首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rainfall and runoff were monitored simultaneously for one year from a residential road, a car park, nine sections of road draining to individual gullies, two house roofs, two garage roofs, and three types of factory roof. The sites, which included an automatic weather station, were in Redbourn, Hertfordshire on Flood Studies Report Soil Type 1. The 2906 quality controlled ‘station-storms’ represented 193 rain storms and involved 57.2 per cent of the annual rainfall. 1732 storms were of less than 1.4mm of rain, whilst 77 had over 10mm. The percentage runoff averaged 11.4 per cent for roads and 56.9 per cent for roofs (28.3 per cent and 90.4 per cent respectively for rainfalls >5mm). Percentage runoff from the roads was cyclic with a peak during the summer months but there was a marked variation in monthly percentage runoff within and between sites. Regression analysis to explain percentage runoff was undertaken with various subsets of data for: each site; roads; and roofs. The regression analysis considered all storms; >1 percent runoff events; >5mm rainfalls; and events with > = 4 mm rain and > = 5 per cent runoff. The variable values in percentage runoff could not be explained satisfactorily with statistical methods. Only eight of the 72 equations explained more than 57 per cent of the variance. The most important explanatory variables for roads were short term rainfall intensity and rainfall amount, the former was the most important for roofs. ‘Seasonal’ variables had a positive relation ship for roads which shows that the percentage runoff from roads is higher in summer than winter. The antecedent variables showed that percentage runoff from roads and roofs is increased by antecedent rainfall. Seasonal factors and evaporation were unimportant for the percentage runoff from roofs. Depression storage, assessed by examining rainfalls that did and did not produce runoff, showed a diversity of monthly values. The depression storages derived by the regression intercept method were usually smaller. There were no relationships between depression storage and catchment or roof slope. The mean values for roofs and roads respectively were 0.52 mm and 1.23 mm for the classification method and 0.42 mm and 0.6mm with the regression approach. Peak runoff from the roads showed an attenuation to 12.8 per cent for 1 minute rainfall intensities and 24.2 per cent for 5 minute intensities. For roofs the attenuation averaged 36.8 per cent for 1 minute intensities and 92.6 for 5 minute intensities. Regression for peak runoff coefficients from roofs and roads explained negligible amounts of the variance except when events with 1 minute rainfall intensities of over 30 mm hr?1 over the roads were analysed. Total rainfall was an important explanatory variable as was the slope of the road. There was evidence that peak coefficients for roads are greater during the summer.  相似文献   

2.
The topsoil of around 10 000 km2 in eastern England has recently been sampled intensely at 4609 sites to characterize its geochemistry. The parent materials, which include both solid geology and Quaternary sediments, range in age from Permian to Holocene. The distributions of the concentrations of major and trace elements have been characterized geostatistically, and the role of parent material on their spatial structure (anisotropy) and their spatial relationships (coregionalization) have been investigated. Analysis of variance with the sites grouped by major parent material type showed that this classi?cation accounted for 14 to 48 per cent of the variance for the various elements. Global variograms of 13 elements (Al, As, Ca, Cr, Cu, Fe, Mg, Mo, Ni, P, Pb, Ti, and U) have been computed and modelled. Eleven of the variograms seem to comprise two structures, both of which we modelled with spherical functions, one of short range, 3·5 to 9 km, and the other with a range of 15 to 23 km. The models included a nugget variance, which varied from 27 per cent (for As, Fe, and Mg) to 63 per cent (for P) of the total. The long‐range structures are related to the separations of the major parent materials. The variograms of several elements showed appreciable anisotropy, most notably that of Mg. Anisotropy is evident at short ranges of less than 5 km. This accords with the geological structure of the beds which dip from west to east so that their outcrops are elongated from north to south. A linear model of coregionalization ?tted to the data emphasized several important geochemical associations, which we interpret. Elements commonly associated with clay minerals (Mg, Al) and the clay size fraction (Ti) are dominated by the long‐range structure of the coregionalization, whilst several trace elements (As, Cr, Ni and U) are spatially correlated with Fe over short distances, through adsorption of the former on the surfaces of Fe oxyhydroxides. The topsoil around large urban areas is enriched in lead, but it is not clear whether anthropogenic sources are responsible for this metal's anomalous spatial relationships with other elements. Crown copyright © 2003. Reproduced with the permission of Her Majesty's Stationery Of?ce. Published by John Wiley & Sons, Ltd.  相似文献   

3.
Downslope movements of 109 clasts ranging in intermediate diameter from 30 to 870 mm were monitored over a five-year period on hillslopes in the Valley and Ridge province of southwest Virginia. Gradients ranged from 8° to 42°. Regression on slope tangent, depth of clast base below ground surface, clast size, and clast shape explained 70 per cent of clastmovement variance. A substantial part of the unexplained variance appears due to variation in substrate and slope aspect. Additional measurements made on two steep boulder streams showed extremely low rates.  相似文献   

4.
Dissolved organic matter (DOM) concentrations in throughfall, throughflow, and runoff were recorded in a small (95 ha) woodland catchment in North Warwickshire for a period of eight weeks following a prolonged dry spell. DOM is shown to be positively related to stream discharge over the sampling period, although distinctive flushing effects were identified. The net contribution of DOM to total dissolved solids load carried in the river was only 2.4 per cent, and represented significantly less than published carbon losses by mineralization of soil organic matter. Throughfall inputs were some 100 times higher than streamflow outputs from the catchment.  相似文献   

5.
Where they are present in catchments, peatlands are a dominant source of dissolved organic matter (DOM) to surrounding waterways due, in part, to high production rates. Despite the preponderance of peatlands in northern latitudes and expected peatland vulnerability to climate change, little is known about peatland DOM degradation relative to a more comprehensive understanding of degradation when DOM is sourced from upland-dominated catchments. We compared DOM biodegradability of various sources of stream water in two catchments having peatlands (22%–33% of the area) surrounded by upland forests (70%–90% of the area, either deciduous or coniferous). We measured total organic carbon (TOC), and biodegradable dissolved organic carbon concentrations; bacterial respiration rates; streamflow; and upland runoff during and after snowmelt (March to June, 2009–2011). We also explored if DOM in upland runoff stimulated biodegradation of peatland-derived DOM (i.e., a priming effect), and if forest cover type affected DOM biodegradability. As expected, the peatlands were the largest sources of both water (72%–80%) and TOC (92%–96%) to the streams although more area in each catchment was in uplands (70%–90%). Several results were unexpected, yet revealing: (1) DOM from peatlands sometimes had the same biodegradability as DOM from uplands, (2) upland sources of DOM had negligible effects on biodegradability in the peatland and downstream, and (3) upland deciduous cover did not yield more degradable DOM than conifer cover. The most pronounced effect of upland runoff was dilution of downstream TOC concentrations when there was upland runoff. Overall, the effects of upland DOM may have been negligible due to the overriding effect of the large amount of biodegradable DOM that originated in bogs. This research highlights that peatland-sourced DOM has important effects on downstream DOM biodegradability even in catchments where upland area is substantially larger than peatland area.  相似文献   

6.
Soil erodibility has been studied on the alpine tundra of Trail Ridge in the southern Rocky Mountains, Colorado. Field experiments were conducted using a portable rainfall simulator to estimate an erodibility index (grams of detached soil per unit area) at 71 sites. The index determined on eight soil types allowed discrimination of a high erodibility group (mean index of 18.9 g), moderate or transitional group (mean index of 10.1 g), and one low group (mean index of 4.5 g). Laboratory measurements of physical propertiesMdashtexture, water absorption capacity, organic carbon, and aggregationMdashwere compared with the erodibility index and results of simple and multiple regressions showed that 29 per cent of the variance in erodibility is explained by the measured variables, the strongest correlation (r=0.42) being associated with aggregation. Unexplained variability (71 per cent) may be due in part to unmeasured soil properties, non-linearity in the data, random processes, bias, and experimental error. These correlations represent a beginning in understanding factors influencing alpine soil erodibility. The results suggest that field measurement is still the most satisfactory method of estimating an erodibility index and that laboratory surrogates for this index are not readily applicable in this environment.  相似文献   

7.
8.
B. G. Katz 《水文研究》1989,3(2):185-202
During 1983 and 1984, wet precipitation was primarily a solution of dilute sulphuric acid, whereas calcium and bicarbonate were the major ions in springs and ground water in two small watersheds with a deciduous forest cover in central Maryland. Dominant ions in soil water were calcium, magnesium, and sulphate. The relative importance of mineral weathering reactions on the chemical composition of these subsurface waters was compared to the contribution from wet precipitation, biological processes, and road deicing salts. Mineral reaction models, developed from geochemical mass-balance relationships, involved reactions of primary and secondary minerals in metabasalt and metarhyolite with hydrogen ion. Geochemical weathering reactions account for the majority of total ion equivalents in soil water (46 per cent), springs (51 per cent), and ground water (68 to 77 per cent). The net contribution of total ion equivalents from biological processes was 20 and 16 per cent for soil water and springs, respectively, but less than 10 per cent for ground water. The contribution of total ion equivalents from deicing salts (10 to 20 per cent) was related to proximity to roads. Strong acids in precipitation contributed 44 per cent of the total amount of hydrogen ions involved in mineral-weathering reactions for ground water in contact with metarhyolite compared to 25 per cent for ground water in contact with metabasalt, a less resistant rock type to weathering.  相似文献   

9.
Dissolved organic matter (DOM) is integral to fluvial biogeochemical functions, and wetlands are broadly recognized as substantial sources of aromatic DOM to fluvial networks. Yet how land use change alters biogeochemical connectivity of upland wetlands to streams remains unclear. We studied depressional geographically isolated wetlands on the Delmarva Peninsula (USA) that are seasonally connected to downstream perennial waters via temporary channels. Composition and quantity of DOM from 4 forested, 4 agricultural, and 4 restored wetlands were assessed. Twenty perennial streams with watersheds containing wetlands were also sampled for DOM during times when surface connections were present versus absent. Perennial watersheds had varying amounts of forested wetland (0.4–82%) and agricultural (1–89%) cover. DOM was analysed with ultraviolet–visible spectroscopy, fluorescence spectroscopy, dissolved organic carbon (DOC) concentration, and bioassays. Forested wetlands exported more DOM that was more aromatic‐rich compared with agricultural and restored wetlands. DOM from the latter two could not be distinguished suggesting limited recovery of restored wetlands; DOM from both was more protein‐like than forested wetland DOM. Perennial streams with the highest wetland watershed cover had the highest DOC levels during all seasons; however, in fall and winter when temporary streams connect forested wetlands to perennial channels, perennial DOC concentrations peaked, and composition was linked to forested wetlands. In summer, when temporary stream connections were dry, perennial DOC concentrations were the lowest and protein‐like DOM levels the highest. Overall, DOC levels in perennial streams were linked to total wetland land cover, but the timing of peak fluxes of DOM was driven by wetland connectivity to perennial streams. Bioassays showed that DOM linked to wetlands was less available for microbial use than protein‐like DOM linked to agricultural land use. Together, this evidence indicates that geographically isolated wetlands have a significant impact on downstream water quality and ecosystem function mediated by temporary stream surface connections.  相似文献   

10.
The paper reports the first research on karst solution processes and rates in New Zealand. The study area is an IHD representative basin in the northwest corner of the South Island in a mountain range consisting principally of Ordovician marble. The climate is sunny and warm (17°C) in summer and wet and cool (7°C) in winter. Average precipitation is 2,158 mm of which 525 mm evapotranspires, yielding a discharge of 51–75 l/s/km2 in the river basin studied. Almost half of the catchment of 45.1 km2 consists of karst which occurs mainly as a doline covered plateau at 600–900 m within which most drainage is subterranean. Water tracing is with fluorescein defined drainage patterns. Marble solution was established by estimating inputs, throughputs and outputs of water and dissolved calcium and magnesium in both autogenic and allogenic karst drainage systems. Particular attention was paid to estimating errors. Water samples for chemical analysis were taken irregularly for approximately one year, and a rating curve relating chemical load to discharge was established. The best estimate of solution loss from the basin yields a mean rate of 100 ±M24 m3/km2/a. Of this 80 per cent is derived from solution of marble by autogenic waters, mostly in the top 10–30 m of the marble outcrop. The remaining 20 per cent is accomplished by allogenic stream solution. Approximately 9.9 per cent of the dissolved calcium and magnesium load leaving the basin originates from non-karst rocks and 4.6 per cent is initially introduced by rainfall. River flows that are exceeded only 5 per cent of the time transport approximately 44 per cent of the annual dissolved load, while mean to low flows that occur for 75 per cent of the time transport 35 per cent of the annual solute load. This confirms the importance of low frequency-high magnitude events, but indicates also that in corrosion systems high frequency events of moderate to low magnitude can also accomplish significant work.  相似文献   

11.
Iron geochemistry of the sediments and interstitial waters of the Roaring River alluvial fan in the Rocky Mountain National Park, Colorado was studied using a chemical equilibria approach. Large concentrations of colloidal Fe in the filterable Fe of the interstitial waters results in considerable overestimation of Fe2 + activity. The overestimation of Fe(II) seriously hampered the usefulness of chemical equilibria approach in the study of Fe geochemistry. Buried soil organic matter and a high water table within the alluvial fan has produced a highly reduced environment which results in elevated colloidal and filterable iron concentrations in the interstitial waters. The source of the iron is probably iron oxides within the buried soil and primary iron-bearing minerals in the sediments. When the iron-rich solutions reach the surface, the water rapidly oxidizes and amorphous ferric hydroxides precipitate. Between 190 to 370 mmol of iron per kg of surficial material were precipitated at the surface within two months. Noticeable decreases in the total amount of C and extractable iron (20 per cent and 30 per cent respectively) in the buried soil were observed during the study period (1985-1987) which implies a significant reduction in iron dissolution and subsequent deposition across the alluvial fan.  相似文献   

12.
Simple linear regression models have been widely employed in the analysis of suspended‐sediment concentration (SSC) time series from glacierized catchments, although they have many limitations. This paper builds regression models which address these shortcomings and permit inferences concerning the controls on suspended‐sediment transfer from a glacier at 78°N in the Svalvard archipelago. A bivariate regression model, deterministically predicting SSC from discharge alone, explained less than 15 per cent of the variance in SSC. A multivariate model, incorporating additional potentially explanatory variables, offered little improvement. Diurnal hysteresis in the data gives rise to quasi‐autocorrelation in the residual series from regression models. This was effectively removed by incorporating dummy diurnal variables into the multivariate model. The presence of a first‐order autoregressive, stochastic process gives rise to true autocorrelation in the residual series from regression models. This was accommodated by incorporating an ARIMA (1,0,0) term into a multivariate autoregression model. The model‐building process yielded a systematic progression in the explanation of variance in SSC, stripping away pattern in the autocorrelation function of the residual series; mean model error was reduced from 54 per cent to 6 per cent. The dependence of SSC on the magnitude of discharge is weak and highly variable, whereas the dependence of current SSC on recent values of SSC, revealed through the stochastic term, is an order of magnitude greater and relatively constant during the melt season. The dominant control on SSC throughout the melt season is therefore short‐term sediment availability. The simple and largely unchanging stochastic process generally responsible for generating the observed SSC series implies a simple and unchanging glacier drainage system. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
Runoff generative process and runoff yield from arid talus mantled slopes   总被引:3,自引:0,他引:3  
Previous works dealing with the influence of a stone cover on runoff yield showed that runoff, attributed to the sealing effect of the topsoil by raindrops impact, was negatively related to the per cent of stone cover and stone size. These works were conducted on gentle slopes (3–11·5 degree) with a per cent of stone cover generally lower than 50 per cent, and composed of gravels. The present study deals with the runoff yield of steep talus slopes (26–36 degree) whose per cent of stone cover is very high (90–100 per cent), composed of cobbles and boulders. Three stimulated rainstorms were performed at various rainfall. intensities and durations on each one of six plots representative of the North eastern sector of Sinai. Although the contiguous stony cover prevented surface sealing by raindrops impact, runoff developed quite quickly on most slopes, and reached at peak discharge, after approximately ten minutes, up to 56 per cent of the rainfall. Differences between plots, in time lag, peak discharge and other hydrological variables, could be attributed mainly to the properties of the upper stony layer, with stone size as the most influential factor. Contrary to previous works, a positive relationship, was obtained between stone size to runoff yield. The result is explained by the process of water concentration. Each cobble and boulder behaves, on a smaller scale, like a bare rocky surface and yields per unit area water amounts beyond the infiltration rate of the limited uncovered areas. For a given stony cover the effect of water concentration is quicker with the big blocks than with gravels. A series of graphs trying to relate theoretically the relative importance of sealing and water concentration processes in runoff generation, at various conditions of stone cover and stone size, is proposed. The graphs enable to reconcile the results of the present study with those of previous works.  相似文献   

14.
This study addresses the changes in dissolved major and trace element concentrations along the Orinoco River, including the mixing zone between the Orinoco and Apure Rivers. Water samples from the Apure and Orinoco Rivers were collected monthly in four sectors over a period of 15 months. Auxiliary parameters (pH, dissolved oxygen, conductivity, and temperature), total suspended sediments, dissolved organic carbon (DOC), and major (Na, K, Ca, Mg, and Si) and trace (Al, Fe, Mn, Zn, Cu, and Cr) element concentrations were measured in all sectors. The relative contribution of both rivers after the Apure–Orinoco confluence was determined using Ca as a tracer. Moreover, a mixing model was developed to determine whether dissolved species exhibit a conservative behavior during mixing. The results indicate that DOC is removed from waters during the Apure–Orinoco mixing, probably due to absorption of DOC on mineral phases supplied by the Apure River. Dissolved Na, Ca, and Mg behave conservatively during the mixing processes, and their concentrations are controlled by a dilution process. The anomaly in the temporal pattern of K in the Orinoco is caused by the input of biogenic K originating from the Apure River during the high‐water stage. The loss of dissolved Si during the low‐water stage can be explained by the uptake of Si by diatoms. Dissolved Mn, Zn, Al, and Fe showed a non‐conservative behavior during the Apure–Orinoco mixing. The removal of Mn and Zn from the dissolved phase can be explained by the formation of Mn‐oxyhydroxides and the scavenging of Zn onto Mn oxides. Dissolved Fe is controlled by redox processes, although the removals of Fe and Al due to the preferential adsorption of large organometallic complexes by mineral surfaces after the Apure–Orinoco confluence can affect the mobility of both elements during transport. The conservative behavior shown by Cu and Cr can be related to the tendency of both elements to be complexed with small organic colloids, which are not preferentially adsorbed by clays.  相似文献   

15.
Runoff‐induced sediments were collected in the Hallamish dune field for four years (1990–1994). Runoff and consequently water‐transported sediments were generated on the dunes owing to the presence of a thin microbiotic crust. These sediments were analysed for their particle‐size distribution and carbonate content. In addition, the organic matter content was calculated by measuring the chlorophyll content within the runoff. The results were compared to the slope parent material, i.e. the crust and the underlying sand, as well as to playa sediments, which are scattered within the Hallamish interdunal areas, and which were previously hypothesized to originate from runoff‐induced sediments. Higher amounts of fines (silt and clay) and carbonate characterize the footslopes in comparison to the midslopes. Intermediate contents of fines (17 per cent) and carbonate (8 per cent) characterized the sediments in comparison to the fines (27 per cent) and carbonate (15 per cent) of the crust and to the fines (4 per cent) and carbonate (4 per cent) of the underlying sand. The runoff‐induced fines and carbonate contents were significantly different from those of the playas, suggesting that the playa flats do not originate from runoff‐induced sediments. The sediments were enriched with organic matter. Organic matter which originates from the crust amounted to 0·3–0·4 per cent as compared to ≤0·1 per cent in the bare sand. Nevertheless, the crust was found to be relatively resilient to water flow. Only 0·1–0·5 per cent of the crust was annually eroded off the slope by water, with south‐facing crusts showing higher resilience than north‐facing crusts. The data may thus assist in the evaluation of the crust's residence time. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
In the Whitehall Forest of Georgia during the 1985-86 non-growing season soil CO2 varied with soil depth, varied spatially at constant depth, and varied temporally with changing environmental conditions. Variations with depth in the upper 1.4 m of the soil were of greater magnitude than temporal variations and spatial differences at 30 cm depth were of lesser magnitude. Mean soil CO2 in evergreen forest was higher (0.207 per cent) than in deciduous and mixed forest (0.157 per cent). There were no trends in soil CO2 along hillslopes or with changes in soil texture, bulk density, moisture content, or temperature. Soil CO2 did increase near trees possibly due to increased root densities and/or more numerous pockets of microbial activity. For CO2 at 30 cm depth, two variables–the mean daily temperature range in the month before measurement and actual evapotranspiration in the week before measurement (AET7)–explained 76 per cent of the variation in mean soil CO2. At the profile site, where soil CO2 was measured at five depths, 66 per cent of the variability in CO2 was explained by soil depth, AET7, and the average daily temperature range in the two months before measurement.  相似文献   

17.
Karst solution processes are investigated on Oligocene limestones in the Waitomo district, west central North Island, New Zealand. Estimates of the inputs, throughputs and outputs of water and dissolved calcium and magnesium in two drainage basins were used to establish the rate of limestone solution by autogenic waters. The best estimate for solution loss from the basins during the study year is 69 m3/km2. The potential measurement errors inherent in each parameter used in the erosion rate computations were assessed and the probable maximum and minimum erosion rates were estimated to be 88 and 61 m3/km2. In both basins approximately 67 per cent of the annual solute load is transported by flows greater than the mean annual discharge, over 15 per cent being transported by flood flows that are exceeded only 5 per cent of the time. Almost half of the annual load is transported during the three winter months (June-August), but no one month accounts for more than 18 per cent or less than 2.7 per cent of the annual total. Approximately 37 per cent of solution takes place within the soil profile, and most of the remainder is concentrated in 5–10 m of weathered bedrock (the subcutaneous zone) beneath this. Thus, it is likely that at least 85 per cent of the total solutional erosion contributes to the surface lowering of soil and bedrock.  相似文献   

18.
Flood and vortex scour were observed in the Prosna channel (Central Poland) in the years 1980–1985. Flood scour increases the thickness of the reworked channel deposits by 30 per cent to 66 per cent, in relation to the thickness determined by the elevation of the normal bed and the bankfull stage. Vortex scour can increase the thickness by as much as 90–95 per cent. Knowledge of these properties of contemporary alluvium allows correct palaeohydrological and stratigraphic interpretation of the alluvial fills of valley floors.  相似文献   

19.
Data to describe the morphologic, hydrologic and sedimentologic characteristics of 72 South Island, New Zealand, rivers were collected and analysed. Nearly 70 per cent of variation in channel morphology is accounted for by differences in cross-sectional area, slope, and cross-section shape; only 53 per cent of the morphologic variability could be statistically ‘explained’ by the hydrologic and sediment variables used. The level of explanation varied for different morphologic variables; nearly 90 per cent of the variability in cross-sectional area could be explained, but aspect ratio (maximum depth divided by hydraulic radius) was completely independent. Apart from the inadequacy of the measured variables as indices of the true underlying controlling factors, and the imperfect measurement and sampling procedures, the low level of explanation is probably due to the influence of factors such as floodplain vegetation, high quasi-random variability in bark sediment character, boundary effects imposed by bedrock bluffs, and the precise sequence of flood events, none of which are easily quantified. In addition, observations indicate that there is a large random variation in channel form which cannot be related to any factor. An attempt to relate channel morphology to flow variability, using simple indices of the latter, was unsuccessful.  相似文献   

20.
Frequent heavy rainfalls during the East Asian summer monsoon drastically increase water flow and chemical loadings to surface waters. A solid understanding of hydroclimatic controls on watershed biogeochemical processes is crucial for water quality control during the monsoon period. We investigated spatio‐temporal variations in the concentrations and spectroscopic properties of dissolved organic matter (DOM) and the concentrations of trace metals in Hwangryong River, Korea, during a summer period from the relatively dry month of June through the following months with heavy rainfall. DOM and its spectroscopic properties differed spatially along the river, and also depended on storm and flow characteristics around each sampling time. At a headwater stream draining a forested watershed, the concentrations (measured as dissolved organic carbon (DOC)), aromaticity (measured as specific UV absorbance at 254 nm), and fulvic acid‐ and protein‐like fluorescence of DOM were higher in stormflow than in baseflow waters. DOC concentrations and fluorescence intensities increased along the downstream rural and urban sites, in which DOC and fluorescence were not higher in stormflow waters, except for the ‘first flush’ at the urban site. The response of DOM in reservoir waters to monsoon rainfalls differed from that of stream and river waters, as illustrated by storm‐induced increases in DOM aromaticity and fulvic‐like fluorescence, and no significant changes in protein‐like fluorescence. The results suggest that surface water DOM and its spectroscopic properties differentially respond to changes in hydroclimatic conditions, depending on watershed characteristics and the influence of anthropogenic organic matter loadings. DOC concentrations and intensities of spectroscopic parameters were positively correlated with some of the measured trace metals (As, Co, and Fe). Further research will be needed to obtain a better understanding of climate effects on the interaction between DOM and trace metals. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号