eccentricity the accretion of quasi-satellite dust likely ebbs and flows on 105 year time scales synchronized with Earth’s orbital evolution.  相似文献   

9.
Abstract– We present initial results from hydrocode modeling of impacts on Al‐1100 foils, undertaken to aid the interstellar preliminary examination (ISPE) phase for the NASA Stardust mission interstellar dust collector tray. We used Ansys’ AUTODYN to model impacts of micrometer‐scale, and smaller projectiles onto Stardust foil (100 μm thick Al‐1100) at velocities up to 300 km s?1. It is thought that impacts onto the interstellar dust collector foils may have been made by a combination of interstellar dust particles (ISP), interplanetary dust particles (IDP) on comet, and asteroid derived orbits, β micrometeoroids, nanometer dust in the solar wind, and spacecraft derived secondary ejecta. The characteristic velocity of the potential impactors thus ranges from <<1 to a few km s?1 (secondary ejecta), approximately 4–25 km s?1 for ISP and IDP, up to hundreds of km s?1 for the nanoscale dust reported by Meyer‐Vernet et al. (2009) . There are currently no extensive experimental calibrations for the higher velocity conditions, and the main focus of this work was therefore to use hydrocode models to investigate the morphometry of impact craters, as a means to determine an approximate impactor speed, and thus origin. The model was validated against existing experimental data for impact speeds up to approximately 30 km s?1 for particles ranging in density from 2.4 kg m?3 (glass) to 7.8 kg m?3 (iron). Interpolation equations are given to predict the crater depth and diameter for a solid impactor with any diameter between 100 nm and 4 μm and density between 2.4 and 7.8 kg m?3.  相似文献   

10.
An analysis of the spectra from the PUMA dust-impact mass spectrometers onboard the Vega-1 and Vega-2 spacecraft shows that a large number of the observed, unidentified small-amplitude peaks are produced by impacts of very-low-mass (from 10?17 to 10?20 g) particles. The mass flux of very fine particles accounts for a few percent of the total dust mass flux from comet Halley. The elemental composition of the finest cometary particles is identical to the composition of large particles (10?12–10?16 g), in agreement with present views about the nucleus of comet Halley as an aggregate of interstellar dust.  相似文献   

11.
Abstract– An IDP nicknamed Andric, from a stratospheric dust collector targeted to collect dust from comet 55P/Tempel‐Tuttle, contains five distinct presolar silicate and/or oxide grains in 14 ultramicrotome slices analyzed, for an estimated abundance of approximately 700 ppm in this IDP. Three of the grains are 17O‐enriched and probably formed in low‐mass red giant or asymptotic giant branch (AGB) stars; the other two grains exhibit 18O enrichments and may have a supernova origin. Carbon and N isotopic analyses show that Andric also exhibits significant variations in its N isotopic composition, with numerous discrete 15N‐rich hotspots and more diffuse regions that are also isotopically anomalous. Three 15N‐rich hotspots also have statistically significant 13C enrichments. Auger elemental analysis shows that these isotopically anomalous areas consist largely of carbonaceous matter and that the anomalies may be hosted by a variety of components. In addition, there is evidence for dilution of the isotopically heavy components with an isotopically normal endmember; this may have occurred either as a result of extraterrestrial alteration or during atmospheric entry. Isotopically primitive IDPs such as Andric share many characteristics with primitive meteorites such as the CR chondrites, which also contain isotopically anomalous carbonaceous matter and abundant presolar silicate and oxide grains. Although comets are one likely source for the origin of primitive IDPs, the presence of similar characteristics in meteorites thought to come from the asteroid belt suggests that other origins are also possible. Indeed the distinction between cometary and asteroidal sources is somewhat blurred by recent observations of icy comet‐like planetesimals in the outer asteroid belt.  相似文献   

12.
《Icarus》1987,69(1):33-50
Spectrophotometric data on groups of asteroids in different types of orbits reveal different distributions of spectral properties, depending on whether the orbits are cometary or noncometary. In a list of 10 asteroids frequently suggested on purely dynamical grounds to be extinct or dormant comets, all have properties suggestive of spectral classes D, P, or C. Preliminary IRAS albedo results support this. Objects in these classes are very dark, reddish-black to neutral-black, and prevalent among the Trojans and outer belt. Two comets observed at low activity (visible nuclei) also have properties more consistent with D asteroids than any other class (very low reported geometric albedos of 0.02 and red colors). Consistent with these results are very low albedos reported for materials in more than a dozen comets; they average 0.05. Also, sampled cometary dust particles appear to consist of dark carbonaceous materials. Dramatically different are a control group of 13 Aten/Apollo/Amor objects selected from noncometary orbits. Most are in moderate-albedo classes: 8 or 9 appear to be of class S, and only 1 is in a low-albedo class (C). These are probably mostly objects perturbed out of the inner asteroid belt. The preponderence of S's in the noncometary group, together with the preponderence of ordinary chondrites among meteorites, may be evidence that such meteorites came from S asteroids. The data indicate that extinct, dormant, inactive, and minimally active comet nuclei have low albedos (pv=a few percent) and very red to moderately red colors. As a group, their spectra are more similar to those of outer Solar System asteroids of classes D, P, and C, than to those of inner belt classes, though the observations are frequently not yet complete enough to assign definitively a spectral class. The results, taken together, support the view that dynamically identified “extinct comet candidates” are indeed outer Solar System objects probably of cometary origin. The results also support a scenario of Solar System formation in which dark carbonaceous dust dominated the spectrophotometric properties of planetesimals formed from about 2.7 AU out to at least the Trojan region at 5.2 AU. From 2.7 to at least 5.2 AU, and from class C to class D, the color of this dust reddens, apparently due to increasing amounts of red organic condensates. Comets are probably also colored to different degrees, by dust of this type, and may in some cases be even redder than D asteroids.  相似文献   

13.
This paper analyzes the capture of comets into Halley-type and Jupiter-family orbits from the nearparabolic flux of the Oort cloud. Two types of capture into Halley-type orbits are found. The first type is the evolution of near-parabolic orbits into short-period orbits (with heliocentric orbital periods P < 200 years) as a result of close encounters with giant planets. This process is followed by a very slow drift of cometary orbits into the inner part of the Solar System. Only those comets may pass from short-period orbits into Halley-type and Jupiter-family orbits, which move in orbits with perihelion distances q < 13 au. In the second type of capture, the perihelion distances of cometary orbits become rather small (< 1.5 au) during the first stage of dynamic evolution under the action of perturbations from the Galaxy, and then their semimajor axes decrease as a result of diffusion. The capture takes place, on average, in 500 revolutions of the comet about the Sun, whereas in the first case, the comet is captured, on average, after 12500 revolutions. The region of initial orbital perihelion distances q > 4 au is found to be at least as important a source of Halley-type comets as the region of perihelion distances q < 4 au. More than half of the Halley-type comets are captured from the nearly parabolic flux with q > 4 au. The analysis of the dynamic evolution of objects moving in short-period orbits shows that the distribution of Centaurs orbits agrees well with the observed distribution corrected for observational selection effects. Hence, the hypothesis associating the origin of Centaurs with the Edgeworth-Kuiper belt and the trans-Neptunian region exclusively should be rejected.  相似文献   

14.
Abstract— We discuss the relationship between large cosmic dust that represents the main source of extraterrestrial matter presently accreted by the Earth and samples from comet 81P/Wild 2 returned by the Stardust mission in January 2006. Prior examinations of the Stardust samples have shown that Wild 2 cometary dust particles contain a large diversity of components, formed at various heliocentric distances. These analyses suggest large‐scale radial mixing mechanism(s) in the early solar nebula and the existence of a continuum between primitive asteroidal and cometary matter. The recent collection of CONCORDIA Antarctic micrometeorites recovered from ultra‐clean snow close to Dome C provides the most unbiased collection of large cosmic dust available for analyses in the laboratory. Many similarities can be found between Antarctic micrometeorites and Wild 2 samples, in terms of chemical, mineralogical, and isotopic compositions, and in the structure and composition of their carbonaceous matter. Cosmic dust in the form of CONCORDIA Antarctic micrometeorites and primitive IDPs are preferred samples to study the asteroid‐comet continuum.  相似文献   

15.
We analyze our earlier data on the numerical integration of the equations of motion for 274 short-period comets (with the period P<200 yr) on a time interval of 6000 yr. As many as 54 comets had no close approaches to planets, 13 comets passed through the Saturnian sphere of action, and one comet passed through the Uranian sphere of action. The orbital elements of these 68 comets changed by no more than ±3 percent in a space of 6000 yr. As many as 206 comets passed close to Jupiter. We confirm Everhart’s conclusion that Jupiter can capture long-period comets with q = 4–6 AU and i < 9° into short-period orbits. We show that nearly parabolic comets cross the solar system mainly in the zone of terrestrial planets. No relationship of nearly parabolic comets and terrestrial planets was found for the epoch of the latest apparition of comets. Guliev’s conjecture about two trans-Plutonian planets is based on the illusory excess of cometary nodes at large heliocentric distances. The existence of cometary nodes at the solar system periphery turns out to be a solely geometrical effect.  相似文献   

16.
In the context of dust samples collections in space, the COMET experiment (Collecte en Orbite de Matière ExtraTerrestre) was proposed for the first time in 1982. The idea of such an experiment was to collect grains with identified cometary parent body, instead of mixing all extraterrestrial contributions present in low Earth orbit. It was thus proposed to install collectors inside hermetic boxes, to have these boxes mounted outside a space station, orbiting the Earth and to have the capability of choosing the time and duration of the collection. Since 1985, the COMET experiment has been exposed three times to space (COMET-1, in October 1985 during the encounter of the Earth with the Draconid meteor stream; the EUROMIR-95 instrument, exposing collectors, during the crossing by the Earth of the Orionid meteor stream associated to comet P/Halley and, in November 1998, during the crossing by the Earth of the Leonid meteor stream associated to comet Temple-Tuttle, COMET-99). Specific collection techniques, and corresponding analytical procedures have been developed. The collected particles are the only ones accessible in the laboratory with a known cometary origin, before the return to Earth (2006) of the Stardust mission, which will collect cometary grains in the tails of comet Wild 2. Such a challenge justifies the tremendous efforts brought into play, and that are summarized here.  相似文献   

17.
The “Shiva Hypothesis”, in which recurrent, cyclical mass extinctions of life on Earth result from impacts of comets or asteroids, provides a possible unification of important processes in astrophysics, planetary geology, and the history of life. Collisions with Earth-crossing asteroids and comets ≥ a few km in diameter are calculated to produce widespread environmental disasters (dust clouds, wildfires), and occur with the proper frequency to account for the record of five major mass extinctions (from ≥ 108 Mt TNT impacts) and ~ 20 minor mass extinctions (from 107–108 Mt impacts) recorded in the past 540 million years. Recent studies of a number of extinctions show evidence of severe environmental disturbances and mass mortality consistent with the expected after-effects (dust clouds, wildfires) of catastrophic impacts. At least six cases of features generally considered diagnostic of large impacts (e.g., large impact craters, layers with high platinum-group elements, shock-related minerals, and/or microtektites) are known at or close to extinction-event boundaries. Six additional cases of elevated iridium levels at or near extinction boundaries are of the amplitude that might be expected from collision of relatively low-Ir objects such as comets. The records of cratering and mass extinction show a correlation, and might be explained by a combination of periodic and stochastic impactors. The mass extinction record shows evidence for a periodic component of about 26 to 30 Myr, and an ~ 30 Myr periodic component has been detected in impact craters by some workers, with recent pulses of impacts in the last 2–3 million years, and at ~ 35, 65, and 95 million years ago. A cyclical astronomical pacemaker for such pulses of impacts may involve the motions of the Earth through the Milky Way Galaxy. As the Solar System revolves around the galactic center, it also oscillates up and down through the plane of the disk-shaped galaxy with a half-cycle ~ 30±3 Myr. This cycle should lead to quasi-periodic encounters with interstellar clouds, and periodic variations in the galactic tidal force with maxima at times of plane crossing. This “galactic carrousel” effect may provide a viable perturber of the Oort Cloud comets, producing periodic showers of comets in the inner Solar System. These impact pulses, along with stochastic impactors, may represent the major punctuations in earth history.  相似文献   

18.
The effect of galactic perturbations on long-period comet orbits is examined via numerical and analytical means. Relations are found between a comet's initial perihelion position and the positions of succeeding perihelia. It was found that the galactic effects were strongest on the comets initially at galactic latitudes close to 40°. In such cases the galactic perturbations caused the orbit to become almost circular before becoming nearly parabolic again. This effect allows comets with semimajor axes of about 25 000 AU to make only a few passages through the inner solar system in a time interval of 109yr. Thus the galactic field is an important factor in the evolution of long-period comet orbits. The observed distribution of perihelia of long-period comets indicates that galactic effects have been active.  相似文献   

19.
In our work, the method that can help to predict the existence of distant objects in the Solar system is demonstrated. This method is connected with statistical properties of a heliocentric orbital complex of meteoroids with high eccentricities. Heliocentric meteoroid orbits with high eccentricities are escape routes for dust material from distant parental objects with near-circular orbits to Earth-crossing orbits. Ground-based meteor observations yield trajectory information from which we can derive their place of possible origin: comets, asteroids, and other objects (e.g. Kuiper Objects) in the Solar system or even interstellar space. Statistical distributions of radius vectors of nodes, and other parameters of orbits of meteoroids contain key information about position of greater bodies. We analyze meteor orbits with high eccentricities that were registered in 1975–1976 in Kharkiv (Ukraine). The orbital data of the Kharkiv electronic catalogue are received from observations of radiometeors with masses 10−6−10−3 g.  相似文献   

20.
《Planetary and Space Science》1999,47(8-9):1029-1050
We predict the amount of cometary, interplanetary, and interstellar cosmic dust that is to be measured by the Cometary and Interstellar Dust Analyzer (CIDA) and the aerogel collector on board the Stardust spacecraft during its fly-by of comet P⧸Wild 2 and during the interplanetary cruise phase. We give the dust flux on the spacecraft during the encounter with the comet using both, a radially symmetric and an axially symmetric coma model. At closest approach, we predict a total dust flux of 1060 m−2 s−1 for the radially symmetric case and 1065 m−2 s−1 for the axially symmetric case. This prediction is based on an observation of the comet at a heliocentric distance of 1.7 AU. We reproduce the measurements of the Giotto and VEGA missions to comet P⧸Halley using the same model as for the Stardust predictions. The planned measurements of interstellar dust by Stardust have been triggered by the discovery of interstellar dust impacts in the data collected by the Ulysses and Galileo dust detector. Using the Ulysses and Galileo measurements we predict that 25 interstellar particles, mainly with masses of about 10−12 g, will hit the target of the CIDA experiment. The interstellar side of the aerogel collector will contain 120 interstellar particles, 40 of which with sizes greater than 1 μm. Furthermore, we investigate the contamination of the CIDA and collector measurements by interplanetary particles during the cruise phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号