首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文将均质的任意二维、三维物体位场的波谱解析表达式的研究成果推广到变密度、变磁化强度的更一般的情形。对密度差随深度呈指数函数衰减或线性变化的模型,获得了任意倾斜多边形质量面、斜平行六面体以及一般的多面体等形体的重力谱的解析表达式。它们的结构与均质体相应表达式一样简单,易于计算。以上结果表明,在很一般的条件下,位场波谱具有指数函数和的形式。  相似文献   

2.
A method is presented for determining bounds of the properties of axial symmetric bodies from a finite number of gravity and magnetic observations based on Parker's theory of ideal bodies. Bounds on the density contrast and the intensity of magnetization are calculated as a function of depth to the top of the anomalous source, restricting the range of smallest possible solutions to fit the data. The model studied is approximated by an array of vertical annuli cylinders, each of uniform density and magnetization. Linear programming algorithms based on the ideal body theory were used to calculate the distribution of these parameters within the body. Simultaneous inversion of gravity and magnetic data is performed assuming a constant ratio between the density contrast and the intensity of magnetization and that a common body is responsible for both observed fields. The parameter k(|J|/δp) provides information about the rock type of the structure. Interpretation of gravity and aeromagnetic data from Darnley Bay, NWT, Canada, indicated the presence of a shallow ultrabasic intrusion.  相似文献   

3.
本文讨论稳定磁化场中强磁性三度体内部磁化强度的数值解法。展示了由于退磁作用而造成的不均匀性,并以长方体内一些典型截面为例,较详细地讨论了磁化强度的特征,作了分布图;推导了较均匀磁化体磁化强度分布的近似公式,并计算了一组长方体的视退磁系数。  相似文献   

4.
有限长圆柱体磁异常场全空间正演方法   总被引:2,自引:0,他引:2       下载免费PDF全文
在经典位场理论中,许多简单形体位场异常难以通过积分得到全空间的解析式.圆柱体是一类很重要的理论模型体,常用于模拟圆柱状地质体或非地质体(如管线),但目前还不能用解析公式正演有限长圆柱体在三维空间里的磁异常,而多是采用近似简化为有限长磁偶极子或线模型代替.对于有限长圆柱体,特别是半径相对于上顶埋深较大时,这种近似的误差不可忽略.本文利用共轭复数变量替换法,推导出有限长圆柱体在全空间的引力位一阶、二阶导数,利用Poisson关系得到磁异常正演公式,进而利用有限长圆柱体磁异常正演公式求解管状体的磁异常,得到不同磁化方向、不同大小的管线产生的磁场的特征,并将其推广到截面为椭圆的情况.最后通过模拟计算定量给出了将圆柱体近似为线模型的条件.  相似文献   

5.
关于用有限元法作磁法勘探正演计算的理论问题   总被引:2,自引:2,他引:2       下载免费PDF全文
本文提出用有限元法解磁法勘探的正问题,不再需要引入均匀磁化假定。 传统的正演计算方法是在均匀磁化的假定下建立的,它不能适应解释复杂磁异常的需要。近几年来,国外学者提出了用迭代方法作非均匀磁化条件下的正演计算,对形状比较简单的磁性体取得了较好的效果。但随着磁性体的形状变得比较复杂,计算所需时间很快增加,精度和稳定性也明显降低。以求能量函数极小的变分原理为依据,用有限元法作非均匀磁化条件下的正演计算,得到的磁位势函数满足磁性体内外的偏微分方程和全部界面条件(文中对此作了证明)。因此,这种方法可以研究各种复杂因素的影响,宜于计算非均匀磁化磁性体的有效磁化强度和磁异常。  相似文献   

6.
The forward computation of the gravitational and magnetic fields due to a 3D body with an arbitrary boundary and continually varying density or magnetization is an important problem in gravitational and magnetic prospecting. In order to solve the inverse problem for the arbitrary components of the gravitational and magnetic anomalies due to an arbitrary 3D body under complex conditions, including an uneven observation surface, the existence of background anomalies and very little or no a priori information, we used a spherical coordinate system to systematically investigate forward methods for such anomalies and developed a series of universal spherical harmonic expansions of gravitational and magnetic fields. For the case of a 3D body with an arbitrary boundary and continually varying magnetization, we have also given the surface integral expressions for the common spherical harmonic coefficients in the expansion of the magnetic field due to the body, and a very precise numerical integral algorithm to calculate them. Thus a simple and effective method of solving the forward problem for magnetic fields due to 3D bodies of this kind has been found, and in this way a foundation is laid for solving the inverse problem of these magnetic fields. In addition, by replacing the parameters and unit vectors in the spherical harmonic expansion of a magnetic field by gravitational parameters and a downward unit vector, we have also derived a forward method for the gravitational field (similar to that for the magnetic case) of a 3D body with an arbitrary boundary and continually varying density.  相似文献   

7.
Several papers have been published in which the electromagnetic anomalies are described that are produced by conductive ore bodies of different shapes. No publications are available, however, in which the electrical current pattern is described that is induced in these ore bodies. Yet an insight in this electrical current pattern would be valuable in order to assess the possibilities of different electromagnetic techniques, for instance with regard to the determination of the dip and of the depth extent of plate shaped ore bodies. In the present paper computations are given of the electrical current pattern induced by an oscillating magnetic dipole in a semi infinite plate shaped orebody of infinitesimal thickness, in which the penetration depth of the current is infinitesimal to a higher order than the thickness of the plate. The computations are based upon an equation derived by Wesley for the magnetic field produced in these conditions, combined with the relation between the electrical current density in a laminar sheet and the magnetic field produced by this current at the surface of the sheet. The results of the computations show that, if the horizontal distance between the dipole source and the sheet is sufficiently small, the maximum current density of the return current may occur at a depth below the upper edge of the sheet which is appreciably smaller than the depth of the upper edge of the sheet below the surface. The depth of the return current becomes large when the horizontal distance between the source and the sheet is large.  相似文献   

8.
Variable-density sources have been paid more attention in gravity modeling. We conduct the computation of gravity gradient tensor of given mass sources with variable density in this paper. 3D rectangular prisms, as simple building blocks, can be used to approximate well 3D irregular-shaped sources. A polynomial function of depth can represent flexibly the complicated density variations in each prism. Hence, we derive the analytic expressions in closed form for computing all components of the gravity gradient tensor due to a 3D right rectangular prism with an arbitrary-order polynomial density function of depth. The singularity of the expressions is analyzed. The singular points distribute at the corners of the prism or on some of the lines through the edges of the prism in the lower semi-space containing the prism. The expressions are validated, and their numerical stability is also evaluated through numerical tests. The numerical examples with variable-density prism and basin models show that the expressions within their range of numerical stability are superior in computational accuracy and efficiency to the common solution that sums up the effects of a collection of uniform subprisms, and provide an effective method for computing gravity gradient tensor of 3D irregular-shaped sources with complicated density variation. In addition, the tensor computed with variable density is different in magnitude from that with constant density. It demonstrates the importance of the gravity gradient tensor modeling with variable density.  相似文献   

9.
In recent years, strong earthquakes of MS8.0 Wenchuan and MS7.0 Lushan occurred in the central-southern part of Longmenshan fault zone. The distance between the two earthquakes is less than 80 kilometers. So if we can obtain the inner structure of the crust and upper mantle, it will benefit us to understand the mechanism of the two earthquakes. Based on the high resolution dataset of Bouguer gravity anomaly data and the initial model constrained by three-dimensional tomography results of P-wave velocity in Sichuan-Yunnan region, with the help of the preconditioned conjugate gradient(PCG)inversion method, we established the three dimensional density structure model of the crust and upper mantle of the central-southern segment of Longmenshan, the spatial interval of which is 10 kilometers along the horizontal direction and 5 kilometers along the depth which is limited to 0~65km, respectively. This model also provides a new geophysical model for studying the crustal structure of western Sichuan plateau and Sichuan Basin. The results show obvious differences in the crustal density structure on both sides(Songpan-Ganzê block and Sichuan Basin)of Longmenshan fault zone which is a boundary fault and controls the inner crustal structure. In Sichuan Basin, the sedimentary layer is represented as low density structure which is about 10km thick. In contrast, the upper crust of Songpan-Ganzê block shows a thinner sedimentary layer and higher density structure where bedrock is exposed. Furthermore, there is a wide scale low density layer in the middle crust of the Songpan-Ganzê block. Based on this, we inferred that the medium intensity of the Songpan-Ganzê block is significantly lower than that of Sichuan Basin. As a result, the eastward movement of material of the Qinghai-Tibet plateau, blocked by the Sichuan Basin, is inevitably impacted, resulting in compressional deformation and uplift, forming the Longmenshan thrust-nappe tectonic belt at the same time. The result also presents that the crustal structure has a distinct segmental feature along the Longmenshan fault zone, which is characterized by obviously discontinuous changes in crustal density. Moreover, a lot of high- and low-density structures appear around the epicenters of Wenchuan and Lushan earthquakes. Combining with the projection of the precise locating earthquake results, it is found that Longmenshan fault zone in the upper crust shows obvious segmentation, both Wenchuan and Lushan earthquake occurred in the high density side of the density gradient zone. Wenchuan earthquake and its aftershocks are mainly distributed in the west of central Longmenshan fault zone. In the south of Maoxian-Beichuan, its aftershocks occurred in high density area and the majority of them are thrust earthquake. In the north of Maoxian-Beichuan, its aftershocks occurred in the low density area and the majority of them are strike-slip earthquake. The Lushan earthquake and its aftershocks are concentrated near the gradient zone of crustal density and tend to the side of the high density zone. The aftershocks of Lushan earthquake ended at the edge of low-density zone which is in EW direction in the north Baoxing. The leading edge of Sichuan Basin, which has high density in the lower crust, expands toward the Qinghai-Tibet Plateau with the increase of depth, and is close to the west of the Longmenshan fault zone at the top of upper mantle. Our results show that there are a lot of low density bodies in the middle and lower crust of Songpan-Ganzê Block. With the increase of the depth, the low density bodies are moving to the south and its direction changed. This phenomenon shows that the depth and surface structure of Songpan-Ganzê Block are not consistent, suggesting that the crust and upper mantle are decoupled. Although a certain scale of low-density bodies are distributed in the middle and lower crust of Songpan-Ganzê, their connectivity is poor. There are some low-density anomalies in the floor plan. It is hard to give clear evidence to prove whether the lower crust flow exists.  相似文献   

10.
In magnetic routine interpretation the comparison of two-dimensional model curves with measured magnetic anomalies is widely used for an approximate evaluation of the position and depth of magnetic models. Before starting an interpretation of a survey by means of two-dimensional models, it is very useful to have an idea of the shape of anomalies caused by extended but finite bodies, taking into account various strike directions: Three sets of anomalies of thin plates (horizontal length 19, downward length 9, width 1) dipping 30°, 60°, and 90° resp. for various strike directions and an inclination of 20° were computed. Some of these anomalies, e.g. those with nearly N-S strike direction look rather complicated, and at the first glance one would not expect that they are caused by such simple bodies. Several profiles crossing the computed anomalies perpendicularly were interpreted two-dimensionally. For less extended anomalies the depths determined for the top of the plates are 10-20% too small, the magnetization amounts to 50–75 % of the value of the finite bodies. The interpretation of the profiles covering more extended anomalies gave very accurately the same values for the position, depth and magnetization for the two-dimensional body as for the original three-dimensional model. Anomalies of vertical prisms with varying extensions in the y-direction were computed. Their differences in amplitude and in the distance maximum-minimum show that interpretation of short anomalies by two-dimensional methods yields depth errors of up to 20 percent. To see the possibilities of the separation of superimposed anomalies dike anomalies were added to the anomaly of a broad body in great depth and several attempts were made to interpret parts of the composite anomalies. The interpreted bodies lie too deep. In complicated cases the depth values can have large errors, but experienced interpreters should be able to keep the errors in the range of one third of the depth values.  相似文献   

11.
The estimation of the depth to the top and bottom of a magnetic source from magnetic data defines a nonlinear inverse problem, while the evaluation of the distribution of magnetization determines a linear inverse problem. In this paper, these interpretation problems are resolved in the continuous case of 21/2D magnetized bodies with lateral magnetization variations. A formulation of the magnetic problem accounting for different directions of remanent and total magnetization vectors and including a more general definition of apparent susceptibility is presented. Differences between 2D and 21/2D formulations are stressed, as regards the anomaly amplitude, shape and zero-level.In order to utilize well-known continuous linear inverse methods, Fréchet derivatives of the data functionals with respect to the depth of the source top and bottom, are analytically described. Thus, using the spectral expansion inverse method (Parker, 1977) and linearizing the problem at several steps of an iterative process, the source depth is obtained within a few iterations, although the starting model is distant from the final solution. The interpretation of an anomaly in the Italian region shows the usefulness of the method.  相似文献   

12.
本文利用极限变换的概念,推导了质点的重力位及偶极子的磁位的三维傅里叶变换。在这个基础上,推导了任意形状物体的重、磁场的三维傅里叶变换的一般表达式。根据这些式子,讨论了文[1]中由三维谱求二维谱存在的问题,即对三维谱而言,不存在u2+v2+w2=0。  相似文献   

13.
全张量磁梯度数据具有高精度、高分辨率、多参量的优点,能更加清晰地刻画地质体的分布特征,综合利用磁张量梯度数据准确地获得地质体水平位置和深度信息是解释的主要目的.磁张量数据的方向解析信号具有减小倾斜磁化干扰的优点,常被用来圈定磁源体的水平位置,但解析信号强度随着地质体埋深的增加急剧衰减,难以有效识别较深的地质体.张量数据均衡边界识别技术,利用不同方向解析信号的比值函数,能有效地均衡不同深度地质体的响应,同时显示不同深度地质体的边界,提高了对较深地质体的分辨率.磁张量数据深度成像技术根据实测张量数据与假定模型张量数据的相关系数来给定地质体的深度,综合利用多参量数据联合反演提高了反演结果的准确性,且无需进行复杂的反演运算,是大数据量张量数据解释的有效方法.理论模型试验证明:磁张量数据均衡边界识别技术可清晰和准确地识别地质体的水平范围,受倾斜磁化干扰小;磁张量数据深度成像技术可准确地获得地质体的深度信息,具有较强的抗噪性.将上述方法应用于铁矿区实测航磁张量梯度数据解释,获得了铁矿体水平分布与埋深,深度结果与张量欧拉反褶积法计算结果一致.  相似文献   

14.
Summary A simple method is designed for programming the gravity and magnetic calculations of a right circular cylinder (vertical or horizontal) by treating it as a combination of thin rectangular slabs. It takes only a few seconds to compute a profile of each kind and the accuracy is comparable to that obtained by using exact expressions (involving complete elliptic integrals) instead. The method is also applicable to cylindrical bodies of arbitrary cross-section and could as well be used for rapid computation of derivatives of gravity and magnetic anomalies.  相似文献   

15.
If wind-stress or a horizontal oceanic density gradient acts over an ocean basin with an adjacent continental shelf and slope, sea-surface slopes and currents are set up along the shelf and slope with a return flow in the ocean. The currents evolve from zero at blocked ends of the shelf and basin. Such evolution is essentially barotropic (even for baroclinic forcing) and is relevant to all flow adjustments after longshore changes of depth profile or forcing. The distance over which this evolution takes place is investigated analytically for simple geometries, and numerically for a range of shelf, slope and ocean widths, shelf/ocean depth ratios, frictional decay rates and oscillatory frequencies. A close correspondence is found with the decay distance (group velocity x decay time) for a lowest mode continental shelf wave, often exceeding 1000 km. This correspondence is used to interpret some published model calculations of shelf and slope currents or return flows resulting from wind-stress or alongshore pressure gradients.Where a slope current is evolving, coastal sea levels do not follow oceanic levels. Implications for coastal/oceanic level differences are discussed. Oceanic sea-level features of shorter scale than the above 1000 km (say) do not penetrate fully to the coast. However, coastal sea levels averaged around small islands without broad shelves well represent surrounding oceanic levels.  相似文献   

16.
滇西试验场区的Q值及其随时间窗的变化   总被引:28,自引:1,他引:28       下载免费PDF全文
本文试用数字地震记录求取尾波Q值及其与频率的关系.在微机上处理触发数字地震仪记录的资料,原始记录经数字滤波器作窄带通滤波得到一组分频记录,经过时间序列分析的方法,可得到能量密度随时间衰减的曲线,该曲线比从可见记录求得的较为可靠.以散射模型的理论表达式进行曲线拟合,求得Q值及其与频率的关系.值得注意的是,这个结果对某一台站并非常数,尾波Q值是时间窗(即研究所用尾波的整个延续时间)的函数,其原因可能是由于不同到时的尾波采样区域和深度不同,以及多次散射的影响等.因此,当把Q值作为地震预报的一个参数时,延续时间是一个重要的可选择的因子.   相似文献   

17.
An equivalent layer magnetization model obtained from inversion of long-wavelength satellite magnetic anomaly data indicates a very magnetic source region centered in south central Kentucky. The magnetization maximum nearly coincides with a gravity high elongated north-south and extending into Tennessee. Previous refraction profiles suggest that the source of the gravity anomaly is a large mass of rock occupying much of the crustal thickness. The outline of the source delineated by gravity contours is also discernible in aeromagnetic anomaly patterns. Taken together, the geophysical data suggest a large, localized mass of intracrustal rock which is both dense and very magnetic. A simple magnetization/density model is given which accounts for the gravity and long-wavelength aeromagnetic anomalies due to the body. We interpret it as a mafic plutonic complex, and several lines of evidence are consistent with a rift association. The body is, however, clearly related to the inferred position of the Grenville Front. It is bounded on the north by the fault zones of the 38th Parallel Lineament. The inferred mean magnetization (4 A/m) of the body is large, but not inconsistent with values reported by others for deep crustal bodies associated with long-wavelength magnetic anomalies. Such magnetization levels can be achieved with magnetic mineralogies produced by normal oxidation and metamorphic processes and enhanced by viscous build-up, especially in mafic rocks of alkaline character.  相似文献   

18.
Severe limitations of the standard Euler deconvolution to outline source shapes have been pointed out. However, Euler deconvolution has been widely employed on field data to outline interfaces, as faults and thrust zones. We investigate the limitations of the 3D Euler deconvolution–derived estimates of source dip and volume with the use of reduced-to-the-pole synthetic and field anomalies. The synthetic anomalies are generated by two types of source bodies: (1) uniformly magnetized prisms, presenting either smooth or rough interfaces, and (2) bodies presenting smooth delimiting interfaces but strong internal variation of magnetization intensity. The dip of the first type of body might be estimated from the Euler deconvolution solution cluster if the ratio between the depth to the top and vertical extent is relatively high (>1/4). For the second type of body, besides dip, the source volume can be approximately delimited from the solution cluster envelope, regardless of the referred ratio. We apply Euler deconvolution to two field anomalies which are caused by a curved-shape thrust zone and by a banded iron formation. These anomalies are chosen because they share characteristics with the two types of synthetic bodies. For the thrust zone, the obtained Euler deconvolution solutions show spatial distribution allowing to estimate a source dip that is consistent with the surface geology data, even if the above-mentioned ratio is much less than 1/4. Thus, there are other factors, such as a heterogeneous magnetization, which might be controlling the vertical spreading of the Euler deconvolution solutions in the thrust zone. On the other hand, for the iron-ore formation, the solution cluster spreads out occupying a volume, in accordance with the results obtained with the synthetic sources having internal variation of magnetization intensity. As conclusion, although Euler deconvolution–derived solutions cannot offer accurate estimates of source shapes, they might provide a sufficient degree of reliability in the initial estimates of the source dip and volume, which may be useful in a later phase of more accurate modelling.  相似文献   

19.
Thin sheet-like forms are common target bodies in geoelectric prospecting. Depending on their mineralogy and other factors these bodies may be relatively conductive or relatively resistive with respect to their surroundings. For suitably remote field points (relative to the thickness) these features manifest themselves geoelectrically in terms of their conductivity-thickness product for relatively conductive bodies or in terms of their resistivity-thickness product for resistive forms. While the case of a conductive sheet has received some attention in the geophysical literature, resistive sheets have been largely ignored. Accordingly an efficient technique to model the geoelectric responses of a resistive lamina is presented here. The technique involves representing the lamina in terms of a distribution of normally directed current dipole moment whose density is shown to satisfy an inhomogeneous Fredholm integral equation of the second kind. The technique is rigorously tested in a 2D environment and is shown to produce reliable and suitably accurate results. An application of the method is presented in which the apparent resistivity and chargeability responses measured with a gradient array over a dipping resistive ribbon are computed. These are compared with the responses observed over a relatively conductive ribbon in the same orientation.  相似文献   

20.
The spectrum of a magnetic or a gravity anomaly due to a body of a given shape with either homogeneous magnetization or uniform density distribution can be expressed as a product of the Fourier transforms of the source geometry and the Green's function. The transform of the source geometry for any irregularly-shaped body can be accurately determined by representing the body as closely as possible by a number of prismatic bodies. The Green's function is not dependent upon the source geometry. So the analytical expression for its transform remains the same for all causative bodies. It is, therefore, not difficult to obtain the spectrum of an anomaly by multiplying the transform of the source geometry by that of the Green's function. Then the inverse of this spectrum, which yields the anomaly in the space domain, is calculated by using the Fast Fourier Transform algorithm. Many examples show the reliability and accuracy of the method for calculating potential field anomalies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号